Catalytic Distillation of Atmospheric Residue of Petroleum over HY-MCM-41 Micro-Mesoporous Materials
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization of the Catalysts
2.2. Characteristics of the ATR
2.3. Standard Distillation of ATR
2.4. Analysis of the Distilled Products by Chromatography
2.5. Thermal Analysis
3. Materials and Methods
3.1. Atmospheric Residue of Petroleum
3.2. HY Zeolite and MCM-41 Catalysts
3.3. Catalytic Distillation of ATR
3.4. Thermal Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Speight, J.G. Crude Oil–Distillation. In Rules of Thumb for Petroleum Engineers; Scrivener Publishing LLC: New York, NY, USA, 2017; pp. 185–186. [Google Scholar]
- Jin, Q.; Li, Z.; Yan, Z.; Wang, B.; Wang, Z. Optimization Study on Enhancing Deep-Cut Effect of the Vacuum Distillation Unit (VDU). Processes 2022, 10, 359. [Google Scholar] [CrossRef]
- Bartholomew, C.H.; Farrauto, R.J. Petroleum Refining and Processing. In Fundamentals of Industrial Catalytic Processes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 635–704. [Google Scholar]
- Zhao, R.F. Progress and Application of Atmospheric and Vacuum Distillation Technology; China Petrochemical Press: Beijing, China, 2020. [Google Scholar]
- Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev. 1997, 97, 2373–2420. [Google Scholar] [CrossRef] [PubMed]
- de Jong, K.P.; Zecevic, J.; Friedrich, H.; de Jongh, P.E.; Bulut, M.; van Donk, S.; Kenmogne, R.; Finiels, A.; Hulea, V.; Fajula, F. Zeolite Y with trimodal porosity as ideal hydrocracking catalysts. Angew. Chem. 2010, 49, 10074–10078. [Google Scholar] [CrossRef] [PubMed]
- Ruifeng, L.; Fan, W.; Ma, J.; Xie, K. Preparation of Y/MCM-41 composite materials. Stud. Surf. Sci. Catal. 2000, 129, 117–120. [Google Scholar]
- Koch, H.; Liepold, A.; Roos, K.; Stöcker, M.; Reschetilowski, W. Comparative Study of the Acidic and Catalytic Properties of the Mesoporous Material H-MCM-41 and Zeolite H-Y. Chem. Eng. Technol. 1999, 22, 807–811. [Google Scholar] [CrossRef]
- Serrano, D.P.; Escola, J.M.; Sanz, R.; Garcia, R.A.; Peral, A.; Moreno, I.; Linares, M. Hierarchical ZSM-5 zeolite with uniform mesopores and improved catalytic properties. New J. Chem. 2016, 40, 4206–4216. [Google Scholar] [CrossRef]
- van Donk, S.; Janssen, A.H.; Bitter, J.H.; de Jong, K.P. Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts. Catal. Rev. 2003, 45, 297–319. [Google Scholar] [CrossRef] [Green Version]
- Kazakov, M.O.; Nadeina, K.A.; Danilova, I.G.; Dik, P.P.; Klimov, O.V.; Pereyna, V.; Yu Gerasimov, E.; Yu Dobryakova, I.V.; Knyazeva, E.E.; Ivanova, I.I.; et al. Hydrocracking of Vacuum Gas Oil over NiMo/γ-Al2O3: Effect of Mesoporosity Introduced by Zeolite Y Recrystallization. Catal. Today 2018, 305, 117–125. [Google Scholar] [CrossRef]
- Ivanova, I.I.; Knyazeva, E.E. Micro-mesoporous materials obtained by zeolite recrystallization: Synthesis, characterization and catalytic applications. Chem. Soc. Rev. 2013, 42, 3671–3688. [Google Scholar] [CrossRef]
- Theodore, L.; Dupont, R.R.; Ganesan, K. Distillation. In Unit Operations in Environmental Engineering; Scrivener Publishing LLC: New York, NY, USA, 2017; pp. 493–502. [Google Scholar]
- Harmsen, G.J. Reactive distillation: The front-runner of industrial process intensification: A full review of commercial applications, research, scale-up, design and operation. Chem. Eng. Process. 2007, 46, 774–780. [Google Scholar] [CrossRef] [Green Version]
- Stuart, F. Distillation in Refining. In Distillation Operation and Applications; Academic Press: New York, NY, USA, 2014; pp. 155–190. [Google Scholar]
- Götze, L.; Bailer, O.; Moritz, P.; von Scala, C. Reactive distillation with KATAPAK®. Catal. Today 2001, 69, 201–208. [Google Scholar] [CrossRef]
- Kiss, A.A. Novel Catalytic Reactive Distillation Processes for a Sustainable Chemical Industry. Top. Catal. 2019, 62, 1132–1148. [Google Scholar] [CrossRef] [Green Version]
- Kiss, A.A. Distillation technology—Still young and full of breakthrough opportunities. J. Chem. Technol. Biotechnol. 2014, 89, 479–498. [Google Scholar] [CrossRef]
- Prajapati, R.; Kohli, K.; Maity, S.K.; Garg, M.O. Coking propensity during hydroprocessing of vacuum residues, deasphalted oils, and asphaltenes. Fuel 2017, 203, 514–521. [Google Scholar] [CrossRef]
- Grushova, E.I.; Sharif, A.S. Effect of polar organic substances on the distillates yield in atmospheric and vacuum distillation of crude oil. Pet. Chem. 2014, 54, 225–228. [Google Scholar] [CrossRef]
- Sawarkar, A.; Aniruddha, P.; Shriniwas, S.; Jyeshtharaj, J. Petroleum residue upgrading via delayed cocking: A review. Can. J. Chem. Eng. 2007, 85, 1–24. [Google Scholar] [CrossRef]
- Ramzan, N.; Faheem, M.; Gani, R.; Witt, W. Multiple steady states detection in a packed-bed reactive distillation column using bifurcation analysis. Comput. Chem. Eng. 2010, 34, 460–466. [Google Scholar] [CrossRef]
- Naranov, E.; Dementev, K.; Gerzeliev, I.; Kolesnichenko, N.; Roldugina, E.; Maksimov, A. The role of zeolite catalysis in modern petroleum refining: Contribution from domestic technologies. Pet. Chem. 2019, 59, 247–261. [Google Scholar] [CrossRef]
- Yan, L.; Ma, H.; Wang, B.; Mao, W.; Chen, Y. Advanced purification of petroleum refinery wastewater by catalytic vacuum distillation. J. Hazard. Mater. 2010, 178, 1120–1124. [Google Scholar] [CrossRef]
- Zou, Z.; Dai, C.; Li, Q.; Chen, B. Synthesis of dimethyl ether (DME) by catalytic distillation. Chem. Eng. Sci. 2011, 66, 3195–3203. [Google Scholar]
- Hu, S.; Liu, D.; Li, L.; Borgna, A.; Yang, Y. A non-sodium synthesis of highly ordered V-MCM-41 and its catalytic application in isomerization. Catal. Lett. 2009, 129, 478–485. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Xue, K.C.; Zhang, W.P.; Song, C.; Zhang, R.; Zhao, J. Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine. Chem. Pap. 2013, 67, 372–379. [Google Scholar] [CrossRef]
- Castro, K.K.V.; Paulino, A.A.D.; Silva, E.F.B.; Chellappa, T.; Lago, M.B.D.L.; Fernandes, V.J.; Araujo, A.S. Effect of the Al-MCM-41 catalyst on the catalytic pyrolisis of atmospheric petroleum residue (ATR). J. Therm. Anal. Calorim. 2011, 106, 759–762. [Google Scholar] [CrossRef]
- Castro, K.K.V.; Figueiredo, A.L.; Gondim, A.D.; Coriolano, A.C.F.; Alves, A.P.M.; Fernandes, V.J., Jr.; Araujo, A.S. Pyrolisis of atmospheric residue of petroleum (ATR) using AlSBA-15 mesoporous material by TG and Py-GC/MS. J. Therm. Anal. Calorim. 2014, 117, 953–959. [Google Scholar] [CrossRef]
- Coriolano, A.C.F.; Barbosa, G.F.S.; Alberto, C.K.D.; Delgado, R.C.O.B.; Castro, K.K.V.; Araujo, A.S. Catalytic processing of atmospheric residue of petroleum over AlSBA-15 nanomaterials with different acidity. Pet. Sci. Technol. 2016, 34, 627–632. [Google Scholar] [CrossRef]
- Silva, E.F.B.; Ribeiro, M.P.; Coriolano, A.C.F.; Melo, A.C.R.; Santos, A.G.D.; Fernandes, V.J.; Araujo, A.S. Kinetic study of degradation of heavy oil over MCM-41. J. Therm. Anal. Calorim. 2011, 106, 793–797. [Google Scholar] [CrossRef]
- Coriolano, A.C.F.; Silva, C.G.C.; Costa, M.J.F.; Pergher, S.B.C.; Caldeira, V.P.S.; Araujo, A.S. Development of HZSM-5/AlMCM-41 hybridmicro-mesoporous material and application for pyrolysis of vacuum gasoil. Microporous Mesoporous Mater. 2013, 172, 206–212. [Google Scholar] [CrossRef]
- Daou, T.J.; Dos Santos, T.; Nouali, H.; Josien, L.; Michelin, L.; Pieuchot, L.; Dutournie, P. Synthesis of FAU-Type Zeolite Membranes with Antimicrobial Activity. Molecules 2020, 25, 3414. [Google Scholar] [CrossRef]
- Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834–10843. [Google Scholar] [CrossRef]
- Sad, C.M.S.; Lacerda, V., Jr.; Filgueiras, P.R.; Rigoni, V.S.; Bassane, J.P.F.; Castro, E.V.R.; Pereira, K.S.; Santos, M.P.F. Limitations of the pour point measurement and the influence of the oil composition on its detection using principal component analysis. Energy Fuels 2014, 28, 1686–1691. [Google Scholar] [CrossRef]
- Beens, J.; Brinkman, U.A. The role of gas chromatography in compositional analyses in the petroleum industry. Trends Anal. Chem. 2000, 19, 260–275. [Google Scholar] [CrossRef]
- Silva, J.M.R.; Oliveira, M.H.R.; Nosman, T.; Coriolano, A.C.F.; Fernandes, G.J.T.; Fernandes, V.J.; Araujo, A.S. Catalytic distillation of an atmospheric petroleum resid using HZSM-5 and HY zeolites. Pet. Sci. Technol. 2017, 35, 1938–1943. [Google Scholar] [CrossRef]
- Flynn, J.H. Early papers by Takeo Ozawa and their continuing relevance. Thermochim. Acta 1996, 283, 35–42. [Google Scholar] [CrossRef]
- Flynn, J.H. A function to aid in the fitting of kinetic data to a rate equation. J. Phys. Chem. 1957, 61, 110. [Google Scholar] [CrossRef]
- Doyle, C. Kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 1961, 5, 285–292. [Google Scholar] [CrossRef]
- Kök, M.V. Effect of metal oxide on light oil combustion. Therm. Anal. Calorim. 2003, 73, 241–246. [Google Scholar] [CrossRef]
- Araujo, A.S.; Jaroniec, M. Determination of the surface area and mesopore volume for lanthanide-incorporated MCM-41 materials by using high resolution thermogravimetry. Thermochim. Acta 2000, 345, 173–177. [Google Scholar] [CrossRef]
Sample | Dp (nm) | Wt (nm) | Vp (cm3/g) | Si/Al | SA (m2/g) | Acidity (mmol/g) |
---|---|---|---|---|---|---|
HY (Zeolyst) | 1.6 | - | - | 32 | 660 | 2.30 |
MCM-41 | 3.4 | 2.99 | 0.13 | - | 998 | 0.01 |
Physicochemical Property | Result |
---|---|
Specific mass at 20 °C, kg/m3 | 935.9 |
Degree API at 20 °C | 19.7 |
Pour point | 23 |
Dynamic viscosity at 40 °C, mPas | 679.9 |
Kinematic viscosity at 40 °C, mm2/s | 737.6 |
Fraction | Number of Carbons | Approximate Boiling Point (°C) |
---|---|---|
(i) Gasoline | C5–C10 | 40–175 |
(ii) Kerosene | C11–C12 | 175–215 |
(iii) Diesel | C13–C18 | 215–340 |
(iv) Heavy Gasoil | C18–C25 | 340–390 |
Oven Temperature Program | |
-Initial temperature | 35 °C for 2 min |
-Heating rate; end temperature | 20 °C/min up to 350 °C for 30 min |
Detector parameters | |
-Type | Flame ionization detector (FID) |
-Temperature | 350 °C |
-Hydrogen flow | 30 mL/min |
-Sintetic air | 300 mL/min |
-Nitrogen (makeup) | 30 mL/min |
Gas flow to GC column | |
-Carrier gas | Hydrogen |
-Gas flow | 12 mL/min |
Injector parameters | |
-Type | Split/Splitless |
-Temperature of injector | 300 °C |
-Split ratio | 10/1 |
-Volume of injection | 0.5 μL |
Time of analysis: | 28 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais, C.G.D.P.; Silva, J.B.; Almeida, J.S.; Oliveira, R.R.; Araujo, M.D.S.; Fernandes, G.J.T.; Delgado, R.C.O.B.; Coriolano, A.C.F.; Fernandes, V.J., Jr.; Araujo, A.S. Catalytic Distillation of Atmospheric Residue of Petroleum over HY-MCM-41 Micro-Mesoporous Materials. Catalysts 2023, 13, 296. https://doi.org/10.3390/catal13020296
Morais CGDP, Silva JB, Almeida JS, Oliveira RR, Araujo MDS, Fernandes GJT, Delgado RCOB, Coriolano ACF, Fernandes VJ Jr., Araujo AS. Catalytic Distillation of Atmospheric Residue of Petroleum over HY-MCM-41 Micro-Mesoporous Materials. Catalysts. 2023; 13(2):296. https://doi.org/10.3390/catal13020296
Chicago/Turabian StyleMorais, Camila G. D. P., Jilliano B. Silva, Josue S. Almeida, Rafaela R. Oliveira, Marcio D. S. Araujo, Glauber J. T. Fernandes, Regina C. O. B. Delgado, Ana C. F. Coriolano, Valter J. Fernandes, Jr., and Antonio S. Araujo. 2023. "Catalytic Distillation of Atmospheric Residue of Petroleum over HY-MCM-41 Micro-Mesoporous Materials" Catalysts 13, no. 2: 296. https://doi.org/10.3390/catal13020296
APA StyleMorais, C. G. D. P., Silva, J. B., Almeida, J. S., Oliveira, R. R., Araujo, M. D. S., Fernandes, G. J. T., Delgado, R. C. O. B., Coriolano, A. C. F., Fernandes, V. J., Jr., & Araujo, A. S. (2023). Catalytic Distillation of Atmospheric Residue of Petroleum over HY-MCM-41 Micro-Mesoporous Materials. Catalysts, 13(2), 296. https://doi.org/10.3390/catal13020296