Synthesis of Phenol-Tagged Ruthenium Alkylidene Olefin Metathesis Catalysts for Robust Immobilisation Inside Metal–Organic Framework Support
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grela, K. (Ed.) Olefin Metathesis: Theory and Practice; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Grubbs, R.H.; Wenzel, A.G.; O’Leary, D.J.; Khosravi, E. (Eds.) Handbook of Metathesis; Wiley-VCH: Weinheim, Germany, 2015. [Google Scholar]
- Clavier, H.; Grela, K.; Kirschning, A.; Mauduit, M.; Nolan, S.P. Sustainable Concepts in Olefin Metathesis. Angew. Chem. Int. Ed. 2007, 46, 6786–6801. [Google Scholar] [CrossRef] [PubMed]
- Vougioukalakis, G.C. Removing Ruthenium Residues from Olefin Metathesis Reaction Products. Chem.—A Eur. J. 2012, 18, 8868–8880. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, P.; Phillips, J.H.; Pederson, R.L. Scalable Methods for the Removal of Ruthenium Impurities from Metathesis Reaction Mixtures. Org. Process Res. Dev. 2016, 20, 1182–1190. [Google Scholar] [CrossRef] [Green Version]
- Yaghi, O.M.; Kalmutzki, M.J.; Diercks, C.S. (Eds.) Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks; Wiley-VCH: Weinheim, Germany, 2019. [Google Scholar]
- Dybtsev, D.N.; Bryliakov, K.P. Asymmetric catalysis using metal-organic frameworks. Coord. Chem. Rev. 2021, 437, 213845. [Google Scholar] [CrossRef]
- Wei, Y.-S.; Zhang, M.; Zou, R.; Xu, Q. Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chem. Rev. 2020, 120, 12089–12174. [Google Scholar] [CrossRef]
- Bavykina, A.; Kolobov, N.; Khan, I.S.; Bau, J.A.; Ramirez, A.; Gascon, J. Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem. Rev. 2020, 120, 8468–8535. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Gates, B.C. Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research. ACS Catal. 2019, 9, 1779–1798. [Google Scholar] [CrossRef]
- Rogge, S.M.J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A.I.; Sepúlveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F.; et al. Metal–organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 2017, 46, 3134–3184. [Google Scholar] [CrossRef] [Green Version]
- Chołuj, A.; Zieliński, A.; Grela, K.; Chmielewski, M.J. Metathesis@MOF: Simple and Robust Immobilization of Olefin Metathesis Catalysts inside (Al)MIL-101-NH2. ACS Catal. 2016, 6, 6343–6349. [Google Scholar] [CrossRef]
- Chołuj, A.; Nogaś, W.; Patrzałek, M.; Krzesiński, P.; Chmielewski, M.J.; Kajetanowicz, A.; Grela, K. Preparation of Ruthenium Olefin Metathesis Catalysts Immobilized on MOF, SBA-15, and 13X for Probing Heterogeneous Boomerang Effect. Catalysts 2020, 10, 438. [Google Scholar] [CrossRef]
- Chołuj, A.; Karczykowski, R.; Chmielewski, M.J. Simple and Robust Immobilization of a Ruthenium Olefin Metathesis Catalyst Inside MOFs by Acid–Base Reaction. Organometallics 2019, 38, 3392–3396. [Google Scholar] [CrossRef]
- Chołuj, A.; Krzesiński, P.; Ruszczyńska, A.; Bulska, E.; Kajetanowicz, A.; Grela, K. Noncovalent Immobilization of Cationic Ruthenium Complex in a Metal–Organic Framework by Ion Exchange Leading to a Heterogeneous Olefin Metathesis Catalyst for Use in Green Solvents. Organometallics 2019, 38, 3397–3405. [Google Scholar] [CrossRef]
- Spekreijse, J.; Öhrström, L.; Sanders, J.P.M.; Bitter, J.H.; Scott, E.L. Mechanochemical Immobilisation of Metathesis Catalysts in a Metal–Organic Framework. Chem.—A Eur. J. 2016, 22, 15437–15443. [Google Scholar] [CrossRef]
- Yuan, J.; Fracaroli, A.M.; Klemperer, W.G. Convergent Synthesis of a Metal–Organic Framework Supported Olefin Metathesis Catalyst. Organometallics 2016, 35, 2149–2155. [Google Scholar] [CrossRef]
- Arnanz, A.; Pintado-Sierra, M.; Corma, A.; Iglesias, M.; Sánchez, F. Bifunctional Metal Organic Framework Catalysts for Multistep Reactions: MOF-Cu(BTC)-[Pd] Catalyst for One-Pot Heteroannulation of Acetylenic Compounds. Adv. Synth. Catal. 2012, 354, 1347–1355. [Google Scholar] [CrossRef]
- Sivan, S.E.; Oh, K.-R.; Yoon, J.-W.; Yoo, C.; Hwang, Y.K. Immobilization of a trimeric ruthenium cluster in mesoporous chromium terephthalate and its catalytic application. Dalton Trans. 2022, 51, 13189–13194. [Google Scholar] [CrossRef] [PubMed]
- Berijani, K.; Morsali, A.; Hupp, J.T. An effective strategy for creating asymmetric MOFs for chirality induction: A chiral Zr-based MOF for enantioselective epoxidation. Catal. Sci. Technol. 2019, 9, 3388–3397. [Google Scholar] [CrossRef]
- Rimoldi, M.; Nakamura, A.; Vermeulen, N.A.; Henkelis, J.J.; Blackburn, A.K.; Hupp, J.T.; Stoddart, J.F.; Farha, O.K. A metal–organic framework immobilised iridium pincer complex. Chem. Sci. 2016, 7, 4980–4984. [Google Scholar] [CrossRef] [Green Version]
- Baek, J.; Rungtaweevoranit, B.; Pei, X.; Park, M.; Fakra, S.C.; Liu, Y.-S.; Matheu, R.; Alshmimri, S.A.; Alshehri, S.; Trickett, C.A.; et al. Bioinspired Metal–Organic Framework Catalysts for Selective Methane Oxidation to Methanol. J. Am. Chem. Soc. 2018, 140, 18208–18216. [Google Scholar] [CrossRef]
- Choi, S.; Jung, W.-J.; Park, K.; Kim, S.-Y.; Baeg, J.-O.; Kim, C.H.; Son, H.-J.; Pac, C.; Kang, S.O. Rapid Exciton Migration and Amplified Funneling Effects of Multi-Porphyrin Arrays in a Re(I)/Porphyrinic MOF Hybrid for Photocatalytic CO2 Reduction. ACS Appl. Mater. Interfaces 2021, 13, 2710–2722. [Google Scholar] [CrossRef]
- Wu, P.; He, C.; Wang, J.; Peng, X.; Li, X.; An, Y.; Duan, C. Photoactive Chiral Metal–Organic Frameworks for Light-Driven Asymmetric α-Alkylation of Aldehydes. J. Am. Chem. Soc. 2012, 134, 14991–14999. [Google Scholar] [CrossRef] [PubMed]
- Madrahimov, S.T.; Gallagher, J.R.; Zhang, G.; Meinhart, Z.; Garibay, S.J.; Delferro, M.; Miller, J.T.; Farha, O.K.; Hupp, J.T.; Nguyen, S.T. Gas-Phase Dimerization of Ethylene under Mild Conditions Catalyzed by MOF Materials Containing (bpy)NiII Complexes. ACS Catal. 2015, 5, 6713–6718. [Google Scholar] [CrossRef]
- Zhu, W.; Xiang, G.; Shang, J.; Guo, J.; Motevalli, B.; Durfee, P.; Agola, J.O.; Coker, E.N.; Brinker, C.J. Versatile Surface Functionalization of Metal–Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications. Adv. Funct. Mater. 2018, 28, 1705274. [Google Scholar] [CrossRef]
- Monsigny, L.; Kajetanowicz, A.; Grela, K. Ruthenium Complexes Featuring Unsymmetrical N-Heterocyclic Carbene Ligands–Useful Olefin Metathesis Catalysts for Special Tasks. Chem. Rec. 2021, 21, 3648–3661. [Google Scholar] [CrossRef] [PubMed]
- Paradiso, V.; Costabile, C.; Grisi, F. Ruthenium-based olefin metathesis catalysts with monodentate unsymmetrical NHC ligands. Beilstein J. Org. Chem. 2018, 14, 3122–3149. [Google Scholar] [CrossRef] [Green Version]
- Ablialimov, O.; Kędziorek, M.; Torborg, C.; Malińska, M.; Woźniak, K.; Grela, K. New Ruthenium(II) Indenylidene Complexes Bearing Unsymmetrical N-Heterocyclic Carbenes. Organometallics 2012, 31, 7316–7319. [Google Scholar] [CrossRef]
- Patrzałek, M.; Piątkowski, J.; Kajetanowicz, A.; Grela, K. Anion Metathesis in Facile Preparation of Olefin Metathesis Catalysts Bearing a Quaternary Ammonium Chloride Tag. Synlett 2019, 30, 1981–1987. [Google Scholar] [CrossRef] [Green Version]
- Małecki, P.; Gajda, K.; Ablialimov, O.; Malińska, M.; Gajda, R.; Woźniak, K.; Kajetanowicz, A.; Grela, K. Hoveyda–Grubbs-Type Precatalysts with Unsymmetrical N-Heterocyclic Carbenes as Effective Catalysts in Olefin Metathesis. Organometallics 2017, 36, 2153–2166. [Google Scholar] [CrossRef]
- Małecki, P.; Gajda, K.; Gajda, R.; Woźniak, K.; Trzaskowski, B.; Kajetanowicz, A.; Grela, K. Specialized Ruthenium Olefin Metathesis Catalysts Bearing Bulky Unsymmetrical NHC Ligands: Computations, Synthesis, and Application. ACS Catal. 2019, 9, 587–598. [Google Scholar] [CrossRef]
- Planer, S.; Małecki, P.; Trzaskowski, B.; Kajetanowicz, A.; Grela, K. Sterically Tuned N-Heterocyclic Carbene Ligands for the Efficient Formation of Hindered Products in Ru-Catalyzed Olefin Metathesis. ACS Catal. 2020, 10, 11394–11404. [Google Scholar] [CrossRef]
- Smoleń, M.; Kośnik, W.; Loska, R.; Gajda, R.; Malińska, M.; Wożniak, K.; Grela, K. Synthesis and catalytic activity of ruthenium indenylidene complexes bearing unsymmetrical NHC containing a heteroaromatic moiety. RSC Adv. 2016, 6, 77013–77019. [Google Scholar] [CrossRef]
- Grudzień, K.; Trzaskowski, B.; Smoleń, M.; Gajda, R.; Woźniak, K.; Grela, K. Hoveyda-Grubbs catalyst analogues bearing the derivatives of N-phenylpyrrol in the carbene ligand-structure, stability, activity and unique ruthenium-phenyl interactions. Dalton Trans. 2017, 46, 11790–11799. [Google Scholar] [CrossRef] [PubMed]
- Smoleń, M.; Kośnik, W.; Gajda, R.; Woźniak, K.; Skoczeń, A.; Kajetanowicz, A.; Grela, K. Ruthenium Complexes Bearing Thiophene-Based Unsymmetrical N-Heterocyclic Carbene Ligands as Selective Catalysts for Olefin Metathesis in Toluene and Environmentally Friendly 2-Methyltetrahydrofuran. Chem.—A Eur. J. 2018, 24, 15372–15379. [Google Scholar] [CrossRef] [PubMed]
- Ablialimov, O.; Kędziorek, M.; Malińska, M.; Woźniak, K.; Grela, K. Synthesis, Structure, and Catalytic Activity of New Ruthenium(II) Indenylidene Complexes Bearing Unsymmetrical N-Heterocyclic Carbenes. Organometallics 2014, 33, 2160–2171. [Google Scholar] [CrossRef]
- Jolly, P.I.; Marczyk, A.; Małecki, P.; Ablialimov, O.; Trzybiński, D.; Woźniak, K.; Osella, S.; Trzaskowski, B.; Grela, K. Azoliniums, Adducts, NHCs and Azomethine Ylides: Divergence in Wanzlick Equilibrium and Olefin Metathesis Catalyst Formation. Chem.—A Eur. J. 2018, 24, 4785–4789. [Google Scholar] [CrossRef]
- Serra-Crespo, P.; Ramos-Fernandez, E.V.; Gascon, J.; Kapteijn, F. Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties. Chem. Mater. 2011, 23, 2565–2572. [Google Scholar] [CrossRef]
- Rouquerol, J.; Llewellyn, P.L.; Rouquerol, F. Is the bet equation applicable to microporous adsorbents. Stud. Surf. Sci. Catal. 2007, 160, 49–56. [Google Scholar] [CrossRef]
- Walton, K.S.; Snurr, R.Q. Applicability of the BET Method for Determining Surface Areas of Microporous Metal−Organic Frameworks. J. Am. Chem. Soc. 2007, 129, 8552–8556. [Google Scholar] [CrossRef]
- Zwoliński, K.M.; Nowak, P.; Chmielewski, M.J. Towards multifunctional MOFs – transforming a side reaction into a post-synthetic protection/deprotection method. Chem. Commun. 2015, 51, 10030–10033. [Google Scholar] [CrossRef]
- Ho, T.-L.; Olah, G.A. Cleavage of Esters and Ethers with Iodotrimethylsilane. Angew. Chem. Int. Ed. 1976, 15, 774–775. [Google Scholar] [CrossRef]
Catalyst/Solvent | The Amount of Catalyst Adsorbed from Solution [%] |
---|---|
Ru1/Toluene | 99.4 |
Ru1/DCM | 99.2 |
[Ru] | Time, [h] | Conversion, [%] |
---|---|---|
Ru1 (1 mol%) homogeneous | 3 | 95 |
24 | >99 | |
Ru1@MOF (1 mol%) heterogeneous | 3 | 53 |
24 | 54 | |
Ru1@MOF (2 mol%) heterogeneous | 3 | 50 |
24 | 51 |
[Ru]@MOF | Substrate | Product | Conversion in 24 h |
---|---|---|---|
Ru1@(Al)MIL-101-NH2 | 31 | ||
Ru1@(Al)MIL-101-NH2 | 91 | ||
Ru1@(Al)MIL-101-NH2·HCl | 78 | ||
Ru1@(Al)MIL-101-NH2 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadirova, M.; Cejas-Sánchez, J.; Sebastián, R.M.; Wiszniewski, M.; Chmielewski, M.J.; Kajetanowicz, A.; Grela, K. Synthesis of Phenol-Tagged Ruthenium Alkylidene Olefin Metathesis Catalysts for Robust Immobilisation Inside Metal–Organic Framework Support. Catalysts 2023, 13, 297. https://doi.org/10.3390/catal13020297
Nadirova M, Cejas-Sánchez J, Sebastián RM, Wiszniewski M, Chmielewski MJ, Kajetanowicz A, Grela K. Synthesis of Phenol-Tagged Ruthenium Alkylidene Olefin Metathesis Catalysts for Robust Immobilisation Inside Metal–Organic Framework Support. Catalysts. 2023; 13(2):297. https://doi.org/10.3390/catal13020297
Chicago/Turabian StyleNadirova, Maryana, Joel Cejas-Sánchez, Rosa María Sebastián, Marcin Wiszniewski, Michał J. Chmielewski, Anna Kajetanowicz, and Karol Grela. 2023. "Synthesis of Phenol-Tagged Ruthenium Alkylidene Olefin Metathesis Catalysts for Robust Immobilisation Inside Metal–Organic Framework Support" Catalysts 13, no. 2: 297. https://doi.org/10.3390/catal13020297
APA StyleNadirova, M., Cejas-Sánchez, J., Sebastián, R. M., Wiszniewski, M., Chmielewski, M. J., Kajetanowicz, A., & Grela, K. (2023). Synthesis of Phenol-Tagged Ruthenium Alkylidene Olefin Metathesis Catalysts for Robust Immobilisation Inside Metal–Organic Framework Support. Catalysts, 13(2), 297. https://doi.org/10.3390/catal13020297