Solvent-Free, One-Pot, Multicomponent Synthesis of Xanthene Derivatives
Abstract
:1. Introduction
2. Results
2.1. Catalyst Screening and Reaction Condition Optimization
2.2. Substrate Screening
2.3. Hot Filtration Test
2.4. Catalyst Recycling Test
2.5. Green Metrics
3. Materials and Methods
3.1. General
3.2. Overall Method
3.3. Hot Filtration Test
3.4. Catalyst Recycling Test
3.5. Analytical Information
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Syamala, M. Recent Progress in three-component reactions. An update. Org. Prep. Proced. Int. 2009, 41, 1–68. [Google Scholar] [CrossRef]
- John, S.E.; Gulati, S.; Shankaraiah, N. Recent advances in multi-component reactions and their mechanistic insights: A triennium review. Org. Chem. Front. 2021, 8, 4237–4287. [Google Scholar] [CrossRef]
- Shirini, F.; Yahyazadeh, A.; Mohammadi, K. One-pot synthesis of various xanthene derivatives using ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient and reusable catalyst under solvent-free conditions. Chin. Chem. Lett. 2014, 25, 341–347. [Google Scholar] [CrossRef]
- Brémond, É.; Alberto, M.E.; Russo, N.; Ricci, G.; Ciofini, I.; Adamo, C. Photophysical properties of NIR-emitting fluorescence probes: Insights from TD-DFT. Phys. Chem. Chem. Phys. 2013, 15, 10019–10027. [Google Scholar] [CrossRef] [PubMed]
- Knight, C.G.; Stephens, T. Xanthene-dye-labelled phosphatidylethanolamines as probes of interfacial pH. Studies in phospholipid vesicles. Biochem. J. 1989, 258, 683–687. [Google Scholar]
- Madhav, J. Dipyridine cobalt chloride: A novel and efficient catalyst for the synthesis of 14-aryl 14H-dibenzo[a.j]xanthenes under solvent-free conditions. Arkivoc 2008, 2, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Ghasemzadeh, M.A.; Safaei-Ghomi, J. Zinc oxide nanoparticles: A highly efficient and readily recyclable catalyst for the synthesis of xanthenes. Chin. Chem. Lett. 2012, 23, 1225–1229. [Google Scholar]
- El-Brashy, A.; El-Sayed Metwally, M.; El-Sepai, F. Spectrophotometric determination of some fluoroquinolone antibacterials by binary complex formation with xanthene dyes. Farmaco 2004, 59, 809–817. [Google Scholar] [CrossRef]
- Safaei-Ghomi, J.; Ghasemzadeh, M.A.; Zahedi, S. FeCl3 nano SiO2: An efficient heterogeneous nano catalyst for the synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes and 1,8-dioxo-octahydro-xanthenes under solvent-free conditions. S. Afr. J. Chem. 2012, 65, 191–195. [Google Scholar]
- Whitaker, J.E.; Haugland, R.P.; Prendergast, F.G. Spectral and photophysical studies of benzo[c]xanthene dyes: Dual emission pH sensors. Anal. Biochem. 1991, 194, 330–344. [Google Scholar] [CrossRef]
- Arppe, R.; Näreoja, T.; Nylund, S.; Mattsson, L.; Koho, S.; Rosenholm, J.M.; Soukka, T.; Schäferling, M. Photon upconversion sensitized nanoprobes for sensing and imaging of pH. Nanoscale 2014, 6, 6837–6843. [Google Scholar] [CrossRef] [PubMed]
- Khurana, J.M.; Lumb, A.; Pandey, A.; Magoo, D. Green approaches for the synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones in aqueous media and under microwave irradiation in solventless conditions. Synth. Commun. 2012, 42, 1796–1803. [Google Scholar] [CrossRef]
- Nandi, G.; Samai, S.; Kumar, R.; Singh, M. An efficient one-pot synthesis of tetrahydrobenzo[a]xanthene-11-one and diazabenzo[a]anthracene-9,11-dione derivatives under solvent free condition. Tetrahedron 2009, 65, 7129–7134. [Google Scholar] [CrossRef]
- Sadeghi, B.; Hassanabadi, A.; Taghvatalab, E. Nanoparticle silica supported sulfuric acid (NPs SiO2-H2SO4): A solid phase acidic catalyst for the one-pot synthesis of benzo[a]xanthene-11-one derivatives. J. Chem. Res. 2011, 35, 707–708. [Google Scholar] [CrossRef]
- Dutta, A.K.; Gogoi, P.; Saikia, S.; Borah, R. N,N-disulfo-1,1,3,3-tetramethylguanidinium carboxylate ionic liquids as reusable homogeneous catalysts for multicomponent synthesis of tetrahydrobenzo[a]xanthene and tetrahydrobenzo[a]acridine derivatives. J. Mol. Liq. 2017, 225, 585–591. [Google Scholar] [CrossRef]
- Jaber, Z.K.; Abbasi, S.Z.; Pooladian, B.; Jokar, M. Efficient, one-pot synthesis of tetrahydrobenzo[a]xanthen-11-ones and dibenzo[a,j]xanthenes using trichloroacetic acid as a solid heterogeneous catalyst under solvent-free conditions. E-J. Chem. 2011, 8, 1895–1899. [Google Scholar] [CrossRef] [Green Version]
- Terra, B.; Osorio, A.; de Oliveira, A.; Santos, R.; Mouro, A.; de Araújo, N.; da Silva, C.; Martins, F.; Vieira, L.; Bonaventura, D.; et al. Natural organic acid as green catalyst for xanthenones synthesis: Methodology, mechanism and calcium channel blocking activity. J. Braz. Chem. Soc. 2017, 28, 2313–2325. [Google Scholar] [CrossRef]
- Khoshnood, J. One-pot synthesis of tetrahydrobenzo[a]xanthen-11-one derivatives catalyzed by ruthenium chloride hydrate as a homogeneous catalyst. Can. J. Chem. 2011, 89, 623–627. [Google Scholar]
- Amarloo, F.; Zhiani, R.; Mehrzad, J. Novel Fe3O4/SiO2/PPA magnetic nanoparticles: Preparation, characterization, and first catalytic application to the solvent- free synthesis of tetrahydrobenzo[a]xanthene-11-ones. Russ. J. Org. Chem. 2019, 55, 1584–1590. [Google Scholar] [CrossRef]
- Oskooie, H.A.; Heravi, M.M.; Karimi, N.; Kohansal, G. Cu/SiO2-catalyzed one-pot synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[α]xanthen-11-ones under solvent-free conditions. Synth. Commun. 2011, 41, 2763–2768. [Google Scholar] [CrossRef]
- Bosica, G.; Cachia, F.; De Nittis, R.; Mariotti, N. Efficient one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via a three-component Biginelli reaction. Molecules 2021, 26, 3753. [Google Scholar] [CrossRef] [PubMed]
- Bosica, G. Sustainable Organic Synthesis: Tools and Strategies; Royal Society of Chemistry; Heterogeneous Catalysis; Protti, S., Palmieri, A., Eds.; Royal Society of Chemistry: London, UK, 2021; Chapter 3; pp. 45–67. [Google Scholar] [CrossRef]
- Baba, T.; Ono, Y.; Ishimoto, T.; Moritaka, S.; Tanooka, S. Heteropoly acids supported on acidic ion-exchange resin as highly active solid-acid catalysts. Bull. Chem. Soc. Jpn. 1985, 58, 2155–2156. [Google Scholar] [CrossRef] [Green Version]
- Sharghi, H.; Jokar, M. Highly stereoselective facile synthesis of β-amino carbonyl compounds via a Mannich-type reaction catalyzed by γ-Al2O3/MeSO3H (alumina/methanesulfonic acid: AMA) as a recyclable, efficient, and versatile heterogeneous catalyst. Can. J. Chem. 2010, 88, 14–26. [Google Scholar] [CrossRef]
- Laszlo, P.; Mathy, A. Catalysis of Friedel-Crafts alkylation by a montmorillonite doped with transition-metal cations. Helv. Chim. Acta 1987, 70, 577–586. [Google Scholar] [CrossRef]
- Zhu, S.; Zhu, Y.; Gao, X.; Mo, T.; Zhu, Y.; Li, Y. Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids. Bioresour. Technol. 2013, 130, 45–51. [Google Scholar] [CrossRef]
- Balou, J.; Khalilzadeh, M.A.; Zareyee, D. An efficient and reusable nano catalyst for the synthesis of benzoxanthene and chromene derivatives. Sci. Rep. 2019, 9, 3605. [Google Scholar] [CrossRef] [Green Version]
- Sheldon, R.A. The E-Factor: Fifteen years on. Green Chem. 2007, 9, 1273–1283. [Google Scholar] [CrossRef]
- Trost, B.M. The atom economy—A search for synthetic efficiency. Science 1991, 254, 1471–1477. [Google Scholar] [CrossRef]
- Li, J.; Tang, W.; Lu, L.; Su, W. Strontium triflate catalyzed one-pot condensation of β-naphthol, aldehydes and cyclic 1,3-dicarbonyl compounds. Tetrahedron Lett. 2008, 49, 7117–7120. [Google Scholar] [CrossRef]
- Sadeghi, B. Silica supported boron trifluoride nanoparticles (BF3-SiO2NPs): An efficient and reusable catalyst for one-pot synthesis of benzo[a]xanthene-11-onederivatives. Sci. Iran. 2014, 21, 708–714. [Google Scholar]
- Kidwai, M.; Jahan, A.; Mishra, N.K. A novel method for the synthesis of tetrahydrobenzo-[a]-xanthen-11-one derivatives using cerium (III) chloride as a highly efficient catalyst. Comptes Rendus Chim. 2012, 15, 324–330. [Google Scholar] [CrossRef]
- Halimehjani, A.Z.; Keshavarzi, N. One-pot three-component route for the synthesis of functionalized 4H-chromenes catalyzed by ZrOCl2·8H2O in water. J. Heterocycl. Chem. 2018, 55, 522–529. [Google Scholar] [CrossRef]
- Shinde, P.V.; Shingare, B.B.; Shingate and Murlidhar, S. An organocatalyzed expeditious synthetic route to tetrahydrobenzo[a]xanthen-11-ones via grinding technique. Lett. Org. Chem. 2011, 8, 568–572. [Google Scholar] [CrossRef]
- Gao, S.; Tsai, C.; Yao, C. A simple and green approach for the synthesis of tetrahydrobenzo-[a]-xanthen-11-one derivatives using tetrabutyl ammonium fluoride in water. Synlett 2009, 6, 949–954. [Google Scholar] [CrossRef]
- Li, J.; Lu, L.; Su, W. A new strategy for the synthesis of benzoxanthenes catalyzed by proline triflate in water. Tetrahedron Lett. 2010, 51, 2434–2437. [Google Scholar] [CrossRef]
Entry | Catalyst | Quantity | Solvent (Volume (mL)) | Yield (%) a,b (Time (h)) |
---|---|---|---|---|
1 | no catalyst | - | EtOH [0.5] | 0 [2] |
2 c | H3[P(W3O10)4]/Al₂O₃ (40.00 w/w%) | 0.50 mmol% | solventless | 57 [2] |
3 c | H4[W12SiO40]/Amberlyst-15 (30.00 w/w%) | 0.50 mmol% | solventless | 70 [2] |
4 d | CH₃SO₃H/Al₂O₃ (3 mmol/g) | 5.00 mmol% | solventless | 40 [2] |
5 e | DABCO/Amberlyst-15 (28.05 w/w%) | 20.00 mmol% | solventless | 85 [6] |
6 | DABCO | 102.00 mg | solventless | 23 [2] |
7 | Amberlyst-15 | 50.00 mg | solventless | 27 [2] |
8 | Amberlyst-A21 | 50.00 mg | solventless | 70 [2] |
9 f | CuI | 10.00 mmol% | EtOH [0.5] | 44 [2] |
10 | CuCl2 | 10.00 mmol% | EtOH [0.5] | 23 [2] |
11 g | Activated Montmorillonite K-10 | 10.00 mmol% | EtOH [0.5] | 17 [2] |
12 h | Cu(II)/Montmorillonite K-10 (20.00 w/w%) | 10.00 mmol% | EtOH [0.5] | 60 [2] |
13 g | Activated Montmorillonite K-30 | 10.00 mmol% | EtOH [0.5] | 44 [2] |
14 i | H4[W12SiO40]/Montmorillonite-K10 (20 w/w%) | 0.50 mmol% | EtOH [0.5] | 29 [2] |
Entry | % w/w DABCO/Amberlyst-15 | Reactants Ratio b | DABCO (mmol %) | Temperature (°C) | Solvent (Volume (mL)) | Yield (%) a (Time (h)) |
---|---|---|---|---|---|---|
1 | 31.14 | 1.3:1:1 | 30 | 120 | EtOH [0.5] | 87 [2] |
2 | 1.3:1:1 | 28 | 120 | EtOH [0.5] | 89 [2] | |
3 | 1.3:1:1 | 26 | 120 | EtOH [0.5] | 88 [2] | |
4 | 30.00 | 1.3:1:1 | 24 | 120 | EtOH [0.5] | 89 [2] |
5 | 1:1.15:1 | 24 | 120 | EtOH [0.5] | 82 [2] | |
6 | 1:1.3:1 | 24 | 120 | EtOH [0.5] | 85 [2] | |
7 | 1:1:1 | 24 | 120 | EtOH [0.5] | 77 [2] | |
8 | 1.15:1:1 | 24 | 120 | EtOH [0.5] | 81 [2] | |
9 | 1.3:1:1 | 24 | 100 | EtOH [0.5] | 34 [2] | |
10 | 1.3:1:1 | 24 | 80 | EtOH [0.5] | 35 [2] | |
11 | 1.3:1:1 | 24 | 120 | solventless | 92 [2] | |
12 | 1.3:1:1 | 24 | 120 | EtOH [0.5] | 92 [24] c | |
13 | 31.14 | 1.3:1:1 | 20 | 120 | EtOH [0.5] | 82 [2] |
14 | 1.3:1:1 | 6 | 120 | EtOH [0.5] | 41 [2] | |
15 | 1.3:1:1 | 3 | 120 | EtOH [0.5] | 38 [2] |
Entry | –R1 (1a–b) | –R2 (2a–o) | (3a–b) | Product (4a–q) | Yield (%) a [Time (h)] |
---|---|---|---|---|---|
1 | CH3 (1a) | C6H5 (2a) | (3a) | (4a) | 92 [2] |
2 | H (1b) | C6H5 (2a) | (3a) | (4b) | 88 [2.5] |
3 | CH3 (1a) | 4-FC6H4 (2b) | (3a) | (4c) | 80 [1] |
4 | CH3 (1a) | 4-ClC6H4 (2c) | (3a) | (4d) | 79 [2] |
5 | CH3 (1a) | 2,4-Cl2C6H3 (2d) | (3a) | (4e) | 78 [2] |
6 | CH3 (1a) | 2-ClC6H4 (2e) | (3a) | (4f) | 76 [2] |
7 | CH3 (1a) | 4-NO2C6H4 (2f) | (3a) | (4g) | 94 [2] |
8 | CH3 (1a) | 4-OHC6H4 (2g) | (3a) | (4h) | 43 [2.5] |
9 b | CH3 (1a) | 2-OHC6H4 (2h) | (3a) | (4i) | 40 [6] |
10 | CH3 (1a) | 2-OCH3C6H4 (2i) | (3a) | (4j) | 43 [5.5] |
11 | CH3 (1a) | C4H3O (2j) | (3a) | (4k) | 51 [3] |
12 c | CH3 (1a) | 4-CNC6H4 (2k) | (3a) | (4l) | 93 [1.5] |
13 | CH3 (1a) | 4-CH3C6H4 (2l) | (3a) | (4m) | 57 [1.5] |
14 d | CH3 (1a) | (CH2)3CH3 (2m) | (3a) | (4n) | 79 [2.5] |
15 d,e | CH3 (1a) | (CH2)4CH3 (2n) | (3a) | (4o) | 61 [3] |
16 d,e | CH3 (1a) | (CH2)5CH3 (2o) | (3a) | (4p) | 44 [3.5] |
17 | CH3 (1a) | C6H5 (2a) | (3b) | (4q) | 84 [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosica, G.; De Nittis, R.; Borg, R. Solvent-Free, One-Pot, Multicomponent Synthesis of Xanthene Derivatives. Catalysts 2023, 13, 561. https://doi.org/10.3390/catal13030561
Bosica G, De Nittis R, Borg R. Solvent-Free, One-Pot, Multicomponent Synthesis of Xanthene Derivatives. Catalysts. 2023; 13(3):561. https://doi.org/10.3390/catal13030561
Chicago/Turabian StyleBosica, Giovanna, Riccardo De Nittis, and Ryan Borg. 2023. "Solvent-Free, One-Pot, Multicomponent Synthesis of Xanthene Derivatives" Catalysts 13, no. 3: 561. https://doi.org/10.3390/catal13030561
APA StyleBosica, G., De Nittis, R., & Borg, R. (2023). Solvent-Free, One-Pot, Multicomponent Synthesis of Xanthene Derivatives. Catalysts, 13(3), 561. https://doi.org/10.3390/catal13030561