Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of TiO2 Nanotubes
3.2. Deposition of Vanadium Oxide
3.3. Synthesis of CH3NH3PbI3
3.4. Preparation of Heterojunction T-CH3NH3PbI3
3.5. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaikh, S.F.; Ghule, B.G.; Nakate, U.T.; Shinde, P.V.; Ekar, S.U.; O’Dwyer, C.; Kim, K.H.; Mane, R.S. Low-Temperature Ionic Layer Adsorption and Reaction Grown Anatase TiO2 Nanocrystalline Films for Efficient Perovskite Solar Cell and Gas Sensor Applications. Sci. Rep. 2018, 8, 11016. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, L.E.; Solis-Cortazar, J.C.; Rojas-Blanco, L.; Perez-Hernandez, G.; Martinez, O.S.; Palomera, R.C.; Paraguay-Delgado, F.; Zamudio-Torres, I.; Morales, E.R. Enhancement of Optoelectronic Properties of TiO2 Films Containing Pt Nanoparticles. Results Phys. 2019, 12, 1680–1685. [Google Scholar] [CrossRef]
- Djokić, V.R.; Marinković, A.D.; Petrović, R.D.; Ersen, O.; Zafeiratos, S.; Mitrić, M.; Ophus, C.; Radmilović, V.R.; Janaćković, D.T. Highly Active Rutile TiO2 Nanocrystalline Photocatalysts. ACS Appl. Mater. Interfaces 2020, 12, 33058–33068. [Google Scholar] [CrossRef]
- Cedillo-González, E.I.; Riccò, R.; Montorsi, M.; Montorsi, M.; Falcaro, P.; Siligardi, C. Self-Cleaning Glass Prepared from a Commercial TiO2 Nano-Dispersion and Its Photocatalytic Performance under Common Anthropogenic and Atmospheric Factors. Build. Env. 2014, 71, 7–14. [Google Scholar] [CrossRef]
- Miyoshi, A.; Nishioka, S.; Maeda, K. Water Splitting on Rutile TiO2-Based Photocatalysts. Chem. A Eur. J. 2018, 24, 18204–18219. [Google Scholar] [CrossRef]
- Pang, Y.L.; Lim, S.; Ong, H.C.; Chong, W.T. A Critical Review on the Recent Progress of Synthesizing Techniques and Fabrication of TiO2-Based Nanotubes Photocatalysts. Appl. Catal. A Gen. 2014, 481, 127–142. [Google Scholar] [CrossRef]
- Liu, B.; Nakata, K.; Liu, S.; Sakai, M.; Ochiai, T.; Murakami, T.; Takagi, K.; Fujishima, A. Theoretical Kinetic Analysis of Heterogeneous Photocatalysis by TiO2 Nanotube Arrays: The Effects of Nanotube Geometry on Photocatalytic Activity. J. Phys. Chem. C 2012, 116, 7471–7479. [Google Scholar] [CrossRef]
- Paramasivam, I.; Jha, H.; Liu, N.; Schmuki, P. A Review of Photocatalysis Using Self-Organized TiO2 Nanotubes and Other Ordered Oxide Nanostructures. Small 2012, 8, 3073–3103. [Google Scholar] [CrossRef] [PubMed]
- Mor, G.K.; Varghese, O.K.; Paulose, M.; Shankar, K.; Grimes, C.A. A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications. Sol. Energy Mater. Sol. Cells 2006, 90, 2011–2075. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, B.; Wu, J.; Dong, Q.; Zhang, X.; Xu, H. Effects of Hydroxylation on PbS Quantum Dot Sensitized TiO2 Nanotube Array Photoelectrodes. Electrochim. Acta 2016, 187, 480–487. [Google Scholar] [CrossRef]
- de Brito, J.F.; Tavella, F.; Genovese, C.; Ampelli, C.; Zanoni, M.V.B.; Centi, G.; Perathoner, S. Role of CuO in the Modification of the Photocatalytic Water Splitting Behavior of TiO2 Nanotube Thin Films. Appl. Catal. B 2018, 224, 136–145. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, X.; Wang, H.; Cui, D.; Xia, R.; Min, Y. Mechanism Study on Enhanced Open-Circuit Voltage of Perovskite Solar Cells with Vapor-Induced TiO2 as Electron-Transport Layer. Thin Solid Film. 2017, 629, 11–16. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, T. Fabrication of Spent FCC Catalyst Composites by Loaded V2O5 and TiO2 and Their Comparative Photocatalytic Activities. Sci. Rep. 2019, 9, 11099. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, L.; Jin, W.; Zhang, C.; Zhou, M.; Chen, W. Synthesis and Photocatalytic Property of TiO2@V2O5 Core-Shell Hollow Porous Microspheres towards Gaseous Benzene. J. Alloys Compd. 2017, 690, 604–611. [Google Scholar] [CrossRef]
- Epifani, M.; Chávez-Capilla, T.; Andreu, T.; Arbiol, J.; Palma, J.; Morante, J.R.; Díaz, R. Surface Modification of Metal Oxide Nanocrystals for Improved Supercapacitors. Energy Env. Sci 2012, 5, 7555. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Y.R.; Qiao, L.; Liu, L.X.; Su, Q.; Zhu, C.Q.; Liu, X.Q. Synthesis of One-Dimensional TiO2/V2O5 Branched Heterostructures and Their Visible Light Photocatalytic Activity towards Rhodamine B. Nanotechnology 2011, 22, 225702. [Google Scholar] [CrossRef] [PubMed]
- Klosek, S.; Raftery, D. Visible Light Driven V-Doped TiO2 Photocatalyst and Its Photooxidation of Ethanol. J. Phys. Chem. B 2001, 105, 2815–2819. [Google Scholar] [CrossRef]
- Fan, J.; Jia, B.; Gu, M. Perovskite-Based Low-Cost and High-Efficiency Hybrid Halide Solar Cells. Photonics Res. 2014, 2, 111–120. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Y.; Miller, K.A.; Zhu, H.; Egap, E. Lead Halide Perovskite Nanocrystals as Photocatalysts for PET-RAFT Polymerization under Visible and Near-Infrared Irradiation. ACS Macro. Lett. 2020, 9, 725–730. [Google Scholar] [CrossRef]
- Xu, Y.-F.; Yang, M.-Z.; Chen, B.-X.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Y.; Ai, Q.; Gao, G.; Yuan, L.; Fang, Q.; Tian, X.; Zhang, X.; Egap, E.; Ajayan, P.M.; et al. In Situ Synthesis of Lead-Free Halide Perovskite–COF Nanocomposites as Photocatalysts for Photoinduced Polymerization in Both Organic and Aqueous Phases. ACS Mater. Lett. 2022, 4, 464–471. [Google Scholar] [CrossRef]
- Elseman, A.M.; Zaki, A.H.; Shalan, A.E.; Rashad, M.M.; Song, Q.L. TiO2 Nanotubes: An Advanced Electron Transport Material for Enhancing the Efficiency and Stability of Perovskite Solar Cells. Ind. Eng. Chem. Res. 2020, 59, 18549–18557. [Google Scholar] [CrossRef]
- Vujančević, J.; Andričević, P.; Bjelajac, A.; Đokić, V.; Popović, M.; Rakočević, Z.; Horváth, E.; Kollár, M.; Náfrádi, B.; Schiller, A.; et al. Dry-Pressed Anodized Titania Nanotube/CH3NH3PbI3 Single Crystal Heterojunctions: The Beneficial Role of N Doping. Ceram. Int. 2019, 45, 10013–10020. [Google Scholar] [CrossRef]
- Roy, P.; Berger, S.; Schmuki, P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem. Int. Ed. 2011, 50, 2904–2939. [Google Scholar] [CrossRef] [PubMed]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Yu, X.; Zhu, X.; Gao, X.; Cen, K. Controllable Synthesis of Novel Hierarchical V2O5/TiO2 Nanofibers with Improved Acetone Oxidation Performance. RSC Adv. 2015, 5, 30416–30424. [Google Scholar] [CrossRef]
- Fan, Z.; Guo, H.; Fang, K.; Sun, Y. Efficient V2O5/TiO2 Composite Catalysts for Dimethoxymethane Synthesis from Methanol Selective Oxidation. RSC Adv. 2015, 5, 24795–24802. [Google Scholar] [CrossRef]
- Kruse, N.; Chenakin, S. XPS Characterization of Au/TiO2 Catalysts: Binding Energy Assessment and Irradiation Effects. Appl. Catal. A Gen. 2011, 391, 367–376. [Google Scholar] [CrossRef]
- Dupin, J.-C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS Studies of Metal Oxides, Hydroxides and Peroxides. Phys. Chem. Chem. Phys. 2000, 2, 1319–1324. [Google Scholar] [CrossRef]
- Liu, H.; Yang, W.; Ma, Y.; Cao, Y.; Yao, J.; Zhang, J.; Hu, T. Synthesis and Characterization of Titania Prepared by Using a Photoassisted Sol−Gel Method. Langmuir 2003, 19, 3001–3005. [Google Scholar] [CrossRef]
- Silversmit, G.; Depla, D.; Poelman, H.; Marin, G.B.; De Gryse, R. Determination of the V2p XPS Binding Energies for Different Vanadium Oxidation States (V5+ to V0+). J. Electron Spectros. Relat. Phenom. 2004, 135, 167–175. [Google Scholar] [CrossRef]
- Zhuang, H.-F.; Lin, C.-J.; Lai, Y.-K.; Sun, L.; Li, J. Some Critical Structure Factors of Titanium Oxide Nanotube Array in Its Photocatalytic Activity. Env. Sci. Technol. 2007, 41, 4735–4740. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yan, K.-P. Effect of Anodization Voltage on Performance of TiO2 Nanotube Arrays for Hydrogen Generation in a Two-Compartment Photoelectrochemical Cell. Int J. Hydrog. Energy 2014, 39, 11368–11375. [Google Scholar] [CrossRef]
- Paulose, M.; Mor, G.K.; Varghese, O.K.; Shankar, K.; Grimes, C.A. Visible Light Photoelectrochemical and Water-Photoelectrolysis Properties of Titania Nanotube Arrays. J. Photochem. Photobiol. A Chem. 2006, 178, 8–15. [Google Scholar] [CrossRef]
- Mazierski, P.; Nadolna, J.; Lisowski, W.; Winiarski, M.J.; Gazda, M.; Nischk, M.; Klimczuk, T.; Zaleska-Medynska, A. Effect of Irradiation Intensity and Initial Pollutant Concentration on Gas Phase Photocatalytic Activity of TiO2 Nanotube Arrays. Catal. Today 2017, 284, 19–26. [Google Scholar] [CrossRef]
- Lai, Y.; Sun, L.; Chen, Y.; Zhuang, H.; Lin, C.; Chin, J.W. Effects of the Structure of TiO2 Nanotube Array on Ti Substrate on Its Photocatalytic Activity. J. Electrochem. Soc. 2006, 153, D123. [Google Scholar] [CrossRef]
- Liu, J.; Yang, R.; Li, S. Synthesis and Photocatalytic Activity of TiO2/V2O5 Composite Catalyst Doped with Rare Earth Ions. J. Rare Earths 2007, 25, 173–178. [Google Scholar] [CrossRef]
- Li, S.; Zhang, G.; Guo, D.; Yu, L.; Zhang, W. Anodization Fabrication of Highly Ordered TiO2 Nanotubes. J. Phys. Chem. C 2009, 113, 12759–12765. [Google Scholar] [CrossRef]
- Adán, C.; Marugán, J.; Sánchez, E.; Pablos, C.; van Grieken, R. Understanding the Effect of Morphology on the Photocatalytic Activity of TiO2 Nanotube Array Electrodes. Electrochim. Acta 2016, 191, 521–529. [Google Scholar] [CrossRef]
- Mahendra, I.P.; Huda, A.; Ngoc, H.M.; Nghia, P.T.; Wirjosentono, B. Investigation of TiO2 Doped with Nitrogen and Vanadium Using Hydrothermal / Sol-Gel Method and Its Application for Dyes Photodegradation. Arab J. Basic Appl. Sci. 2019, 26, 242–253. [Google Scholar] [CrossRef] [Green Version]
- Krbal, M.; Sopha, H.; Podzemna, V.; Das, S.; Prikryl, J.; Macak, J.M. TiO2 Nanotube/Chalcogenide-Based Photoelectrochemical Cell: Nanotube Diameter Dependence Study. J. Phys. Chem. C 2017, 121, 6065–6071. [Google Scholar] [CrossRef]
- Minić, D.M.; Vesce, L.; Minić, D.G.; Di Carlo, A.; Blagojević, V.A. Effect of Deposition of Vanadium Oxide Nanolayer on Performance of TiO2 Dye- Sensitized Solar Cell Electrode. In Proceedings of the 11th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Society of Physical Chemists of Serbia, Belgrade, Serbia, 22–26 September 2012; pp. 324–326. [Google Scholar]
- Gao, W.; Altman, E.I. Growth and Structure of Vanadium Oxide on Anatase (1 0 1) Terraces. Surf. Sci. 2006, 600, 2572–2580. [Google Scholar] [CrossRef]
- Mettan, X.; Pisoni, R.; Matus, P.; Pisoni, A.; Jaćimović, J.; Náfrádi, B.; Spina, M.; Pavuna, D.; Forró, L.; Horváth, E. Tuning of the Thermoelectric Figure of Merit of CH3NH3MI3 (M═Pb,Sn) Photovoltaic Perovskites. J. Phys. Chem. C 2015, 119, 11506–11510. [Google Scholar] [CrossRef] [Green Version]
Samples | Wall Thickness nm | Outer Diameter nm | Surfaces cm2 | Samples | Wall Thickness nm | Outer Diameter nm | Surfaces cm2 |
---|---|---|---|---|---|---|---|
T-10 | 8 (2) | 62 (8) | 14.3 | TV-10 | 9 (2) | 63 (8) | 13.4 |
T-15 | 9 (2) | 93 (14) | 16.6 | TV-15 | 10 (2) | 89 (12) | 17.1 |
T-20 | 12 (3) | 114 (15) | 15.0 | TV-20 | 12 (3) | 114 (14) | 15.0 |
Samples | Ti at.% | O at.% | V at.% |
---|---|---|---|
T-10 | 18.9 | 49.3 | 0 |
T-15 | 20.5 | 51.6 | 0 |
T-20 | 19.6 | 48.9 | 0 |
TV-10 | 16.2 | 50.6 | 1.8 |
TV-15 | 16.5 | 49.8 | 1.8 |
TV-20 | 17.1 | 49.1 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vujančević, J.; Andričević, P.; Djokić, V.; Blagojević, V.; Pavlović, V.P.; Ćirković, J.; Horváth, E.; Forró, L.; Karoui, A.; Pavlović, V.B.; et al. Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal. Catalysts 2023, 13, 352. https://doi.org/10.3390/catal13020352
Vujančević J, Andričević P, Djokić V, Blagojević V, Pavlović VP, Ćirković J, Horváth E, Forró L, Karoui A, Pavlović VB, et al. Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal. Catalysts. 2023; 13(2):352. https://doi.org/10.3390/catal13020352
Chicago/Turabian StyleVujančević, Jelena, Pavao Andričević, Veljko Djokić, Vladimir Blagojević, Vera P. Pavlović, Jovana Ćirković, Endre Horváth, László Forró, Abdennaceur Karoui, Vladimir B. Pavlović, and et al. 2023. "Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal" Catalysts 13, no. 2: 352. https://doi.org/10.3390/catal13020352
APA StyleVujančević, J., Andričević, P., Djokić, V., Blagojević, V., Pavlović, V. P., Ćirković, J., Horváth, E., Forró, L., Karoui, A., Pavlović, V. B., & Janaćković, D. (2023). Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal. Catalysts, 13(2), 352. https://doi.org/10.3390/catal13020352