Theoretically Predicted CO Adsorption and Activation on the Co-Doped hcp-Fe7C3 Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structures of Co-Doped hcp-Fe7C3 Surfaces
2.2. CO Adsorption on the Co-Doped hcp-Fe7C3 Surfaces
2.3. CO Activation on the Co-Doped hcp-Fe7C3 Surfaces
3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fischer, F.; Tropsch, H. The preparation of synthetic oil mixtures (synthol) from carbon monoxide and hydrogen. Brennst. Chem. 1923, 4, 276–285. [Google Scholar]
- Khodakov, A.Y.; Chu, W.; Fongarland, P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 2007, 107, 1692–1744. [Google Scholar] [CrossRef] [PubMed]
- Dry, M.E. The fischer-tropsch process: 1950–2000. Catal. Today 2002, 71, 227–241. [Google Scholar] [CrossRef]
- Dry, M.E. Present and future applications of the Fischer–Tropsch process. Appl. Catal. A Gen. 2004, 276, 1–3. [Google Scholar] [CrossRef]
- Weststrate, C.; Van De Loosdrecht, J.; Niemantsverdriet, J. Spectroscopic insights into cobalt-catalyzed Fischer-Tropsch synthesis: A review of the carbon monoxide interaction with single crystalline surfaces of cobalt. J. Catal. 2016, 342, 1–16. [Google Scholar] [CrossRef]
- Van Der Laan, G.P.; Beenackers, A. Kinetics and selectivity of the Fischer-Tropsch synthesis: A literature review. Catal. Rev. Sci. Eng. 1999, 41, 255–318. [Google Scholar] [CrossRef]
- De Smit, E.; Weckhuysen, B.M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour. Chem. Soc. Rev. 2008, 37, 2758–2781. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, W.; Liu, J.-X.; Si, R.; Sun, G.; Zhong, M.-Q.; Su, H.-Y.; Zhao, H.-B.; Rodriguez, J.A.; Pennycook, S.J. Platinum-modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer-Tropsch synthesis. J. Am. Chem. Soc. 2013, 135, 4149–4158. [Google Scholar] [CrossRef]
- Zhang, Q.; Kang, J.; Wang, Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity. ChemCatChem 2010, 2, 1030–1058. [Google Scholar] [CrossRef]
- De Smit, E.; Cinquini, F.; Beale, A.M.; Safonova, O.V.; van Beek, W.; Sautet, P.; Weckhuysen, B.M. Stability and Reactivity of ϵ−χ−θ Iron Carbide Catalyst Phases in Fischer−Tropsch Synthesis: Controlling μC. J. Am. Chem. Soc. 2010, 132, 8–14941. [Google Scholar]
- Torres Galvis, H.M.; Bitter, J.H.; Davidian, T.; Ruitenbeek, M.; Dugulan, A.I.; de Jong, K.P. Iron particle size effects for direct production of lower olefins from synthesis gas. J. Am. Chem. Soc. 2012, 134, 16207–16215. [Google Scholar] [CrossRef] [Green Version]
- Schweicher, J.; Bundhoo, A.; Kruse, N. Hydrocarbon chain lengthening in catalytic CO hydrogenation: Evidence for a CO-insertion mechanism. J. Am. Chem. Soc. 2012, 134, 16135–16138. [Google Scholar] [CrossRef]
- Borg, O.; Dietzel, P.D.; Spjelkavik, A.I.; Tveten, E.Z.; Walmsley, J.C.; Diplas, S.; Eri, S.; Holmen, A.; Rytter, E. Fischer-Tropsch synthesis: Cobalt particle size and support effects on intrinsic activity and product distribution. J. Catal. 2008, 259, 161–164. [Google Scholar] [CrossRef]
- Xiang, Y.; Barbosa, R.; Kruse, N. Higher alcohols through CO hydrogenation over CoCu catalysts: Influence of precursor activation. ACS Catal. 2014, 4, 2792–2800. [Google Scholar] [CrossRef]
- Liu, X.-W.; Cao, Z.; Zhao, S.; Gao, R.; Meng, Y.; Zhu, J.-X.; Rogers, C.; Huo, C.-F.; Yang, Y.; Li, Y.-W. Iron carbides in Fischer-Tropsch synthesis: Theoretical and experimental understanding in epsilon-iron carbide phase assignment. J. Phys. Chem. C 2017, 121, 21390–21396. [Google Scholar] [CrossRef]
- Xu, K.; Sun, B.; Lin, J.; Wen, W.; Pei, Y.; Yan, S.; Qiao, M.; Zhang, X.; Zong, B. ε-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst. Nat. Commun. 2014, 5, 5783. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, Z.; Ahsen, A.; Lammich, L.; Mannie, G.J.; Niemantsverdriet, J.H.; Lauritsen, J.V. Atomically Defined Iron Carbide Surface for Fischer-Tropsch Synthesis Catalysis. ACS Catal. 2018, 9, 1264–1273. [Google Scholar] [CrossRef]
- Chen, B.; Wang, D.; Duan, X.; Liu, W.; Li, Y.; Qian, G.; Yuan, W.; Holmen, A.; Zhou, X.; Chen, D. Charge-tuned CO activation over a χ-Fe5C2 Fischer-Tropsch catalyst. ACS Catal. 2018, 8, 2709–2714. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, J.-X.; Yang, C.; Yao, S.; Su, H.-Y.; Gao, Z.; Dong, M.; Wang, J.; Rykov, A.I.; Wang, J. Synthesis of iron-carbide nanoparticles: Identification of the active phase and mechanism of Fe-based Fischer-Tropsch synthesis. CCS Chem. 2021, 3, 2712–2724. [Google Scholar] [CrossRef]
- Chang, Q.; Zhang, C.; Liu, C.; Wei, Y.; Cheruvathur, A.V.; Dugulan, A.I.; Niemantsverdriet, J.; Liu, X.; He, Y.; Qing, M. Relationship between iron carbide phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and catalytic performances of Fe/SiO2 Fischer-Tropsch catalysts. ACS Catal. 2018, 8, 3304–3316. [Google Scholar] [CrossRef]
- Broos, R.J.; Zijlstra, B.; Filot, I.A.; Hensen, E.J. Quantum-Chemical DFT Study of Direct and H-and C-Assisted CO Dissociation on the χ-Fe5C2 Hägg Carbide. J. Phys. Chem. C 2018, 122, 9929–9938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Santen, R.A.; Ghouri, M.M.; Shetty, S.; Hensen, E.M. Structure sensitivity of the Fischer-Tropsch reaction; molecular kinetics simulations. Catal. Sci. Technol. 2011, 1, 891–911. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C.M. Density functional theory study of iron and cobalt carbides for Fischer-Tropsch synthesis. J. Phys. Chem. C 2010, 114, 1085–1093. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, B.; Gao, R.; Yao, S.; Zhai, P.; Li, S.; Yu, J.; Hou, Y.; Ma, D. Construction of synergistic Fe5C2/Co heterostructured nanoparticles as an enhanced low temperature Fischer-Tropsch synthesis catalyst. ACS Catal. 2017, 7, 5661–5667. [Google Scholar] [CrossRef]
- Pham, T.H.; Duan, X.; Qian, G.; Zhou, X.; Chen, D. CO activation pathways of Fischer–Tropsch synthesis on χ-Fe5C2 (510): Direct versus hydrogen-assisted CO dissociation. J. Phys. Chem. C 2014, 118, 10170–10176. [Google Scholar] [CrossRef]
- Pham, T.H.; Qi, Y.; Yang, J.; Duan, X.; Qian, G.; Zhou, X.; Chen, D.; Yuan, W. Insights into Hägg Iron-Carbide-Catalyzed Fischer-Tropsch Synthesis: Suppression of CH4 Formation and Enhancement of C–C Coupling on χ-Fe5C2 (510). ACS Catal. 2015, 5, 2203–2208. [Google Scholar] [CrossRef]
- Broos, R.J.; Klumpers, B.; Zijlstra, B.; Filot, I.A.; Hensen, E.J. A quantum-chemical study of the CO dissociation mechanism on low-index Miller planes of ϴ-Fe3C. Catal. Today 2020, 342, 152–160. [Google Scholar] [CrossRef]
- Zhang, M.; Ren, J.; Yu, Y. Investigating the CO activation mechanism on hcp-Fe7C3 (211) via density functional theory. Mol. Catal. 2021, 505, 111506. [Google Scholar] [CrossRef]
- Fu, J.; Sun, D.; Chen, Z.; Zhang, J.; Du, H. First-Principles Investigation of CO Adsorption on h-Fe7C3 Catalyst. Crystals 2020, 10, 635. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671. [Google Scholar] [CrossRef]
- Cao, D.-B.; Li, Y.-W.; Wang, J.; Jiao, H. Chain growth mechanism of Fischer-Tropsch synthesis on Fe5C2 (0 0 1). J. Mol. Catal. A Chem. 2011, 346, 55–69. [Google Scholar] [CrossRef]
Site | 1Co-Doped | 2Co1-Doped | 2Co2-Doped | 3Co-Doped | ||||||
---|---|---|---|---|---|---|---|---|---|---|
d(C-O)/Å | Eads/eV | d(C-O)/Å | Eads/eV | d(C-O)/Å | Eads/eV | d(C-O)/Å | Eads/eV | d(C-O)/Å | Eads/eV | |
T1 | 1.174 | −2.23 | 1.175 | −2.22 | 1.174 | −2.20 | 1.176 | −2.17 | ||
T2 | 1.176 | −2.15 | 1.176 | −2.14 | 1.178 | −1.62 | - | - | ||
T3 | 1.177 | −2.12 | 1.177 | −2.14 | 1.177 | −1.98 | 1.186 | −1.94 | ||
T4 | 1.181 | −2.40 | 1.181 | −2.03 | 1.175 | −1.75 | 1.190 | −2.33 | ||
T5 | - * | - | 1.180 | −1.84 | 1.201 | −2.38 | - | - | ||
2F1 | 1.201 | −2.47 | 1.185 | −2.01 | 1.201 | −2.58 | 1.199 | −2.27 | ||
2F2 | 1.179 | −2.12 | 1.190 | −1.83 | 1.202 | −2.60 | 1.195 | −2.30 | ||
2F3 | 1.181 | −2.14 | 1.196 | −2.54 | 1.186 | −2.29 | 1.201 | −2.38 | ||
3F1 | 1.202 | −2.47 | 1.203 | −2.48 | 1.203 | −2.50 | 1.201 | −2.61 | 1.200 | −2.26 |
3F2 | 1.181 | −2.40 | 1.201 | −2.53 | 1.198 | −2.34 | 1.204 | −2.37 | ||
4F1 | 1.198 | −2.04 | 1.203 | −2.02 | 1.231 | −2.08 | 1.233 | −2.08 | ||
4F2 | 1.193 | −2.11 | 1.191 | −2.16 | 1.295 | −2.17 | - | - |
Site | 1Co1-Doped | 1Co2-Doped | 1Co3-Doped | 2Co-Doped | ||||||
---|---|---|---|---|---|---|---|---|---|---|
d(C-O)/Å | Eads/eV | d(C-O)/Å | Eads/eV | d(C-O)/Å | Eads/eV | d(C-O)/Å | Eads/eV | d(C-O)/Å | Eads/eV | |
T1 | 1.180 | −2.49 | 1.178 | −1.97 | 1.187 | −3.26 | 1.181 | −2.33 | 1.175 | −2.01 |
T2 | 1.177 | −1.95 | 1.179 | −1.84 | 1.172 | −1.91 | 1.175 | −1.82 | ||
T3 | 1.178 | −1.88 | 1.173 | −1.81 | 1.176 | −2.15 | 1.170 | −1.62 | ||
T4 | 1.171 | −1.90 | 1.177 | −1.92 | 1.179 | −1.88 | 1.186 | −2.04 | ||
T5 | - * | - | 1.182 | −2.18 | - | - | 1.181 | −2.00 | ||
2F1 | 1.196 | −2.02 | 1.194 | −1.89 | 1.181 | −1.88 | 1.194 | −2.01 | ||
2F2 | 1.175 | −1.81 | - | - | 1.177 | −1.83 | - | - | ||
2F3 | 1.181 | −1.89 | 1.187 | −1.91 | 1.187 | −1.91 | 1.190 | −1.98 | ||
2F4 | - | - | 1.181 | −2.11 | 1.173 | −2.02 | 1.192 | −1.91 | ||
2F5 | - | - | 1.176 | −1.82 | 1.184 | −1.93 | 1.196 | −2.21 | ||
3F1 | 1.182 | −1.89 | - | - | 1.196 | −1.86 | 1.175 | −1.87 | ||
3F2 | 1.184 | −1.94 | 1.180 | −1.87 | 1.179 | −1.95 | 1.153 | −2.01 | ||
3F3 | - | - | 1.179 | −1.85 | 1.182 | −1.88 | 1.177 | −1.79 | ||
3F4 | - | - | - | - | 1.190 | −1.93 | - | - | ||
4F1 | 1.188 | −1.87 | 1.185 | −1.99 | 1.186 | −1.98 | 1.194 | −1.87 | ||
4F2 | - | - | 1.190 | −2.04 | - | - | 1.255 | −1.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Sun, H.; Du, H.; Lu, W. Theoretically Predicted CO Adsorption and Activation on the Co-Doped hcp-Fe7C3 Catalyst. Catalysts 2023, 13, 564. https://doi.org/10.3390/catal13030564
Duan Y, Sun H, Du H, Lu W. Theoretically Predicted CO Adsorption and Activation on the Co-Doped hcp-Fe7C3 Catalyst. Catalysts. 2023; 13(3):564. https://doi.org/10.3390/catal13030564
Chicago/Turabian StyleDuan, Yajing, Huijuan Sun, Hui Du, and Wencai Lu. 2023. "Theoretically Predicted CO Adsorption and Activation on the Co-Doped hcp-Fe7C3 Catalyst" Catalysts 13, no. 3: 564. https://doi.org/10.3390/catal13030564
APA StyleDuan, Y., Sun, H., Du, H., & Lu, W. (2023). Theoretically Predicted CO Adsorption and Activation on the Co-Doped hcp-Fe7C3 Catalyst. Catalysts, 13(3), 564. https://doi.org/10.3390/catal13030564