Ionothermal Crystallization of SAPO-11 Using Novel Pyridinium Ionic Liquid and Its Catalytic Activity in Esterification of Levulinic Acid into Ethyl Levulinate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Time-Dependent Study of Ionothermal Crystallization of SAPO-11
2.2. Effect of Synthesis Conditions
2.2.1. Effect of Heating Temperature
2.2.2. Effect of P/Al Molar Ratio
2.2.3. Effect of Si Content
2.2.4. Effect of [PPy]Br Content
2.3. Pore Stabilization and Confinement Roles of PPy]Br in SAPO-11
2.4. Porous and Acid Properties of [PPy]Br Synthesized SAPO-11
2.5. Catalytic Study
3. Methodology
3.1. Synthesis of 1-Propylpyridinium Bromide, [PPy]Br
3.2. Ionothermal Synthesis of Silicoaluminophosphate Number 11 (SAPO-11)
3.3. Characterization
3.4. Catalytic Reaction Study
4. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ng, E.-P.; Itani, L.; Sekhon, S.S.; Mintova, S. Selective capture of water using microporous adsorbents to increase the lifetime of lubricants. ChemSusChem 2009, 2, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Makertihartha, I.; Kencana, K.S.; Dwiputra, T.R.; Khoiruddin, K.; Mukti, R.R.; Wenten, I. Silica supported SAPO-34 membranes for CO2/N2 separation. Microporous Mesoporous Mater. 2020, 298, 110068. [Google Scholar] [CrossRef]
- Dai, X.; Cheng, Y.; Wei, Q.; Si, M.; Zhou, Y. Small-crystal and hierarchical SAPO-11 molecular sieve synthesized via three-stage crystallization method and hydroisomerization performance of corresponding NiWS supported catalyst. Fuel 2022, 324, 124610. [Google Scholar] [CrossRef]
- Blasco, T.; Chica, A.; Corma, A.; Murphy, W.; Agúndez-Rodríguez, J.; Perez-Pariente, J. Changing the Si distribution in SAPO-11 by synthesis with surfactants improves the hydroisomerization/dewaxing properties. J. Catal. 2006, 242, 153–161. [Google Scholar] [CrossRef]
- Rabaev, M.; Landau, M.V.; Vidruk-Nehemya, R.; Koukouliev, V.; Zarchin, R.; Herskowitz, M. Conversion of vegetable oils on Pt/Al2O3/SAPO-11 to diesel and jet fuels containing aromatics. Fuel 2015, 161, 287–294. [Google Scholar] [CrossRef]
- Xing, G.; Liu, S.; Guan, Q.; Li, W. Investigation on hydroisomerization and hydrocracking of C15–C18 n-alkanes utilizing a hollow tubular Ni-Mo/SAPO-11 catalyst with high selectivity of jet fuel. Catal. Today 2019, 330, 109–116. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhan, W.; Guo, Y.; Guo, Y.; Gong, X.; Lu, G. The synthesis of Co-doped SAPO-5 molecular sieve and its performance in the oxidation of cyclohexane with molecular oxygen. Chin. J. Catal. 2016, 37, 273–280. [Google Scholar] [CrossRef]
- Said, S.; Zaky, M.T. PtSn supported on hierarchical mesoporous SAPO-11: Synthesis, characterization and catalytic evaluation in n-heptane hydroisomerization. J. Organomet. Chem. 2021, 957, 122180. [Google Scholar] [CrossRef]
- Tiuliukova, I.; Rudina, N.; Lysikov, A.; Cherepanova, S.; Parkhomchuk, E. Screw-like morphology of silicoaluminophosphate-11 (SAPO-11) crystallized in ethanol medium. Mater. Lett. 2018, 228, 61–64. [Google Scholar] [CrossRef]
- Auwal, I.A.; Mintova, S.; Ling, T.C.; Khoerunnisa, F.; Wong, K.-L.; Ng, E.-P. Crystallization profile and morphological study of SAPO-5 templated by imidazolium cations of different functional groups. Microporous Mesoporous Mater. 2020, 308, 110514. [Google Scholar] [CrossRef]
- Ahmad, N.H.; Daou, T.J.; Maireles-Torres, P.; Zaarour, M.; Mintova, S.; Ling, T.-C.; Ng, E.-P. Morphological effects on catalytic performance of LTL zeolites in acylation of 2-methylfuran enhanced by non-microwave instant heating. Mater. Chem. Phys. 2020, 244, 122688. [Google Scholar] [CrossRef]
- Parnham, E.R.; Morris, R.E. Ionothermal Synthesis of Zeolites, Metal–Organic Frameworks, and Inorganic–Organic Hybrids. Accounts Chem. Res. 2007, 40, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Hong, X.; Zhu, L.; Meng, X.; Han, S.; Zhang, J.; Liu, X.; Jin, C.; Xiao, F.-S. Generalized ionothermal synthesis of silica-based zeolites. Microporous Mesoporous Mater. 2019, 286, 163–168. [Google Scholar] [CrossRef]
- Ng, E.-P.; Ghoy, J.-P.; Awala, H.; Vicente, A.; Adnan, R.; Ling, T.C.; Mintova, S. Ionothermal synthesis of FeAPO-5 in the presence of phosphorous acid. Crystengcomm 2015, 18, 257–265. [Google Scholar] [CrossRef]
- Cooper, E.R.; Andrews, C.D.; Wheatley, P.S.; Webb, P.B.; Wormald, P.; Morris, R.E. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 2004, 430, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
- Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 1999, 99, 2071–2084. [Google Scholar] [CrossRef]
- Khoo, D.Y.; Awala, H.; Mintova, S.; Ng, E.-P. Synthesis of AlPO-5 with diol-substituted imidazolium-based organic template. Microporous Mesoporous Mater. 2014, 194, 200–207. [Google Scholar] [CrossRef]
- Ng, E.-P.; Sekhon, S.S.; Mintova, S. Discrete MnAlPO-5 nanocrystals synthesized by an ionothermal approach. Chem. Commun. 2009, 13, 1661–1663. [Google Scholar] [CrossRef]
- Fortas, W.; Djelad, A.; Hasnaoui, M.A.; Sassi, M.; Bengueddach, A. Adsorption of gentian violet dyes in aqueous solution on microporous AlPOs molecular sieves synthesized by ionothermal method. Mater. Res. Express 2018, 5, 025018. [Google Scholar] [CrossRef]
- Lin, Y.; Wei, Y.; Zhang, L.; Guo, K.; Wang, M.; Huang, P.; Meng, X.; Zhang, R. Facile ionothermal synthesis of SAPO-LTA zeotypes with high structural stability and their catalytic performance in MTO reaction. Microporous Mesoporous Mater. 2019, 288, 109611. [Google Scholar] [CrossRef]
- Ma, H.; Xu, R.; You, W.; Wen, G.; Wang, S.; Xu, Y.; Wang, B.; Wang, L.; Wei, Y.; Xu, Y.; et al. Ionothermal synthesis of gallophosphate molecular sieves in 1-alkyl-3-methyl imidazolium bromide ionic liquids. Microporous Mesoporous Mater. 2009, 120, 278–284. [Google Scholar] [CrossRef]
- Xu, Y.-P.; Tian, Z.-J.; Wang, S.-J.; Hu, Y.; Wang, L.; Wang, B.-C.; Ma, Y.-C.; Hou, L.; Yu, J.-Y.; Lin, L.-W. Microwave-Enhanced Ionothermal Synthesis of Aluminophosphate Molecular Sieves. Angew. Chem. Int. Ed. 2006, 45, 3965–3970. [Google Scholar] [CrossRef] [PubMed]
- Kore, R.; Srivastava, R. Synthesis of zeolite Beta, MFI, and MTW using imidazole, piperidine, and pyridine based quaternary ammonium salts as structure directing agents. RSC Adv. 2012, 2, 10072–10084. [Google Scholar] [CrossRef]
- Dumitriu, E.; Azzouz, A.; Hulea, V.; Lutic, D.; Kessler, H. Synthesis, characterization and catalytic activity of SAPO-34 obtained with piperidine as templating agent. Microporous Mater. 1997, 10, 1–12. [Google Scholar] [CrossRef]
- Prakash, A.M.; Unnikrishnan, S. Synthesis of SAPO-34: High silicon incorporation in the presence of morpholine as template. J. Chem. Soc. Faraday Trans. 1994, 90, 2291–2296. [Google Scholar] [CrossRef]
- Shimizu, Y.; Ohte, Y.; Yamamura, Y.; Tsuzuki, S.; Saito, K. Comparative Study of Imidazolium- and Pyrrolidinium-Based Ionic Liquids: Thermodynamic Properties. J. Phys. Chem. B 2012, 116, 5406–5413. [Google Scholar] [CrossRef]
- Wong, S.-F.; Deekomwong, K.; Wittayakun, J.; Ling, T.C.; Muraza, O.; Adam, F.; Ng, E.-P. Crystal growth study of K-F nanozeolite and its catalytic behavior in Aldol condensation of benzaldehyde and heptanal enhanced by microwave heating. Mater. Chem. Phys. 2017, 196, 295–301. [Google Scholar] [CrossRef]
- IZA-SC Database of Zeolite Structures. Available online: http://www.iza-structure.org/databases/ (accessed on 12 January 2023).
- Wong, J.-T.; Ng, E.-P.; Adam, F. Microscopic investigation of nanocrystalline zeolite L synthesized from rice husk ash. J. Am. Ceram. Soc. 2012, 95, 805–808. [Google Scholar] [CrossRef]
- Chen, Z.; Dong, Y.; Jiang, S.; Song, W.; Lai, W.; Yi, X.; Fang, W. Low-temperature synthesis of hierarchical architectures of SAPO-11 zeolite as a good hydroisomerization support. J. Mater. Sci. 2017, 52, 4460–4471. [Google Scholar] [CrossRef]
- Xu, X.T.; Zhai, J.P.; Li, I.L.; Ruan, S.C. Morphology Control of SAPO-11 and SAPO-47 Crystals in the Presence of Diethylamine. Appl. Mech. Mater. 2013, 275–277, 1737–1741. [Google Scholar] [CrossRef]
- Choo, M.-Y.; Juan, J.C.; Oi, L.E.; Ling, T.C.; Ng, E.-P.; Noorsaadah, A.R.; Centi, G.; Lee, K.T. The role of nanosized zeolite Y in the H2-free catalytic deoxygenation of triolein. Catal. Sci. Technol. 2019, 9, 772–782. [Google Scholar] [CrossRef]
- Wong, S.-F.; Awala, H.; Vincente, A.; Retoux, R.; Ling, T.C.; Mintova, S.; Mukti, R.R.; Ng, E.-P. K-F zeolite nanocrystals synthesized from organic-template-free precursor mixture. Microporous Mesoporous Mater. 2017, 249, 105–110. [Google Scholar] [CrossRef]
- Chen, D.; Tang, Q.; Deng, W.; Chaianansutcharit, S.; Guo, L. Comparative studies on the toluene sorption performance over silicalite-1 zeolites with different morphologies. Microporous Mesoporous Mater. 2022, 346, 112275. [Google Scholar] [CrossRef]
- Wang, G.; Valldor, M.; Spielberg, E.T.; Mudring, A.-V. Ionothermal Synthesis, Crystal Structure, and Magnetic Study of Co2PO4OH Isostructural with Caminite. Inorg. Chem. 2014, 53, 3072–3077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, L.; Yan, X.; Guo, L.; Duan, Y.; Wang, Z.; Lu, T.; Xu, J.; Zhan, Y.; Wang, J. Ionothermal Synthesis of Triclinic SAPO-34 Zeolites. Catalysts 2021, 11, 616. [Google Scholar] [CrossRef]
- Khoo, D.Y.; Kok, W.-M.; Mukti, R.R.; Mintova, S.; Ng, E.-P. Ionothermal approach for synthesizing AlPO-5 with hexagonal thin-plate morphology influenced by various parameters at ambient pressure. Solid State Sci. 2013, 25, 63–69. [Google Scholar] [CrossRef]
- Ma, Y.-K.; Chia, S.; Paillaud, J.-L.; Daou, T.J.; Khoerunnisa, F.; El-Bahy, Z.M.; Ling, T.C.; Altalhi, A.A.; Mahmoud, S.F.; Ng, E.-P. SAPO-35 zeolite crystallized using novel structure-directing agent for catalytic conversion of levulinic acid into ethyl levulinate under non-microwave instant heating. Mater. Chem. Phys. 2022, 287, 126240. [Google Scholar] [CrossRef]
- Wen, C.; Wang, X.; Xu, J.; Fan, Y. Hierarchical SAPO-11 molecular sieve-based catalysts for enhancing the double-branched hydroisomerization of alkanes. Fuel 2019, 255, 115821. [Google Scholar] [CrossRef]
- Basina, G.; AlShami, D.; Polychronopoulou, K.; Tzitzios, V.; Balasubramanian, V.; Dawaymeh, F.; Karanikolos, G.N.; Al Wahedi, Y. Hierarchical AlPO4-5 and SAPO-5 microporous molecular sieves with mesoporous connectivity for water sorption applications. Surf. Coat. Technol. 2018, 353, 378–386. [Google Scholar] [CrossRef]
- Wang, X.; Guo, F.; Wei, X.; Liu, Z.; Zhang, W.; Guo, S.; Zhao, L. The catalytic performance of methylation of naphthalene with methanol over SAPO-11 zeolites synthesized with different Si content. Korean J. Chem. Eng. 2016, 33, 2034–2041. [Google Scholar] [CrossRef]
- Morris, R.E. Ionothermal synthesis—Ionic liquids as functional solvents in the preparation of crystalline materials. Chem. Commun. 2009, 21, 2990–2998. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Y.; Li, D.; Liu, H.; Li, X.; Tao, S.; Tian, Z. Ionothermal synthesis of zeolitic imidazolate frameworks and the synthesis dissolution-crystallization mechanism. Chin. J. Catal. 2015, 36, 855–865. [Google Scholar] [CrossRef]
- Oh, H.-C.; Jung, S.; Ko, I.-J.; Choi, E.-Y. Ionothermal Synthesis of Metal-Organic Framework. In Recent Advancements in the Metallurgical Engineering and Electrodeposition; Al-Naib, U., Vikraman, D., Karuppasamy, K., Eds.; Intechopen: London, UK, 2020; pp. 1–24. [Google Scholar] [CrossRef] [Green Version]
- Maton, C.; De Vos, N.; Stevens, C.V. Ionic liquid thermal stabilities: Decomposition mechanisms and analysis tools. Chem. Soc. Rev. 2013, 42, 5963–5977. [Google Scholar] [CrossRef] [PubMed]
- Tosheva, L.; Ng, E.-P.; Mintova, S.; Hölzl, M.; Metzger, T.H.; Doyle, A.M. AlPO4-18 Seed Layers and Films by Secondary Growth. Chem. Mater. 2008, 20, 5721–5726. [Google Scholar] [CrossRef]
- Soulard, M.; Bilger, S.; Kessler, H.; Guth, J. Characterization of the products remaining in the solid after partial thermal decomposition of Pr4NF-, Pr3NHF-, and Pr4NOH-MFI precursors. Zeolites 1991, 11, 107–115. [Google Scholar] [CrossRef]
- The Molecular Sizes of the Compounds Were Estimated Using HyperChem™-Release 8.0 for Windows Molecular Modeling System; Hypercube, Inc.: Gainesville, FL, USA, 2011.
- Adam, F.; Kueh, C.-W.; Ng, E.-P. The immobilization of iron(III) aminopyridine complex on MCM-41: Its preparation and characterization. J. Porous Mater. 2013, 20, 1337–1343. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Lima, G.C.C.S.; Mello, M.I.S.; Bieseki, L.; Araujo, A.S.; Pergher, S.B.C. Hydrothermal Synthesis of Silicoaluminophosphate with AEL Structure Using a Residue of Fluorescent Lamps as Starting Material. Molecules 2021, 26, 7366. [Google Scholar] [CrossRef]
- Choo, M.-Y.; Oi, L.E.; Ling, T.C.; Ng, E.-P.; Lin, Y.-C.; Centi, G.; Juan, J.C. Deoxygenation of triolein to green diesel in the H2-free condition: Effect of transition metal oxide supported on zeolite Y. J. Anal. Appl. Pyrolysis 2020, 147, 104797. [Google Scholar] [CrossRef]
- Shuit, S.H.; Ng, E.P.; Tan, S.H. A facile and acid-free approach towards the preparation of sulphonated multi-walled carbon nanotubes as a strong protonic acid catalyst for biodiesel production. J. Taiwan Inst. Chem. Eng. 2015, 52, 100–108. [Google Scholar] [CrossRef]
- Alfonzo, M.; Goldwasser, J.; López, C.; Machado, F.; Matjushin, M.; Méndez, B.; de Agudelo, M.R. Effect of the synthesis conditions on the crystallinity and surface acidity of SAPO-11. J. Mol. Catal. A Chem. 1995, 98, 35–48. [Google Scholar] [CrossRef]
- Du, R.-L.; Wu, K.; Xu, D.-A.; Chao, C.-Y.; Zhang, L.; Du, X.-D. A modified Arrhenius equation to predict the reaction rate constant of Anyuan pulverized-coal pyrolysis at different heating rates. Fuel Process. Technol. 2016, 148, 295–301. [Google Scholar] [CrossRef]
- Ma, Y.-K.; Chia, S.; Daou, T.J.; Khoerunnisa, F.; El-Bahy, S.M.; El-Bahy, Z.M.; Ling, T.C.; Ng, E.-P. SAPO-34 crystallized using novel pyridinium template as highly active catalyst for synthesis of ethyl levulinate biofuel. Microporous Mesoporous Mater. 2022, 333, 111754. [Google Scholar] [CrossRef]
- Kiss, A.A.; Dimian, A.C.; Rothenberg, G. Solid Acid Catalysts for Biodiesel Production –-Towards Sustainable Energy. Adv. Synth. Catal. 2006, 348, 75–81. [Google Scholar] [CrossRef]
- Song, W.; Zhao, C.; Lercher, J.A. Importance of Size and Distribution of Ni Nanoparticles for the Hydrodeoxygenation of Microalgae Oil. Chem. A Eur. J. 2013, 19, 9833–9842. [Google Scholar] [CrossRef]
Sample | Total Acidity (150 °C) (μmol g−1) | Medium-to-Strong Acidity (300 °C) (μmol g−1) | ||||
---|---|---|---|---|---|---|
B | L | B+L | B | L | B+L | |
SAPO-11 | 136 | 158 | 294 | 61 | 40 | 101 |
Sample | Variable Parameter | Ionogel Molar Composition | T (°C) | t (h) | Products * | |||
---|---|---|---|---|---|---|---|---|
Al | P | Si | [PPy]Br | |||||
E-1 | Crystallization time, t | 1.0 | 1.8 | 0.3 | 38 | 150 | 110 | Amorphous |
E-2 | 120 | Amorphous > AEL | ||||||
E-3 | 133 | AEL | ||||||
E-4 | 200 | AEL > AFI | ||||||
E-5 | Heating temperature, T | 1.0 | 1.8 | 0.3 | 38 | 130 | 133 | Amorphous |
E-6 | 140 | Amorphous > AEL | ||||||
E-3 | 150 | AEL | ||||||
E-7 | 160 | Berlinite > AEL | ||||||
E-8 | P | 1.0 | 1.2 | 0.3 | 38 | 150 | 133 | Amorphous |
E-3 | 1.8 | AEL | ||||||
E-9 | 2.1 | AEL > Berlinite | ||||||
E-10 | 2.4 | AEL = Berlinite > AFI | ||||||
E-11 | Si | 1.0 | 1.8 | 0 | 38 | 150 | 133 | AEL = Berlinite |
E-12 | 0.1 | AEL = Tridymite > AFI | ||||||
E-3 | 0.2 | AEL > Tridymite | ||||||
E-13 | 0.3 | AEL | ||||||
E-14 | [PPy]Br | 1.0 | 1.8 | 0.3 | 14 | 150 | 133 | Tridymite >> AEL > AFI |
E-15 | 22 | Tridymite = AEL | ||||||
E-16 | 30 | AEL >> Tridymite | ||||||
E-3 | 38 | AEL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammad, A.I.J.M.; Saminathan, V.; El-Bahy, Z.M.; Michelin, L.; Ling, T.C.; Ng, E.-P. Ionothermal Crystallization of SAPO-11 Using Novel Pyridinium Ionic Liquid and Its Catalytic Activity in Esterification of Levulinic Acid into Ethyl Levulinate. Catalysts 2023, 13, 433. https://doi.org/10.3390/catal13020433
Mohammad AIJM, Saminathan V, El-Bahy ZM, Michelin L, Ling TC, Ng E-P. Ionothermal Crystallization of SAPO-11 Using Novel Pyridinium Ionic Liquid and Its Catalytic Activity in Esterification of Levulinic Acid into Ethyl Levulinate. Catalysts. 2023; 13(2):433. https://doi.org/10.3390/catal13020433
Chicago/Turabian StyleMohammad, Al Issa Jehad Moh’dFathi, Vinithaa Saminathan, Zeinhom M. El-Bahy, Laure Michelin, Tau Chuan Ling, and Eng-Poh Ng. 2023. "Ionothermal Crystallization of SAPO-11 Using Novel Pyridinium Ionic Liquid and Its Catalytic Activity in Esterification of Levulinic Acid into Ethyl Levulinate" Catalysts 13, no. 2: 433. https://doi.org/10.3390/catal13020433
APA StyleMohammad, A. I. J. M., Saminathan, V., El-Bahy, Z. M., Michelin, L., Ling, T. C., & Ng, E. -P. (2023). Ionothermal Crystallization of SAPO-11 Using Novel Pyridinium Ionic Liquid and Its Catalytic Activity in Esterification of Levulinic Acid into Ethyl Levulinate. Catalysts, 13(2), 433. https://doi.org/10.3390/catal13020433