Enhanced Sonophotocatalytic Degradation of Acid Red 14 Using Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) Based on Metal-Organic Framework
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Fe3O4@SiO2/PAEDTC@MIL-101 (Fe)
2.2. The Performance of Different Systems in AR14 Removal
2.3. Effect of Operational Parameters
2.4. Mineralization and Biodegradability
2.5. Reusability and Consumption Energy
2.6. Mechanism of Sonophotocatalytic Degradation
3. Materials and Methods
3.1. Materials
3.2. Synthesize of Fe3O4 SiO2/PAEDTC
3.3. Synthesize of Fe3O4@SiO2/PAEDTC@MIL-101 (Fe)
3.4. Characterization
3.5. Sonophotocatalytic Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balarak, D.; Mostafapour, F.K.; Joghatayi, A. Adsorption of Acid Blue 225 dye by multi walled carbon nanotubes: Determination of equilibrium and kinetics parameters. Pharm. Chem. 2016, 8, 138–145. [Google Scholar]
- Al-Musawi, T.J.; Mengelizadeh, N.; Al Rawi, O.; Balarak, D. Capacity and Modeling of Acid Blue 113 Dye Adsorption onto Chitosan Magnetized by Fe2O3 Nanoparticles. J. Polym. Environ. 2022, 30, 344–359. [Google Scholar] [CrossRef]
- Daneshvar, N.; Salari, D.; Khataee, A. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. A Chem. 2004, 162, 317–322. [Google Scholar] [CrossRef]
- Sillanpää, M.; Mahvi, A.H.; Balarak, D.; Khatibi, A.D. Adsorption of Acid orange 7 dyes from aqueous solution using Polypyrrole/nanosilica composite: Experimental and modelling. Int. J. Environ. Anal. Chem. 2021, 103, 212–229. [Google Scholar] [CrossRef]
- Malakootian, M.; Mahdizadeh, H.; Khavari, M.; Nasiri, A.; Gharaghani, M.A.; Khatami, M.; Sahle-Demessie, E.; Varma, R.S. Efficiency of novel Fe/charcoal/ultrasonic micro-electrolysis strategy in the removal of Acid Red 18 from aqueous solutions. J. Environ. Chem. Eng. 2020, 8, 103553. [Google Scholar] [CrossRef]
- Shekardasht, M.B.; Givianrad, M.H.; Gharbani, P.; Mirjafary, Z.; Mehrizad, A. Preparation of a novel Z-scheme g-C3N4/RGO/Bi2Fe4O9 nanophotocatalyst for degradation of Congo Red dye under visible light. Diam. Relat. Mater. 2020, 109, 108008. [Google Scholar] [CrossRef]
- Elbadawy, H.A.; Sadik, W.A.; Elhusseiny, A.F.; Hussein, S.M. Design of economic photocatalytic system with low energy consumption, and high quantum yield, for the degradation of acid red 37 textile dye. Process. Saf. Environ. Prot. 2021, 148, 1191–1206. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; McKay, G.; Al-Musawi, T.J.; Salehi, S.; Balarak, D. Removal of Benzene and Toluene from Synthetic Wastewater by Adsorption onto Magnetic Zeolitic Imidazole Framework Nanocomposites. Nanomaterials 2022, 12, 3049. [Google Scholar] [CrossRef]
- Khasevani, S.; Faroughi, N.; Gholami, M. Metal-organic framework-templated synthesis of t-ZrO2/γ-Fe2O3 supported AgPt nanoparticles with enhanced catalytic and photocatalytic properties. Mater. Res. Bull. 2020, 126, 110838. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, Y.; Jing, H.; Yu, H.; Lu, Y.; Huo, M.; Huo, H. Peculiar synergetic effect of γ-Fe2O3 nanoparticles and graphene oxide on MIL-53 (Fe) for boosting photocatalysis. Chem. Eng. J. 2020, 390, 124615. [Google Scholar] [CrossRef]
- Huo, Q.; Qi, X.; Li, J.; Liu, G.; Ning, Y.; Zhang, X.; Zhang, B.; Fu, Y.; Liu, S. Preparation of a direct Z-scheme α-Fe2O3/MIL-101 (Cr) hybrid for degradation of carbamazepine under visible light irradiation. Appl. Catal. B 2019, 255, 117751. [Google Scholar] [CrossRef]
- Khodkar, A.; Khezri, S.; Pendashteh, A.; Khoramnejadian, S.; Mamani, L. Preparation and application of α-Fe2O3@MIL-101(Cr)@TiO2 based on metal–organic framework for photocatalytic degradation of paraquat. Toxicol. Ind. Health 2018, 34, 842–859. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, H.; Zhang, Y. Synthesis of MIL-101 (Fe)/SiO2 composites with improved catalytic activity for reduction of nitroaromatic compounds. J. Solid State Chem. 2020, 283, 121150. [Google Scholar] [CrossRef]
- Feng, X.; Chen, H.; Jiang, F. In-situ ethylenediamine-assisted synthesis of a magnetic iron-based metal-organic framework MIL-53(Fe) for visible light photocatalysis. J. Colloid Interface Sci. 2017, 494, 32–37. [Google Scholar] [CrossRef]
- Li, P.; Kim, S.; Jin, J.; Do, H.C.; Park, J.H. Efficient photodegradation of volatile organic compounds by iron-based metal-organic frameworks with high adsorption capacity. Appl. Catal. B Environ. 2020, 263, 118284. [Google Scholar] [CrossRef]
- Abolhasani, J.; Khanmiri, R.; Ghorbani-Kalhor, E.; Hassanpour, A.; Asgharinezhad, A.; Shekari, N.; Fathi, A. An Fe3O4@ SiO2@ polypyrrole magnetic nanocomposite for the extraction and preconcentration of Cd (ii) and Ni (ii). Anal. Methods 2015, 7, 313–320. [Google Scholar] [CrossRef]
- Wang, F.; Li, M.; Yu, L.; Sun, F.; Wang, Z.; Zhang, L.; Zeng, H.; Xu, X. Corn-like, recoverable γ-Fe2O3@SiO2@TiO2 photocatalyst induced by magnetic dipole interactions. Sci. Rep. 2017, 7, 6960. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Adhikari, S.; Pu, S.; Wang, X.; Kim, D.-H.; Patel, R. Interactive Fe2O3/porous SiO2 nanospheres for photocatalytic degradation of organic pollutants: Kinetic and mechanistic approach. Chemosphere 2019, 234, 596–607. [Google Scholar] [CrossRef]
- Lajevardi, A.; Sadr, M.H.; Badiei, A.; Armaghan, M. Synthesis and characterization of Fe3O4@SiO2@MIL-100(Fe) nanocomposite: A nanocarrier for loading and release of celecoxib. J. Mol. Liq. 2020, 307, 112996. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, S.; Ji, S.; Ammar, M.; Zhang, Q.; Yan, J. Synthesis of magnetically recyclable ZIF-8@SiO2@Fe3O4 catalysts and their catalytic performance for Knoevenagel reaction. J. Solid State Chem. 2015, 223, 65–72. [Google Scholar] [CrossRef]
- Rad, T.S.; Ansarian, Z.; Soltani, R.D.C.; Khataee, A.; Orooji, Y.; Vafaei, F. Sonophotocatalytic activities of FeCuMg and CrCuMg LDHs: Influencing factors, antibacterial effects, and intermediate determination. J. Hazard. Mater. 2020, 399, 123062. [Google Scholar] [CrossRef] [PubMed]
- Gholami, P.; Khataee, A.; Vahid, B.; Karimi, A.; Golizadeh, M.; Ritala, M. Sonophotocatalytic degradation of sulfadiazine by integration of microfibrillated carboxymethyl cellulose with Zn-Cu-Mg mixed metal hydroxide/g-C3N4 com. Purif. Technol. 2020, 245, 116866. [Google Scholar] [CrossRef]
- He, Y.; Grieser, F.; Ashokkumar, M. The mechanism of sonophotocatalytic degradation of methyl orange and its products in aqueous solutions. Ultrason. Sonochem. 2011, 18, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Hu, Q.; Gao, L.; Hao, Q.; Wang, P.; Qin, D. Adsorption characteristics of metal–organic framework MIL-101(Cr) towards sulfamethoxazole and its persulfate oxidation regeneration. RSC Adv. 2018, 8, 27623–27630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saboori, A. A nanoparticle sorbent composed of MIL-101 (Fe) and dithiocarbamate-modified magnetite nanoparticles for speciation of Cr(III) and Cr(VI) prior to their determination by electrothermal AAS. Microchim. Acta 2017, 184, 1509–1516. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, S.; Zhang, F. Fabrication of MIL-100 (Fe)@ SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol. Front. Chem. Sci. Eng. 2016, 10, 534–541. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, Q.; Ren, S.; Lu, Q.; Guo, X.; Chen, Z. Fabrication of core-shell Fe3O4@MIL-100(Fe) magnetic microspheres for the removal of Cr(VI) in aqueous solution. J. Solid State Chem. 2016, 244, 25–30. [Google Scholar] [CrossRef]
- Xu, J.; Ju, C.; Sheng, J.; Wang, F.; Zhang, Q.; Sun, G.; Sun, M. Synthesis and Characterization of Magnetic Nanoparticles and Its Application in Lipase Immobilization. Bull. Korean Chem. Soc. 2013, 34, 2408–2412. [Google Scholar] [CrossRef] [Green Version]
- Thahir, R.; Wahab, A.W.; La Nafie, N.; Raya, I. Synthesis of high surface area mesoporous silica SBA-15 by adjusting hydrothermal treatment time and the amount of polyvinyl alcohol. Open Chem. 2019, 17, 963–971. [Google Scholar] [CrossRef] [Green Version]
- Eshaq, G.; ElMetwally, A.E. Bmim[OAc]-Cu2O/g-C3N4 as a multi-function catalyst for sonophotocatalytic degradation of methylene blue. Ultrason. Sonochem. 2019, 53, 99–109. [Google Scholar] [CrossRef]
- Al-Musawi, T.J.; Mengelizadeh, N.; Taghavi, M.; Shehu, Z.; Balarak, D. Capability of copper–nickel ferrite nanoparticles loaded onto multi-walled carbon nanotubes to degrade acid blue 113 dye in the sonophotocatalytic treatment process. Environ. Sci. Pollut. Res. 2022, 29, 51703–51716. [Google Scholar] [CrossRef]
- Moeen, S.; Ikram, M.; Haider, A.; Haider, J.; Ul-Hamid, A.; Nabgan, W.; Shujah, T.; Naz, M. Comparative Study of Sonophotocatalytic, Photocatalytic, and CatalyticActivities of Magnesium and Chitosan-Doped Tin Oxide Quantum Dots. ACS Omega 2022, 11, 70–81. [Google Scholar]
- Yang, R.; Wu, Z.; Yang, Y.; Li, Y.; Zhang, L.; Yu, B. Understanding the origin of synergistic catalytic activities for ZnO based sonophotocatalytic degradation of methyl orange. J. Taiwan Inst. Chem. Eng. 2021, 119, 128–135. [Google Scholar] [CrossRef]
- Dinesh, G.K.; Anandan, S.; Sivasankar, T. Synthesis of Fe-doped Bi2O3 nanocatalyst and its sonophotocatalytic activity on synthetic dye and real textile wastewater. Environ. Sci. Pollut. Res. 2016, 23, 20100–20110. [Google Scholar] [CrossRef]
- Channei, D.; Phanichphant, S. Fe3O4/SiO2/CeO2 core–shell magnetic nanoparticles as photocatalyst. J. Nanosci. Nanotechnol. 2014, 14, 7756–7762. [Google Scholar] [CrossRef]
- Selvamani, T.; Anandan, S.; Asiri, A.M.; Maruthamuthu, P.; Ashokkumar, M. Preparation of MgTi2O5 nanoparticles for sonophotocatalytic degradation of triphenylmethane dyes. Ultrason. Sonochem. 2021, 75, 105585. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, L. Synthesis and sonophotocatalytic activities of ZnO\BiVO4\Co3O4 composites. Chem. Phys. Lett. 2021, 775, 138660. [Google Scholar] [CrossRef]
- Rizal, M.Y.; Saleh, R.; Prakoso, S.P.; Taufik, A.; Yin, S. Ultraviolet- and visible-light photocatalytic and sonophotocatalytic activities toward Congo red degradation using Ag/Mn3O4 nanocomposites. Mater. Sci. Semicond. Process. 2021, 121, 105371. [Google Scholar] [CrossRef]
- Razaghi, P.; Dashtian, K.; Yousefi, F.; Karimi, R.; Ghaedi, M. Gold anchoring to CuFe2F8(H2O)2 oxyfluoride for robust sono-photodegradation of Rhodamine-B. J. Clean. Prod. 2021, 313, 127916. [Google Scholar] [CrossRef]
- Mohamed, M.M.; Ghanem, M.A.; Khairy, M.; Naguib, E.; Alotaibi, N.H. Zinc oxide incorporated carbon nanotubes or graphene oxide nanohybrids for enhanced sonophotocatalytic degradation of methylene blue dye. Appl. Surf. Sci. 2019, 487, 539–549. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Fayyaz, A.; Park, S.; Yoon, Y.; Kim, Y.M.; Park, C.M. Hierarchical CoTiO3 microrods on Ti3C2Tx MXene heterostructure as an efficient sonocatalyst for bisphenol A degradation. J. Mol. Liq. 2021, 344, 117740. [Google Scholar] [CrossRef]
- Khan, M.F.; Cazzato, G.; Saleemi, H.A.; Macadangdang, R.R.; Aftab, M.N.; Ismail, M. Sonophotocatalytic degradation of organic pollutant under visible light over Pt decorated CeO2: Role of ultrasonic waves for unprece dente d degradation. J. Mol. Struct. 2022, 1247, 131397. [Google Scholar] [CrossRef]
- Eshaq, G.; Wang, S.; Sun, H.; Sillanpää, M. Core/shell FeVO4@BiOCl heterojunction as a durable heterogeneous Fenton catalyst for the efficient sonophotocatalytic degradation of p-nitrophenol. Sep. Purif. Technol. 2020, 231, 115915. [Google Scholar] [CrossRef]
- Isari, A.A.; Hayati, F.; Kakavandi, B.; Rostami, M.; Motevassel, M.; Dehghanifard, E. N, Cu co-doped TiO2@functionalized SWCNT photocatalyst coupled with ultrasound and visible-light: An effective sono-photocatalysis process for pharmaceutical wastewaters treatment. Chem. Eng. J. 2020, 392, 123685. [Google Scholar] [CrossRef]
- Sun, M.; Yao, Y.; Ding, W.; Anandan, S. N/Ti3+ co-doping biphasic TiO2/Bi2WO6 heterojunctions: Hydrothermal fabrication and sonophotocatalytic degradation of organic pollutants. J. Alloys Compd. 2020, 820, 153172. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, Z.; Yang, M.; Chen, J.; Li, C.; Zhang, C.; Zhang, X. In-situ fabrication of a spherical-shaped Zn-Al hydrotalcite with BiOCl and study on its enhanced photocatalytic mechanism for perfluorooctanoic acid removal performed with a response surface methodology. J. Hazard. Mater. 2020, 399, 123070. [Google Scholar] [CrossRef]
- Naeimi, A.; Nejat, R. Synthesis and Characterization of a Novel Bio-Magnetically Recoverable Palladium Nanocomposite for the Photocatalytic Applications. Iran. J. Chem. Chem. Eng. 2022, 41, 15–26. [Google Scholar]
- Samadi, M.; Shojaei, H.F.; Mahmoodi, A. Preparation, Characterization, and Performance Study of PVDF Nanocomposite Contained Hybrid Nanostructure TiO2-POM Used as a Photocatalytic Membrane. Iran. J. Chem. Chem. Eng. 2021, 40, 35–47. [Google Scholar]
- Ashkezari, H.D.; Kalal, H.S.; Hoveidi, H.; Almasian, M.; Ashoor, M. Fabrication of UV/TiO2 nanotubes/Pd system by electrochemical anodization for furfural photocatalytic degradation. Casp. J. Environ. Sci. 2017, 15, 1–11. [Google Scholar] [CrossRef]
- Al-Musawi, T.J.; Asgariyan, R.; Yilmaz, M.; Mengelizadeh, N.; Asghari, A. Synthesis of a Doped alpha-Fe2O3/g-C3N4 Catalyst for High-Efficiency Degradation of Diazinon Contaminant from Liquid Wastes. Magnetochemistry 2022, 8, 137. [Google Scholar] [CrossRef]
- Talukdar, K.; Saravanakumar, K.; Kim, Y.; Fayyaz, A.; Kim, G.; Yoon, Y.; Park, C.M. Rational construction of CeO2–ZrO2@MoS2 hybrid nanoflowers for enhanced sonophotocatalytic degradation of naproxen: Mechanisms and degradation pathways. Compos. Part B Eng. 2021, 215, 108780. [Google Scholar] [CrossRef]
- Goudarzian, N.; Samiei, S.; Safari, F.; Mousavi, S. Enhancing the Physical, Mechanical, Oxygen Permeability and Photodegradation Properties of Styrene-acrylonitrile (SAN), Butadiene Rubber (BR) Composite by Silica Nanoparticles. J. Environ. Treat. Tech. 2020, 8, 718–726. [Google Scholar]
- Zahid, M.; Almashhadani, H.A.; Jawad, S.F.; Khan, M.F.; Ismail, A. Stabilization of Pt nanoparticles within MOFs for selective hydrogenation of hazardous 4-nitrophenol to valuable 4-aminophenol: Confinement and synergistic effect. J. Solid State Chem. 2022, 316, 123565. [Google Scholar] [CrossRef]
- Khan, M.F.; Bakhtiar, S.U.H.; Zada, A.; Raziq, F.; Saleemi, H.A.; Ismail, P.M.; Alguno, A.C.; Capangpangan, R.Y.; Ali, A.; Hayat, S.; et al. Ag modified ZnO microsphere synthesis for efficient sonophotocatalytic degradation of organic pollutants and CO2 conversion. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100711. [Google Scholar] [CrossRef]
- Mansouri, M.; Nademi, M.; Olya, M.E.; Lotfi, H. Study of Methyl tert-butyl Ether (MTBE) Photocatalytic Degradation with UV/TiO2-ZnO-CuO Nanoparticles. J. Chem. Health Risks 2017, 7, 19–32. [Google Scholar]
- Al-Musawi, T.J.; Mengelizadeh, N.; Kassim, W.M.; Sillanpää, M.; Siddiqui, S.H.; Shahbaksh, S.; Balarak, D. Sonophotocatalytic degradation and operational parameters optimization of diazinon using magnetic cobalt–graphene nanocomposite as a catalyst. J. Water Process. Eng. 2022, 46, 102548. [Google Scholar] [CrossRef]
- Lops, C.; Ancona, A.; Di Cesare, K.; Dumontel, B.; Garino, N.; Canavese, G.; Hérnandez, S.; Cauda, V. Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Appl. Catal. B Environ. 2019, 243, 629–640. [Google Scholar] [CrossRef]
- Mansourian, R.; Mousavi, S.; Alizadeh, S.; Sabbaghi, S. CeO2/TiO2/SiO2 nanocatalyst for the photocatalytic and sonophotocatalytic degradation of chlorpyrifos. Can. J. Chem. Eng. 2022, 100, 451–464. [Google Scholar] [CrossRef]
- Bakhshkandi, R.; Ghoranneviss, M. Investigating the synthesis and growth of titanium dioxide nanoparticles on a cobalt catalyst. J. Res. Sci. Eng. Technol. 2019, 7, 1–3. [Google Scholar] [CrossRef]
- Salari, M. Optimisation using Taghuchi method and Heterogeneous Fenton-like Process with Fe3O4/MWCNTS Nano-Composites as the Catalyst for Removal an Antibiotic. Adv. Appl. NanoBio Technol. 2021, 2, 46–53. [Google Scholar]
- Yentür, G.; Dükkancı, M. Synergistic effect of sonication on photocatalytic oxidation of pharmaceutical drug carbamazepine. Ultrason. Sonochem. 2021, 78, 105749. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Rahaman, H.; Zhao, J.; Li, D.; Zhai, J. Hydrogen peroxide enhanced sonophotocatalytic degradation of acid orange 7 in aqueous solution: Optimization by B ox– B ehnken design. J. Chem. Technol. Biotechnol. 2021, 96, 2647–2658. [Google Scholar] [CrossRef]
- Liu, N.; Wang, J.; Wu, J.; Li, Z.; Huang, W.; Zheng, Y.; Lei, J.; Zhang, X.; Tang, L. Magnetic Fe3O4@MIL-53(Fe) nanocomposites derived from MIL-53(Fe) for the photocatalytic degradation of ibuprofen under visible light irradiation. Mater. Res. Bull. 2020, 132, 111000. [Google Scholar] [CrossRef]
- Vinesh, V.; Ashokkumar, M.; Neppolian, B. rGO supported self-assembly of 2D nano sheet of (g-C3N4) into rod-like nano structure and its application in sonophotocatalytic degradation of an antibiotic. Ultrason. Sonochem. 2020, 68, 105218. [Google Scholar] [CrossRef]
- Al-Musawi, T.J.; Yilmaz, M.; Ramirez-Coronel, A.A. Degradation of amoxicillin under a UV or visible light photocatalytic treatment process using Fe2O3/bentonite/TiO2: Performance, kinetic, degradation pathway, energy consumption, and toxicology studies. Optik 2023, 272, 170230. [Google Scholar] [CrossRef]
- Al-Musawi, T.J.; Rajiv, P.; Mengelizadeh, N.; Mohammed, I.A.; Balarak, D. Development of sonophotocatalytic process for degradation of acid orange 7 dye by using titanium dioxide nanoparticles/graphene oxide nanocomposite as a catalyst. J. Environ. Manag. 2021, 292, 112777. [Google Scholar] [CrossRef]
- Yilmaz, M.; Mengelizadeh, N.; khodadadi Saloot, M.; Balarak, D. Facile synthesis of Fe3O4/ZnO/GO photocatalysts for decolorization of acid blue 113 under solar, visible and UV lights. Mater. Sci. Semicond. Process. 2022, 144, 106593. [Google Scholar] [CrossRef]
SSABET (m2 g−1) | Pore Volume (cm3 g−1) | Pore Size (nm) | |
---|---|---|---|
MIL-101 (Fe) | 2280 | 1.09 | 2.34 |
Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) | 992 | 0.65 | 1.35 |
Sonophotocatalyst | Dyes | Concentration of Dye (mg/L) | Time (min) | Efficiency (%) | Ref. |
---|---|---|---|---|---|
Mg:CS−SnO2 | methylene blue | 1 | 120 | 99 | [32] |
ZnO | methyl orange | 50 | 100 | 54 | [33] |
Bi2O3 | Basic brown 1 | 10 | 60 | 67 | [34] |
MgTi2O5 | basic fuchsin | 0.5 mM | 75 | 100 | [36] |
ZnO\BiVO4\Co3O4 | brilliant green | 10 | 60 | 99.1 | [37] |
Ag/Mn3O4 | Congo red | 30 | 120 | ≈100 | [38] |
CuFe2F8(H2O)2 | Rhodamine-B | 6 | 35 | 82.22 | [39] |
ZnO/CNT | Methylene blue | 20 | 90 | 99 | [40] |
Fe3O4@SiO2@MIL-101 (Fe) | AR14 | 50 | 60 | 100 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hawary, S.I.S.; Rahimpoor, R.; Rahmani, A.; Romero-Parra, R.M.; Ramírez-Coronel, A.A.; Alhachami, F.R.; Mengelizadeh, N.; Balarak, D. Enhanced Sonophotocatalytic Degradation of Acid Red 14 Using Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) Based on Metal-Organic Framework. Catalysts 2023, 13, 411. https://doi.org/10.3390/catal13020411
Al-Hawary SIS, Rahimpoor R, Rahmani A, Romero-Parra RM, Ramírez-Coronel AA, Alhachami FR, Mengelizadeh N, Balarak D. Enhanced Sonophotocatalytic Degradation of Acid Red 14 Using Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) Based on Metal-Organic Framework. Catalysts. 2023; 13(2):411. https://doi.org/10.3390/catal13020411
Chicago/Turabian StyleAl-Hawary, Sulieman Ibraheem Shelash, Razzagh Rahimpoor, Abdolrasoul Rahmani, Rosario Mireya Romero-Parra, Andrés Alexis Ramírez-Coronel, Firas Rahi Alhachami, Nezamaddin Mengelizadeh, and Davoud Balarak. 2023. "Enhanced Sonophotocatalytic Degradation of Acid Red 14 Using Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) Based on Metal-Organic Framework" Catalysts 13, no. 2: 411. https://doi.org/10.3390/catal13020411
APA StyleAl-Hawary, S. I. S., Rahimpoor, R., Rahmani, A., Romero-Parra, R. M., Ramírez-Coronel, A. A., Alhachami, F. R., Mengelizadeh, N., & Balarak, D. (2023). Enhanced Sonophotocatalytic Degradation of Acid Red 14 Using Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) Based on Metal-Organic Framework. Catalysts, 13(2), 411. https://doi.org/10.3390/catal13020411