AAO-Assisted Nanoporous Platinum Films for Hydrogen Sensor Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. AAO Nanopores Formation
2.2. Pt Thin Films on Glass and AAO Nanopores
2.3. Gas Sensing Properties of Pt Films
3. Materials and Methods
3.1. Synthesis of AAO Nanotube Substrates
3.2. Synthesis of Pt Films
3.3. Characterization of AAO Templates and Deposited Films
3.4. Resistive Gas Sensing Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Comini, E. Metal oxide nanowire chemical sensors: Innovation and quality of life. Mater. Today 2016, 19, 559–567. [Google Scholar] [CrossRef]
- Zappa, D.; Galstyan, V.; Kaur, N.; Munasinghe Arachchige, H.M.M.; Sisman, O.; Comini, E. “Metal oxide -based heterostructures for gas sensors”—A review. Anal. Chim. Acta 2018, 1039, 1–23. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.Y.; Feng, Y.; Yuan, Z.Y.; Su, B.L. One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: Synthesis, characterizations, properties and applications. Crit. Rev. Solid State Mater. Sci. 2012, 37, 1–74. [Google Scholar] [CrossRef]
- Abid, N.; Khan, A.M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv. Colloid Interface Sci. 2022, 300, 102597. [Google Scholar] [CrossRef]
- Santos, A.; Kumeria, T.; Losic, D. Nanoporous anodic aluminum oxide for chemical sensing and biosensors. TrAC-Trends Anal. Chem. 2013, 44, 25–38. [Google Scholar] [CrossRef]
- Xu, R.; Zeng, Z.; Lei, Y. Well-defined nanostructuring with designable anodic aluminum oxide template. Nat. Commun. 2022, 13, 2435. [Google Scholar] [CrossRef]
- Ruiz-Clavijo, A.; Caballero-Calero, O.; Martín-González, M. Revisiting anodic alumina templates: From fabrication to applications. Nanoscale 2021, 13, 2227–2265. [Google Scholar] [CrossRef] [PubMed]
- van Renssen, S. The hydrogen solution? Nat. Clim. Chang. 2020, 10, 799–801. [Google Scholar] [CrossRef]
- Marbán, G.; Valdés-Solís, T. Towards the hydrogen economy? Int. J. Hydrogen Energy 2007, 32, 1625–1637. [Google Scholar] [CrossRef] [Green Version]
- Vermaak, L.; Neomagus, H.W.J.P.; Bessarabov, D.G. Recent advances in membrane-based electrochemical hydrogen separation: A review. Membranes 2021, 11, 127. [Google Scholar] [CrossRef]
- Lee, J.-H.; Nguyen, T.T.T.; Nguyen, L.H.T.; Phan, T.B.; Kim, S.S.; Doan, T.L.H. Functionalization of zirconium-based metal–organic frameworks for gas sensing applications. J. Hazard. Mater. 2021, 403, 124104. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, A.-S.; Zou, B.; Zhang, H.-X.; Yan, K.-L.; Lin, Y. Advances of metal–organic frameworks for gas sensing. Polyhedron 2018, 154, 83–97. [Google Scholar] [CrossRef]
- Rane, S.; Arbuj, S.; Rane, S.; Gosavi, S. Hydrogen sensing characteristics of Pt–SnO2 nano-structured composite thin films. J. Mater. Sci. Mater. Electron. 2015, 26, 3707–3716. [Google Scholar] [CrossRef]
- Hotovy, I.; Huran, J.; Siciliano, P.; Capone, S.; Spiess, L.; Rehacek, V. Enhancement of H2 sensing properties of NiO-based thin films with a Pt surface modification. Sens. Actuators B Chem. 2004, 103, 300–311. [Google Scholar] [CrossRef]
- Hübert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen sensors—A review. Sens. Actuators B Chem. 2011, 157, 329–352. [Google Scholar] [CrossRef]
- Hübert, T.; Boon-Brett, L.; Palmisano, V.; Bader, M.A. Developments in gas sensor technology for hydrogen safety. Int. J. Hydrogen Energy 2014, 39, 20474–20483. [Google Scholar] [CrossRef]
- Sahoo, T.; Kale, P. Work Function-Based Metal–Oxide–Semiconductor Hydrogen Sensor and Its Functionality: A Review. Adv. Mater. Interfaces 2021, 8, 2100649. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Li, Y.; Lisi, D.; Wang, W.M. Preparation and characterization of Pd/Ni thin films for hydrogen sensing. Sens. Actuators B Chem. 1996, 30, 11–16. [Google Scholar] [CrossRef]
- Wang, X.; Du, L.; Cheng, L.; Zhai, S.; Zhang, C.; Wang, W.; Liang, Y.; Yang, D.; Chen, Q.; Lei, G. Pd/Ni nanowire film coated SAW hydrogen sensor with fast response. Sens. Actuators B Chem. 2022, 351, 130952. [Google Scholar] [CrossRef]
- Kilinc, N.; Sanduvac, S.; Erkovan, M. Platinum-Nickel alloy thin films for low concentration hydrogen sensor application. J. Alloys Compd. 2022, 892, 162237. [Google Scholar] [CrossRef]
- Juodkazis, K.; Juodkazyt, J.; Grigucevičien, A.; Juodkazis, S. Hydrogen species within the metals: Role of molecular hydrogen ion H 2+. Appl. Surf. Sci. 2011, 258, 743–747. [Google Scholar] [CrossRef]
- Shim, J.Y.; Lee, J.D.; Jin, J.M.; Cheong, H.; Lee, S.H. Pd-Pt alloy as a catalyst in gasochromic thin films for hydrogen sensors. Sol. Energy Mater. Sol. Cells 2009, 93, 2133–2137. [Google Scholar] [CrossRef]
- Uddin, A.S.M.I.; Yaqoob, U.; Hassan, K.; Chung, G.-S. Effects of Pt shell thickness on self-assembly monolayer Pd@Pt core-shell nanocrystals based hydrogen sensing. Int. J. Hydrogen Energy 2016, 41, 15399–15410. [Google Scholar] [CrossRef]
- Meng, X.; Bi, M.; Gao, W. Rapid response hydrogen sensor based on Pd@Pt/SnO2 hybrids at near-ambient temperature. Sens. Actuators B Chem. 2022, 370, 132406. [Google Scholar] [CrossRef]
- Liu, S.; Tian, J.; Zhang, W. Fabrication and application of nanoporous anodic aluminum oxide: A review. Nanotechnology 2021, 32, 222001. [Google Scholar] [CrossRef]
- Yi, L.; Zhiyuan, L.; Xing, H.; Yisen, L.; Yi, C. Investigation of intrinsic mechanisms of aluminium anodization processes by analyzing the current density. RSC Adv. 2012, 2, 5164–5171. [Google Scholar] [CrossRef]
- Md Jani, A.M.; Losic, D.; Voelcker, N.H. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater. Sci. 2013, 58, 636–704. [Google Scholar] [CrossRef]
- Wahab, J.A.; Derman, M.N. Characterization of porous anodic aluminium oxide film on aluminium templates formed in anodizing process. Adv. Mater. Res. 2011, 173, 55–60. [Google Scholar] [CrossRef]
- Ito, A.; Kadokura, H.; Kimura, T.; Goto, T. Texture and orientation characteristics of α-Al2O3 films prepared by laser chemical vapor deposition using Nd:YAG laser. J. Alloys Compd. 2010, 489, 469–474. [Google Scholar] [CrossRef]
- Mohankumar, M.; Praveen Kumar, S.; Guruprasad, B.; Manavalla, S.; Isaac Joshuaramesh Lalvani, J.S.C.; Somasundaram, P.L.; Tamilarasu, P.; Tanwar, P.S. XRD Peak Profile Analysis of SiC Reinforced Al2O3Ceramic Composite Synthesized by Electrical Resistance Heating and Microwave Sintering: A Comparison. Adv. Mater. Sci. Eng. 2021, 2021, 8341924. [Google Scholar] [CrossRef]
- Yang, F.; Donavan, K.C.; Kung, S.-C.; Penner, R.M. The Surface Scattering-Based Detection of Hydrogen in Air Using a Platinum Nanowire. Nano Lett. 2012, 12, 2924–2930. [Google Scholar] [CrossRef]
- Şennik, E.; Ürdem, Ş.; Erkovan, M.; Kılınç, N. Sputtered platinum thin films for resistive hydrogen sensor application. Mater. Lett. 2016, 177, 104–107. [Google Scholar] [CrossRef]
- Yoo, H.-W.; Cho, S.-Y.; Jeon, H.-J.; Jung, H.-T. Well-Defined and High Resolution Pt Nanowire Arrays for a High Performance Hydrogen Sensor by a Surface Scattering Phenomenon. Anal. Chem. 2015, 87, 1480–1484. [Google Scholar] [CrossRef]
- Abburi, A.; Yeh, W.J. Temperature and Pore Size Dependence on the Sensitivity of a Hydrogen Sensor Based on Nanoporous Platinum Thin Films. IEEE Sens. J. 2012, 12, 2625–2629. [Google Scholar] [CrossRef]
- Sener, M.; Altuntepe, A.; Zan, R.; Kilinc, N. Fabrication of Nanoporous Platinum Films with Dealloying Method for Hydrogen Sensor Application. Eng. Proc. 2022, 27, 25. [Google Scholar] [CrossRef]
- Patel, S.V.; Gland, J.L.; Schwank, J.W. Film Structure and Conductometric Hydrogen-Gas-Sensing Characteristics of Ultrathin Platinum Films. Langmuir 1999, 15, 3307–3311. [Google Scholar] [CrossRef]
- Tsukada, K.; Inoue, H.; Katayama, F.; Sakai, K.; Kiwa, T. Changes in Work Function and Electrical Resistance of Pt Thin Films in the Presence of Hydrogen Gas. Jpn. J. Appl. Phys. 2011, 51, 15701. [Google Scholar] [CrossRef]
- Erkovan, M.; Deger, C.; Cardoso, S.; Kilinc, N. Hydrogen-Sensing Properties of Ultrathin Pt-Co Alloy Films. Chemosensors 2022, 10, 512. [Google Scholar] [CrossRef]
- Hassan, K.; Iftekhar Uddin, A.S.M.; Chung, G.-S. Fast-response hydrogen sensors based on discrete Pt/Pd bimetallic ultra-thin films. Sens. Actuators B Chem. 2016, 234, 435–445. [Google Scholar] [CrossRef]
- Rajouâ, K.; Baklouti, L.; Favier, F. Platinum for hydrogen sensing: Surface and grain boundary scattering antagonistic effects in Pt@Au core–shell nanoparticle assemblies prepared using a Langmuir–Blodgett method. Phys. Chem. Chem. Phys. 2018, 20, 383–394. [Google Scholar] [CrossRef]
Materials | Ref. Gas | H2 Conc. (ppm) | T (°C) | Response (%) | Ref. |
---|---|---|---|---|---|
Pt nanowire | Dry air | 1000 | 277 | 3.5 | [31] |
3.5 nm Pt TF | Dry air | 1000 | RT | 2.8 | [32] |
Pt nanowire arrays | Dry air | 1000 | RT | 5.0 | [33] |
Pt NP film (dealloying) | Dry air | 1000 | RT | 3.5 | [34] |
Pt NP film (dealloying) | Dry air | 10,000 | RT | 6.5 | [35] |
3.5 nm Pt TF | 5% O2 in N2 | 500 | 200 | 8.0 | [36] |
10 nm Pt TF | Dry air | 10,000 | 60 | 1.5 | [37] |
PtNi alloy TF | Dry air | 1000 | 150 | 4.0 | [20] |
PtCo alloy TF | Dry air | 10,000 | 25 | 1.2 | [38] |
Pt/Pd bimetallic ultra-thin film | Dry air | 10,000 | 150 | 13.5 | [39] |
Pd@Pt core-shell nanocrystal monolayer | Dry air | 1000 | 150 | 2.4 | [23] |
Pt@Au core-shell nanoparticle assembly | Dry air | 20,000 | RT | 30.0 | [40] |
3 nm Pt NP film | Dry air Dry air | 10,000 1000 | RT 50 | 13.0 4.0 | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sener, M.; Sisman, O.; Kilinc, N. AAO-Assisted Nanoporous Platinum Films for Hydrogen Sensor Application. Catalysts 2023, 13, 459. https://doi.org/10.3390/catal13030459
Sener M, Sisman O, Kilinc N. AAO-Assisted Nanoporous Platinum Films for Hydrogen Sensor Application. Catalysts. 2023; 13(3):459. https://doi.org/10.3390/catal13030459
Chicago/Turabian StyleSener, Melike, Orhan Sisman, and Necmettin Kilinc. 2023. "AAO-Assisted Nanoporous Platinum Films for Hydrogen Sensor Application" Catalysts 13, no. 3: 459. https://doi.org/10.3390/catal13030459
APA StyleSener, M., Sisman, O., & Kilinc, N. (2023). AAO-Assisted Nanoporous Platinum Films for Hydrogen Sensor Application. Catalysts, 13(3), 459. https://doi.org/10.3390/catal13030459