Preparation of di-[EMIM]CoCl3 Ionic Liquid Catalyst and Coupling with Oxone for Desulfurization at Room Temperature
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Ionic Liquid Catalyst
2.2. Desulfurization Process
2.3. Characterization
3. Results and Discussions
3.1. HNMR and FTIR of di-[EMIM]Cl
3.2. TG and SEM–EDS of di-[EMIM]CoCl3
3.3. Effect of di-[EMIM]CoCl3 Dosage
3.4. Effect of Oxone (20wt%) Dosage
3.5. Effect of [BMIM]BF4 Dosage
3.6. Effect of Temperature
3.7. Effect of Different Sulfur Organic Compounds
3.8. Recycling Performance of di-[EMIM]CoCl3
3.9. Desulfurization Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, X.; Zhang, S.; Xing, J.; Wang, Y.; Chen, W.; Ding, D.; Wu, Y.; Wang, S.; Duan, L.; Hao, J. Progress of Air Pollution Control in China and Its Challenges and Opportunities in the Ecological Civilization Era. Engineering 2020, 6, 1423–1431. [Google Scholar] [CrossRef]
- Saha, B.; Vedachalam, S.; Dalai, A.K. Review on recent advances in adsorptive desulfurization. Fuel Process. Technol. 2021, 214, 106685. [Google Scholar] [CrossRef]
- Rajendran, A.; Cui, T.-Y.; Fan, H.-X.; Yang, Z.-F.; Feng, J.; Li, W.-Y. A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment. J. Mater. Chem. A 2020, 8, 2246–2285. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Y.; Chen, J.; Xue, H.; Liu, Y. A combined experimental and DFT study on the catalysis performance of a Co-doped MoS2 monolayer for hydrodesulfurization reaction. New J. Chem. 2022, 46, 5065–5077. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, D.; Wu, F.; Wei, X.; Zhang, J. Deep desulfurization of fuels with cobalt chloride-choline chloride/polyethylene glycol metal deep eutectic solvents. Fuel 2018, 225, 104–110. [Google Scholar] [CrossRef]
- Taghiyar, H.; Yadollahi, B. Keggin polyoxometalates encapsulated in molybdenum-iron-type Keplerate nanoball as efficient and cost-effective catalysts in the oxidative desulfurization of sulfides. Sci. Total Environ. 2020, 708, 134860. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, D.; Wu, F. Deep oxidative desulfurization of fuels based on [C4mimCl]CoCl2 ionic liquid oxone solutions at room temperature. Fuel 2017, 208, 508–513. [Google Scholar] [CrossRef]
- Liu, F.; Yu, J.; Qazi, A.B.; Zhang, L.; Liu, X. Metal-Based Ionic Liquids in Oxidative Desulfurization: A Critical Review. Environ. Sci. Technol. 2021, 55, 1419–1435. [Google Scholar] [CrossRef]
- Chen, X.; Song, D.; Asumana, C.; Yu, G. Deep oxidative desulfurization of diesel fuels by Lewis acidic ionic liquids based on 1-n-butyl-3-methylimidazolium metal chloride. J. Mol. Catal. A Chem. 2012, 359, 8–13. [Google Scholar] [CrossRef]
- Zhao, R.-X.; Li, X.-P.; Mao, C.-F.; Hou, L.; Gao, X. [HDMF]Cl-based DES as highly efficient extractants and catalysts for oxidative desulfurization of model oil. RSC Adv. 2019, 9, 14400–14406. [Google Scholar] [CrossRef]
- Alenazi, B.; Alsalme, A.; Alshammari, S.G.; Khan, R.A.; Siddiqui, M.R.H. Ionothermal Synthesis of Metal Oxide-Based Nanocatalysts and Their Application towards the Oxidative Desulfurization of Dibenzothiophene. J. Chem. 2020, 2020, 3894804. [Google Scholar] [CrossRef] [Green Version]
- Li, E.; Zhu, Y.; Xu, Y. Desulfurization of gasoline by [C4, 6, 8mim]Br/FeCl3 ILs collaboration with CTAB. Sep. Sci. Technol. 2021, 56, 310–321. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Li, H.; Wei, Y.; Fu, Y.; Liao, W.; Zhu, L.; Chen, G.; Zhu, W.; Li, H. Tuning the electrophilicity of vanadium-substituted polyoxometalate based ionic liquids for high-efficiency aerobic oxidative desulfurization. Appl. Catal. B Environ. 2020, 271, 118936. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, J.; Zhang, D. Catalytic oxidation desulfurization of silica-gel-supported ionic liquid [Bmim]CoCl3 coupling oxone. Fuel 2021, 288, 119655. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Z.; Xu, P. Dicationic Ionic Liquid @MIL-101 for the Cycloaddition of CO2 and Epoxides under Cocatalyst-free Conditions. Cryst. Growth Des. 2021, 21, 3689–3698. [Google Scholar] [CrossRef]
- Pérez, S.; Montalbán, M.; Carissimi, G.; Licence, P.; Víllora, G. In vitro cytotoxicity assessment of monocationic and dicationic pyridinium-based ionic liquids on HeLa, MCF-7, BGM and EA.hy926 cell lines. J. Hazard. Mater. 2020, 385, 121513. [Google Scholar] [CrossRef]
- Li, J.; Lei, X.-J.; Tang, X.-D.; Zhang, X.-P.; Wang, Z.-Y.; Jiao, S. Acid Dicationic Ionic Liquids as Extractants for Extractive Desulfurization. Energy Fuels 2019, 33, 4079–4088. [Google Scholar] [CrossRef]
- Verma, K.; Sharma, A.; Singh, J.; Badru, R. Ionic liquid mediated carbonylation of amines: Selective carbamate synthesis. Sustain. Chem. Pharm. 2021, 20, 100377. [Google Scholar] [CrossRef]
- Li, J.; Guo, Y.; Tan, J. Polyoxometalate dicationic ionic liquids as catalyst for extractive coupled catalytic oxidative desulfurization. Catalysts 2021, 11, 356–362. [Google Scholar] [CrossRef]
- Nezampour, F.; Ghiaci, M.; Farrokhpour, H. Dicationic ionic liquids/heteropoly acid composites as heterogeneous catalysts for cyclohexene oxidation with molecular oxygen under solvent-free condition: Insights from theory and experiments. Appl. Catal. A-Gen. 2017, 543, 104–114. [Google Scholar] [CrossRef]
- Xu, H.; Wang, S.; Wu, F.; Yuan, Q.; Guo, Y.; Zhang, Y.; Wei, X.; Zhang, J. A fully-organic polymerization carrier calix[4]resorcinarene supported cobalt ionic liquid catalyst with oxone for desulfurization. Fuel 2022, 318, 123670. [Google Scholar] [CrossRef]
- Barman, B.; Rajbanshi, B.; Yasmin, A. Exploring inclusion complexes of ionic liquids with alpha- and beta-cyclodextrin by NMR, IR, Mass, Density, Viscosity, Surface Tension and Conductance Study. J. Mol. Struct. 2018, 1159, 205–215. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Z.; Yang, J.; Wang, L.; Lin, Y.; Wei, Y. Immobilization of room temperature Ionic Liquid (RTIL) on silica gel for adsorption removal of thiophenic sulfur compounds from fuel. Fuel 2013, 107, 394–399. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, F.; Zhang, Z. Polymer-supported ionic liquids: Synthesis, characterization and application in fuel desulfurization. Fuel 2014, 116, 273–280. [Google Scholar] [CrossRef]
- Soliman, S.; Sanad, M.; Shalan, A. Synthesis, characterization and antimicrobial activity applications of grafted copolymer alginate-g-poly(N-Vinyl Imidazole). RSC Adv. 2021, 11, 11541–11548. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Tong, W.; Xie, Y.; Hu, W.; Li, Y.; Zhang, Y.; Wang, Y. Yeast biomass-Induced Co2p/biochar composite for sulfonamide antibiotics degradation through peroxymonosulfate activation. Environ. Pollut. 2021, 268, 115930. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Dong, C.; Kong, D.; Lu, J. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: Kinetics, reaction products and transformation mechanisms. J. Hazard. Mater. 2015, 285, 491–500. [Google Scholar] [CrossRef]
- Zhu, J.; Li, H.; Shan, C.; Wang, S.; Lv, L.; Pan, B. Trace Co2+ coupled with phosphate triggers efficient peroxymonosulfate activation for organic degradation. J. Hazard. Mater. 2021, 409, 124920. [Google Scholar] [CrossRef]
- Yan, S.; Geng, J.; Guo, R. Hydronium jarosite activation of peroxymonosulfate for theoxidation of organic contaminant in an electrochemical reactor driven by microbial fuel Cell. J. Hazard. Mater. 2017, 333, 358–368. [Google Scholar] [CrossRef]
- Jia, J.; Liu, D.; Wang, S.; Li, H.; Ni, J.; Li, X.; Tian, J.; Wang, Q. Visible-light-induced activation of peroxymonosulfate by TiO2 nano-tubes arrays for enhanced degradation of bisphenol. Sep. Purif. Technol. 2020, 253, 117510. [Google Scholar] [CrossRef]
- Xiao, M.; Liu, H.; Gao, H.; Olson, W.; Liang, Z. CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine. Appl. Energy 2019, 235, 311–319. [Google Scholar] [CrossRef]
- Sadanandhan, A.M.; Khatri, P.K.; Jain, S.L. A novel series of cyclophosphazene derivatives containing imidazolium ionic liquids with variable alkyl groups and their physicochemical properties. J. Mol. Liq. 2019, 295, 111722. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Zhao, R. A facile sol-gel method based on urea-SnCl2 deep eutectic solvents for the synthesis of SnO2/SiO2 with high oxidation desulfurization activity. New J. Chem. 2021, 45, 15901–15911. [Google Scholar] [CrossRef]
- Cui, J.; Wang, G.; Liu, W.; Ke, P.; Tian, Q.; Li, X.; Tian, Y. Synthesis BiVO4 modified by CuO supported onto bentonite for molecular oxygen photocatalytic oxidative desulfurization of fuel under visible light. Fuel 2021, 290, 120066. [Google Scholar] [CrossRef]
- Hao, Y.; Ren, J. Extractive/catalytic oxidative mechanisms over [Hnmp]Cl·xFeCl3 ionic liquids towards the desulfurization of model oils. New J. Chem. 2019, 43, 7725–7732. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Xu, H. Preparation of di-[EMIM]CoCl3 Ionic Liquid Catalyst and Coupling with Oxone for Desulfurization at Room Temperature. Catalysts 2023, 13, 410. https://doi.org/10.3390/catal13020410
Wang S, Xu H. Preparation of di-[EMIM]CoCl3 Ionic Liquid Catalyst and Coupling with Oxone for Desulfurization at Room Temperature. Catalysts. 2023; 13(2):410. https://doi.org/10.3390/catal13020410
Chicago/Turabian StyleWang, Shaokang, and Hang Xu. 2023. "Preparation of di-[EMIM]CoCl3 Ionic Liquid Catalyst and Coupling with Oxone for Desulfurization at Room Temperature" Catalysts 13, no. 2: 410. https://doi.org/10.3390/catal13020410
APA StyleWang, S., & Xu, H. (2023). Preparation of di-[EMIM]CoCl3 Ionic Liquid Catalyst and Coupling with Oxone for Desulfurization at Room Temperature. Catalysts, 13(2), 410. https://doi.org/10.3390/catal13020410