Comparative Studies on Effects of Metal Cation (La) and Non-Metal Anion (N) Doping on CeO2 Nanoparticles for Regenerative Scavenging of Reactive Oxygen Radicals
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties of La-Doped CeO2 NPs
2.2. Radical Scavenging Properties of Pristine CeO2 and La-Doped CeO2 NPs
2.3. Physicochemical Properties of N-Doped CeO2 NPs
2.4. Radical Scavenging Properties of N-Doped CeO2 NPs
2.5. Comparison of Radical Scavenging Properties of La- and N-Doped CeO2 NPs
3. Experimental
3.1. Atomic Hetero-Metal (La) Doping on CeO2 NPs
3.2. Atomic Non-Metallic Heteroatom (N) Doping on CeO2 NPs
3.3. Characterizations
3.4. Measurement of Radical Scavenging Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rui, Z.; Liu, J. Understanding of free radical scavengers used in highly durable proton exchange membranes. Prog. Nat. Sci. 2020, 30, 732–742. [Google Scholar] [CrossRef]
- Prabhakaran, V.; Arges, C.G.; Ramani, V. Investigation of polymer electrolyte membrane chemical degradation and degradation mitigation using in-situ fluorescence spectroscopy. Proc. Natl. Acad. Sci. USA 2012, 109, 1029–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Advani, S.G.; Prasad, A.K. Degradation reduction of polymer electrolyte membranes using CeO2 as a free-radical scavenger in catalyst layer. Electrochim. Acta 2013, 109, 775–780. [Google Scholar] [CrossRef]
- Pearman, B.P.; Mohajeri, N.; Slattery, D.K.; Hampton, M.D.; Seal, S.; Cullen, D.A. The chemical behavior and degradation mitigation effect of cerium oxide nanoparticles in perfluorosulfonic acid polymer electrolyte membranes. Polym. Degrad. Stab. 2013, 98, 1766–1772. [Google Scholar] [CrossRef]
- Weissbach, T.; Peckham, T.J.; Holdcroft, S. CeO2, ZrO2 and YSZ as mitigating additives against degradation of proton exchange membranes by free radicals. J. Membr. Sci. 2016, 498, 94–104. [Google Scholar] [CrossRef]
- Pearman, B.P.; Mohajeri, N.M.; Brooker, R.P.; Rodgers, M.P.; Slattery, D.K.; Hampton, M.D.; Cullen, M.D.; Seal, S. The degradation mitigation effect of cerium oxide in polymer electrolyte membranes in extended fuel cell durability tests. J. Power Sources 2013, 225, 75–83. [Google Scholar] [CrossRef]
- Breitwieser, M.; Klose, C.; Hartmann, A.; Buchler, A.; Klingele, M.; Vierrath, S.; Zengerle, R.; Thiele, S. Cerium Oxide Decorated Polymer Nanofibers as Effective Membrane Reinforcement for Durable, High-Performance Fuel Cells. Adv. Energy Mater. 2017, 7, 1602100. [Google Scholar] [CrossRef]
- Zhiyan, R.; Qingbing, L.; Youxiu, H.; Rui, D.; Jia, L.; Jia, L.; Jianguo, L. Ceria nanorods as highly stable free radical scavengers for highly durable proton exchange membranes. RSC Adv. 2021, 11, 32012–32021. [Google Scholar] [CrossRef] [PubMed]
- Gubler, L.; Koppenol, W.H. Kinetic Simulation of the Chemical Stabilization Mechanism in Fuel Cell Membranes Using Cerium and Manganese Redox Couples. J. Electrochem. Soc. 2012, 159, B211–B218. [Google Scholar] [CrossRef]
- Taghizadeh, M.T.; Vatanparast, M. Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of Nafion membrane in proton exchange membrane (PEM) fuel cells. J. Colloid Interface Sci. 2016, 483, 1–10. [Google Scholar] [CrossRef] [PubMed]
- D’Urso, C.; Oldani, C.; Baglio, V.; Merlo, L.; Arico, A.S. Immobilized transition metal-based radical scavengers and their effect on durability of Aquivion® perfluorosulfonic acid membranes. J. Power Sources 2016, 301, 317–325. [Google Scholar] [CrossRef]
- Hiroki, A.; LaVerne, J.A. Decomposition of Hydrogen Peroxide at Water−Ceramic Oxide Interfaces. J. Phys. Chem. B 2015, 109, 3364–3370. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.J.; Shin, K.; Soh, M.; Chang, H.; Kim, J.; Lee, J.; Ko, G.; Kim, B.H.; Kim, D.; Hyeon, T. Large-Scale Synthesis and Medical Applications of Uniform-Sized Metal Oxide Nanoparticles. Adv. Mater. 2018, 30, 1704290. [Google Scholar] [CrossRef]
- Lawler, R.; Cho, J.; Ham, H.C.; Ju, H.; Lee, S.W.; Kim, J.Y.; Choi, J.I.; Jang, S.S. CeO2(111) Surface with Oxygen Vacancy for Radical Scavenging: A Density Functional Theory Approach. J. Phys. Chem. C 2020, 124, 20950–20959. [Google Scholar] [CrossRef]
- Bedar, A.; Singh, B.G.; Tewari, P.K.; Bindal, R.C.; Kar, S. Kinetics studies on free radical scavenging property of ceria in polysulfone–ceria radiation resistant mixed-matrix membrane. Int. J. Chem. React. Eng. 2021, 19, 779–785. [Google Scholar] [CrossRef]
- Fernandez-Garcia, S.; Jiang, L.; Tinoco, M.; Hungria, A.B.; Han, J.; Blanco, G.; Calvino, J.J.; Chen, X. Enhanced Hydroxyl Radical Scavenging Activity by Doping Lanthanum in Ceria Nanocubes. J. Phys. Chem. C 2016, 120, 1891–1901. [Google Scholar] [CrossRef]
- Vinothkumar, G.; Rengaraj, S.; Arunkumar, P.; Cha, S.W.; Babu, K.S. Ionic Radii and Concentration Dependency of RE3+ (Eu3+, Nd3+, Pr3+, and La3+)-Doped Cerium Oxide Nanoparticles for Enhanced Multienzyme-Mimetic and Hydroxyl Radical Scavenging Activity. J. Phys. Chem. C 2019, 123, 541–553. [Google Scholar] [CrossRef]
- Loche, D.; Morgan, L.M.; Casu, A.; Mountjoy, G.; O’Regan, C.; Corrias, A.; Falqui, A. Determining the maximum lanthanum incorporation in the fluorite structure of La-dopedceria nanocubes for enhanced redox ability. RSC Adv. 2019, 9, 6745–6751. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Castillo, Y.; Garcia-Hernandez, M.; Lopez-Marure, A.; Luna-Dominguz, J.H.; Lopez-Camacho, P.Y.; de Jesus Morales-amirez, A. Antioxidant activity of cerium oxide as a function of europium doped content. Ceram. Int. 2018, 45, 2303–2308. [Google Scholar] [CrossRef]
- Baker, A.M.; Stewart, S.M.; Ramaiyan, K.P.; Banham, D.; Ye, S.; Garzon, F.; Mukundan, R.; Borup, R.L. Doped Ceria Nanoparticles with Reduced Solubility and Improved Peroxide Decomposition Activity for PEM Fuel Cells. J. Electrochem. Soc. 2021, 168, 024507. [Google Scholar] [CrossRef]
- Li, Z.; Yang, W.; Xie, L.; Li, Y.; Liu, Y.; Sun, Y.; Bu, Y.; Mi, X.; Zhan, S.; Hu, W. Prominent role of oxygen vacancy for superoxide radical and hydroxyl radical formation to promote electro-Fenton like reaction by W-doped CeO2 composites. Appl. Surf. Sci. 2021, 549, 149262. [Google Scholar] [CrossRef]
- Soh, M.; Kang, D.-W.; Jeong, H.-G.; Kim, D.; Kim, D.Y.; Yang, W.; Song, C.; Baik, S.; Choi, I.-Y.; Ki, S.-K.; et al. Ceria–Zirconia Nanoparticles as an Enhanced Multi-Antioxidant for Sepsis Treatment. Angew. Chem. Int. Ed. 2017, 129, 11557–11561. [Google Scholar] [CrossRef]
- Trogadas, P.; Parrondo, J.; Ramani, V. CeO2 Surface Oxygen Vacancy Concentration Governs in Situ Free Radical Scavenging Efficacy in Polymer Electrolytes. ACS Appl. Mater. Interfaces 2012, 4, 5098–5102. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.M.; Williams, S.T.D.; Mukundan, R.; Spernjak, D.; Advani, S.G.; Prasad, A.K.; Borup, R.L. Zr-doped ceria additives for enhanced PEM fuel cell durability and radical scavenger stability. J. Mater. Chem. A 2017, 5, 15073–15079. [Google Scholar] [CrossRef]
- Prabhakaran, V.; Ramani, V. Structurally-Tuned Nitrogen-Doped Cerium Oxide Exhibits. Exceptional Regenerative Free Radical Scavenging Activity in Polymer Electrolytes. J. Electrochem. Soc. 2014, 161, F1–F9. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Jorge, A.B.; Sakatani, Y.; Boissiere, C.; Laberty-Roberts, C.; Sauthier, G.; Fraxedas, J.; Sanchez, C.; Fuertes, A. Nanocrystalline N-doped ceria porous thin films as efficient visible-active photocatalysts. J. Mater. Chem. 2012, 22, 3220–3226. [Google Scholar] [CrossRef]
- Sun, D.; Gu, M.; Li, R.; Yin, S.; Song, X.; Zhao, B.; Li, C.; Li, J.; Feng, Z.; Sato, T. Effects of nitrogen content in monocrystalline nano-CeO2 on the degradation of dye in indoor lighting. Appl. Surf. Sci. 2013, 280, 693–697. [Google Scholar] [CrossRef]
- Cong, Q.; Chen, L.; Wang, X.; Ma, H.; Zhao, J.; Li, S.; Hou, Y.; Li, W. Promotional effect of nitrogen-doping on a ceria unary oxide catalyst with rich oxygen vacancies for selective catalytic reduction of NO with NH3. Chem. Eng. J. 2020, 379, 122302. [Google Scholar] [CrossRef]
- Sundingm, M.F.; Hadidi, K.; Diplas, S.; Løvvik, O.M.; Nordy, T.E.; Gunnæs, A.E. XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures. J. Electron Spectros. Relat. Phenomena 2011, 184, 399–409. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, Z.; Zheng, B.; Xie, Z.; Zheng, L. Synthesis and shape-dependent catalytic properties of CeO2 nanocubes and truncated octahedra. CrystEngComm 2012, 14, 7579–7582. [Google Scholar] [CrossRef]
- Kosacki, I.; Suzuki, T.; Anderson, H.U.; Colomban, P. Raman scattering and lattice defects in nanocrystalline CeO2 thin films. Solid State Ion 2002, 149, 99–105. [Google Scholar] [CrossRef]
- Yu, F.; Xu, D.; Lei, R.; Li, N.; Li, K. Free-radical scavenging capacity using the Fenton reaction with rhodamine B as the spectrophotometric indicator. J. Agric. Food Chem. 2008, 56, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, P.; Koberstein, J.; Khalid, S.; Chan, S.-W. Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy. Surf. Sci. 2004, 563, 74–82. [Google Scholar] [CrossRef]
Sample | Cubic Lattice Parameter, a (Å) | BET Surface Area (m2 g−1) |
---|---|---|
Pristine CeO2 | 5.408 | 28.5 |
2 wt% La-CeO2 | 5.408 | 25.9 |
5 wt% La-CeO2 | 5.409 | 19.8 |
10 wt% La-CeO2 | 5.405 | 13.5 |
Sample | Absolute Atomic % | Relative Ce Concentration (%) | ||||
---|---|---|---|---|---|---|
Ce | C | O | La | Ce3+ | Ce4+ | |
Pristine CeO2 | 18.23 | 30.04 | 51.73 | - | 25.4 | 74.6 |
2 wt.% La-CeO2 | 19.25 | 17.07 | 59.25 | 4.42 | 21.6 | 78.4 |
5 wt.% La-CeO2 | 15.17 | 15.83 | 60.99 | 8.00 | 22.0 | 78.0 |
10 wt.% La-CeO2 | 13.61 | 14.74 | 62.48 | 9.18 | 20.5 | 79.5 |
Sample | Cubic Lattice Parameter, a (Å) | BET Surface Area (m2 g−1) |
---|---|---|
Pristine CeO2 | 5.408 | 28.5 |
N-CeO2-D-I | 5.406 | 12.2 |
N-CeO2-W-I | 5.408 | 22.3 |
N-CeO2-W-A | 5.408 | 30.0 |
Sample | Absolute Atomic % | Relative Ce Concentration (%) | ||||
---|---|---|---|---|---|---|
Ce | C | O | N | Ce3+ | Ce4+ | |
Pristine CeO2 | 18.23 | 30.04 | 51.73 | - | 25.4 | 74.6 |
N-CeO2-D-I | 22.04 | 16.73 | 53.72 | 7.51 | 28.0 | 72.0 |
N-CeO2-W-A | 22.33 | 20.44 | 57.22 | - | 25.2 | 74.8 |
N-CeO2-W-I | 24.7 | 10.83 | 60.15 | 4.45 | 24.7 | 75.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paick, J.; Hong, S.; Jyoung, J.-Y.; Lee, E.-S.; Lee, D. Comparative Studies on Effects of Metal Cation (La) and Non-Metal Anion (N) Doping on CeO2 Nanoparticles for Regenerative Scavenging of Reactive Oxygen Radicals. Catalysts 2023, 13, 572. https://doi.org/10.3390/catal13030572
Paick J, Hong S, Jyoung J-Y, Lee E-S, Lee D. Comparative Studies on Effects of Metal Cation (La) and Non-Metal Anion (N) Doping on CeO2 Nanoparticles for Regenerative Scavenging of Reactive Oxygen Radicals. Catalysts. 2023; 13(3):572. https://doi.org/10.3390/catal13030572
Chicago/Turabian StylePaick, Jihun, Seunghee Hong, Jy-Young Jyoung, Eun-Sook Lee, and Doohwan Lee. 2023. "Comparative Studies on Effects of Metal Cation (La) and Non-Metal Anion (N) Doping on CeO2 Nanoparticles for Regenerative Scavenging of Reactive Oxygen Radicals" Catalysts 13, no. 3: 572. https://doi.org/10.3390/catal13030572
APA StylePaick, J., Hong, S., Jyoung, J. -Y., Lee, E. -S., & Lee, D. (2023). Comparative Studies on Effects of Metal Cation (La) and Non-Metal Anion (N) Doping on CeO2 Nanoparticles for Regenerative Scavenging of Reactive Oxygen Radicals. Catalysts, 13(3), 572. https://doi.org/10.3390/catal13030572