Performance of Particulate and Structured Pt/TiO2-Based Catalysts for the WGS Reaction under Realistic High- and Low-Temperature Shift Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characteristics of the Synthesized Catalysts
2.2. Performance of Particulate Catalysts
2.2.1. Alkali- and Alkaline Earth Metal-Promoted Catalysts
2.2.2. Bimetallic Catalysts
2.3. Performance of Structured Catalysts
3. Materials and Methods
3.1. Catalyst Preparation
3.1.1. Powdered Catalysts
3.1.2. Structured Catalysts
3.2. Physicochemical Characterization
3.3. Catalytic Performance Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ratnasamy, C.; Wagner, J.P. Water Gas Shift Catalysis. Catal. Rev. 2009, 51, 325–440. [Google Scholar] [CrossRef]
- Smith, R.J.B.; Loganathan, M.; Shantha, M.S. A Review of the Water Gas Shift Reaction Kinetics. Int. J. Chem. React. Eng. 2010, 8, Review R4. [Google Scholar] [CrossRef]
- Pal, D.; Chand, R.; Upadhyay, S.; Mishra, P. Performance of water gas shift reaction catalysts: A review. Renew. Sustain. Energy Rev. 2018, 93, 549–565. [Google Scholar] [CrossRef]
- Chen, W.-H.; Chen, C.-Y. Water gas shift reaction for hydrogen production and carbon dioxide capture: A review. Appl. Energy 2020, 258, 114078. [Google Scholar] [CrossRef]
- Baraj, E.; Ciahotný, K.; Hlinčík, T. The water gas shift reaction: Catalysts and reaction mechanism. Fuel 2021, 288, 119817. [Google Scholar] [CrossRef]
- Farrauto, R.J.; Liu, Y.; Ruettinger, W.; Ilinich, O.; Shore, L.; Giroux, T. Precious Metal Catalysts Supported on Ceramic and Metal Monolithic Structures for the Hydrogen Economy. Catal. Rev. 2007, 49, 141–196. [Google Scholar] [CrossRef]
- Panagiotopoulou, P. Effect of morphological characteristics of TiO2-supported noble metal catalysts on their activity for the water-gas shift reaction. J. Catal. 2004, 225, 327–336. [Google Scholar] [CrossRef]
- Panagiotopoulou, P.; Kondarides, D.I. Effect of the nature of the support on the catalytic performance of noble metal catalysts for the water–gas shift reaction. Catal. Today 2006, 112, 49–52. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Kumar, A.; Khraisheh, M. A review of recent advances in water-gas shift catalysis for hydrogen production. Emergent Mater. 2020, 3, 881–917. [Google Scholar] [CrossRef]
- Giroux, T.; Hwang, S.; Liu, Y.; Ruettinger, W.; Shore, L. Monolithic structures as alternatives to particulate catalysts for the reforming of hydrocarbons for hydrogen generation. Appl. Catal. B Environ. 2005, 56, 95–110. [Google Scholar] [CrossRef]
- Du, X.; Gao, D.; Yuan, Z.; Liu, N.; Zhang, C.; Wang, S. Monolithic Pt/Ce0.8Zr0.2O2/cordierite catalysts for low temperature water gas shift reaction in the real reformate. Int. J. Hydrogen Energy 2008, 33, 3710–3718. [Google Scholar] [CrossRef]
- Marín, P.; Ordóñez, S.; Díez, F.V. Performance of reverse flow monolithic reactor for water–gas shift reaction. Catal. Today 2009, 147, S185–S190. [Google Scholar] [CrossRef]
- Özyönüm, G.N.; Yildirim, R. Water gas shift activity of Au–Re catalyst over microstructured cordierite monolith wash-coated by ceria. Int. J. Hydrogen Energy 2016, 41, 5513–5521. [Google Scholar] [CrossRef]
- González-Castaño, M.; Ivanova, S.; Laguna, O.H.; Martínez, T.L.M.; Centeno, M.; Odriozola, J. Structuring Pt/CeO2/Al2O3 WGS catalyst: Introduction of buffer layer. Appl. Catal. B Environ. 2017, 200, 420–427. [Google Scholar] [CrossRef]
- García-Moncada, N.; Groppi, G.; Beretta, A.; Romero-Sarria, F.; Odriozola, J.A. Metal Micro-Monoliths for the Kinetic Study and the Intensification of the Water Gas Shift Reaction. Catalysts 2018, 8, 594. [Google Scholar] [CrossRef]
- Palma, V.; Ruocco, C.; Cortese, M.; Martino, M. Recent Advances in Structured Catalysts Preparation and Use in Water-Gas Shift Reaction. Catalysts 2019, 9, 991. [Google Scholar] [CrossRef]
- Portela, R.; Wolf, P.; Marinkovic, J.M.; Serrano-Lotina, A.; Riisager, A.; Haumann, M. Tailored monolith supports for improved ultra-low temperature water-gas shift reaction. React. Chem. Eng. 2021, 6, 2114–2124. [Google Scholar] [CrossRef]
- Panagiotopoulou, P.; Kondarides, D.I. Effects of alkali promotion of TiO2 on the chemisorptive properties and water–gas shift activity of supported noble metal catalysts. J. Catal. 2009, 267, 57–66. [Google Scholar] [CrossRef]
- Panagiotopoulou, P.; Kondarides, D.I. Effects of promotion of TiO2 with alkaline earth metals on the chemisorptive properties and water–gas shift activity of supported platinum catalysts. Appl. Catal. B Environ. 2011, 101, 738–746. [Google Scholar] [CrossRef]
- Panagiotopoulou, P.; Kondarides, D.I. Effects of alkali additives on the physicochemical characteristics and chemisorptive properties of Pt/TiO2 catalysts. J. Catal. 2008, 260, 141–149. [Google Scholar] [CrossRef]
- I Halkides, T.; I Kondarides, D.; E Verykios, X. Catalytic reduction of NO by C3H6 over Rh/TiO2 catalysts: Effect of W6+-cation doping of TiO2 on morphological characteristics and catalytic performance. Appl. Catal. B Environ. 2003, 41, 415–426. [Google Scholar] [CrossRef]
- Alexeev, O.S.; Chin, S.Y.; Engelhard, M.H.; Ortiz-Soto, L.; Amiridis, M.D. Effects of Reduction Temperature and Metal−Support Interactions on the Catalytic Activity of Pt/γ-Al2O3 and Pt/TiO2 for the Oxidation of CO in the Presence and Absence of H2. J. Phys. Chem. B 2005, 109, 23430–23443. [Google Scholar] [CrossRef] [PubMed]
- Tauster, S.J.; Fung, S.C.; Garten, R.L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 1978, 100, 170–175. [Google Scholar] [CrossRef]
- Haller, G.L.; Resasco, D.E. Metal–Support Interaction: Group VIII Metals and Reducible Oxides. Adv. Catal. 1989, 36, 173–235. [Google Scholar] [CrossRef]
- Huang, R.; Kwon, O.; Lin, C.; Gorte, R.J. The effects of SMSI on m-Cresol hydrodeoxygenation over Pt/Nb2O5 and Pt/TiO2. J. Catal. 2021, 398, 102–108. [Google Scholar] [CrossRef]
- He, K.; Wang, Q. Activation of Pt Nanoclusters on TiO2 via Tuning the Metallic Sites to Promote Low-Temperature CO Oxidation. Catalysts 2021, 11, 1280. [Google Scholar] [CrossRef]
- Panagiotopoulou, P.; Kondarides, D.; Verykios, X.E. Selective methanation of CO over supported noble metal catalysts: Effects of the nature of the metallic phase on catalytic performance. Appl. Catal. A Gen. 2008, 344, 45–54. [Google Scholar] [CrossRef]
- Cybulski, A.; Moulijn, J.A. Modelling of heat transfer in metallic monoliths consisting of sinusoidal cells. Chem. Eng. Sci. 1994, 49, 19–27. [Google Scholar] [CrossRef]
- Tronconi, E.; Groppi, G. A study on the thermal behavior of structured plate-type catalysts with metallic supports for gas/solid exothermic reactions. Chem. Eng. Sci. 2000, 55, 6021–6036. [Google Scholar] [CrossRef]
- Van Dijk, H.; Boon, J.; Nyqvist, R.; Brink, R.V.D. Development of a single stage heat integrated water-gas shift reactor for fuel processing. Chem. Eng. J. 2010, 159, 182–189. [Google Scholar] [CrossRef]
- Palma, V.; Pisano, D.; Martino, M. Comparative Study Between Aluminum Monolith and Foam as Carriers for The Intensification of The CO Water Gas Shift Process. Catalysts 2018, 8, 489. [Google Scholar] [CrossRef]
- Wang, H.; Mao, D.; Qi, J.; Zhang, Q.; Ma, X.; Song, S.; Gu, L.; Yu, R.; Wang, D. Hollow Multishelled Structure of Heterogeneous Co3O4–CeO2−x Nanocomposite for CO Catalytic Oxidation. Adv. Funct. Mater. 2019, 29, 1806588. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, J.; Yang, N.; Yu, R.; Wang, D. Core–shell nano/microstructures for heterogeneous tandem catalysis. Mater. Chem. Front. 2021, 5, 1126–1139. [Google Scholar] [CrossRef]
Catalyst Notation | Nominal Composition (wt.%) | Specific Surface Area (SSA) 1 (m2/g) | Anatase Content 2 (%) | Pt Dispersion 3 (%) | Pt Crystallite Size 3 (nm) |
---|---|---|---|---|---|
Pt/TiO2 | 0.5%Pt/TiO2 | 49 | 85 | 85 | 1.2 |
Pt/TiO2(Na) | 0.5%Pt/TiO2(0.06%Na) | 30 | 47 | 93 | 1.1 |
Pt/RiO2(Cs) | 0.5%Pt/TiO2(0.34%Cs) | 31 | 58 | 95 | 1.1 |
Pt/TiO2(Ca) | 0.5%Pt/TiO2(2%CaO) | 40 | 65 | 78 | 1.3 |
Pt/TiO2(Sr) | 0.5%Pt/TiO2(1%SrO) | 38 | 62 | 94 | 1.1 |
(Pt–Ru)/TiO2 | (0.5%Pt–0.1%Ru)/TiO2 | 46 | 68 | n.m. 4 | n.m. |
(Pt–Fe)/TiO2 | (0.5%Pt–0.5%Fe)/TiO2 | 49 | 67 | n.m. | n.m. |
(Pt–Cr)/TiO2 | (0.5%Pt–0.5%Cr)/TiO2 | 50 | 62 | n.m. | n.m. |
(Pt–Cu)/TiO2 | (0.5%Pt–0.5%Cu)/TiO2 | 45 | 66 | n.m. | n.m. |
TiO2-P | TiO2 pellets | 42 | n.m. | n.m. | n.m. |
0.5Pt/TiO2(Ca)-P | 0.5%Pt/TiO2(2%CaO) pellets | 37 | n.m. | 90 | 1.1 |
1.0Pt/TiO2(Ca)-P | 1.0%Pt/TiO2(2%CaO) pellets | 38 | n.m. | 92 | 1.1 |
Pt/TiO2(Ca)-MM | 0.5%Pt/TiO2(2%CaO) coated on metallic monolith | ||||
Pt/TiO2(Ca)-CM | 0.5%Pt/TiO2(2%CaO) coated on ceramic monolith |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouroumlidis, A.; Bampos, G.; Panagiotopoulou, P.; Kondarides, D.I. Performance of Particulate and Structured Pt/TiO2-Based Catalysts for the WGS Reaction under Realistic High- and Low-Temperature Shift Conditions. Catalysts 2023, 13, 372. https://doi.org/10.3390/catal13020372
Kouroumlidis A, Bampos G, Panagiotopoulou P, Kondarides DI. Performance of Particulate and Structured Pt/TiO2-Based Catalysts for the WGS Reaction under Realistic High- and Low-Temperature Shift Conditions. Catalysts. 2023; 13(2):372. https://doi.org/10.3390/catal13020372
Chicago/Turabian StyleKouroumlidis, Andreas, Georgios Bampos, Paraskevi Panagiotopoulou, and Dimitris I. Kondarides. 2023. "Performance of Particulate and Structured Pt/TiO2-Based Catalysts for the WGS Reaction under Realistic High- and Low-Temperature Shift Conditions" Catalysts 13, no. 2: 372. https://doi.org/10.3390/catal13020372
APA StyleKouroumlidis, A., Bampos, G., Panagiotopoulou, P., & Kondarides, D. I. (2023). Performance of Particulate and Structured Pt/TiO2-Based Catalysts for the WGS Reaction under Realistic High- and Low-Temperature Shift Conditions. Catalysts, 13(2), 372. https://doi.org/10.3390/catal13020372