Recent Progress in Electrocatalytic Reduction of CO2
Abstract
:1. Introduction
2. The Mechanism of Electrocatalytic Reduction of CO2
3. Electrocatalysts
4. Electrolyte
5. Reactor Design
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Hu, H.; Yang, M.F.; Pei, Z.Y.; Zhou, Q.; Ren, X.; Liu, B.; Liu, D.; Zeng, X.; Zhang, G.; et al. Characteristics of the lunar samples returned by the Chang’E-5 mission. Natl. Sci. Rev. 2022, 9, nwab188. [Google Scholar] [CrossRef]
- McClean, J.B.; Hoffman, J.A.; Hecht, M.H.; Aboobaker, A.M.; Araghi, K.R.; Elangovan, S.; Graves, C.R.; Hartvigsen, J.J.; Hinterman, E.D.; Liu, A.M. Pre-landing plans for mars oxygen in-situ resource utilization experiment (MOXIE) science operations. Acta Astronaut. 2022, 192, 301–313. [Google Scholar] [CrossRef]
- Schlüter, L.; Cowley, A. Review of techniques for In-Situ oxygen extraction on the moon. Planet. Space Sci. 2020, 181, 104753. [Google Scholar] [CrossRef]
- Kaschubek, D.; Killian, M.; Grill, L. System analysis of a Moon base at the south pole: Considering landing sites, ECLSS and ISRU. Acta Astronaut. 2021, 186, 33–49. [Google Scholar] [CrossRef]
- Starr, S.O.; Muscatello, A.C. Mars in situ resource utilization: A review. Planet. Space Sci. 2020, 182, 104824. [Google Scholar] [CrossRef]
- Chen, H.; du Jonchay, T.S.; Hou, L.; Ho, K. Integrated in-situ resource utilization system design and logistics for Mars exploration. Acta Astronaut. 2020, 170, 80–92. [Google Scholar] [CrossRef]
- Liu, S.; Hu, B.; Zhao, J.; Jiang, W.; Feng, D.; Zhang, C.; Yao, W. Enhanced electrocatalytic CO2 reduction of bismuth nanosheets with introducing surface bismuth subcarbonate. Coatings 2022, 12, 233. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Zhao, P.; Xue, X.; Chen, R.; Yang, S.; Ma, J.; Liu, J. Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure. Nano Energy 2018, 53, 808–816. [Google Scholar] [CrossRef]
- Feng, D.; Jiang, W.; Zhang, C.; Li, L.; Hu, B.; Song, J.; Yao, W. A Membrane Reactor with Microchannels for Carbon Dioxide Reduction in Extraterrestrial Space. Catalysts 2022, 12, 3. [Google Scholar] [CrossRef]
- Cestellos-Blanco, S.; Friedline, S.; Sander, K.B.; Abel, A.J.; Kim, J.M.; Clark, D.S.; Arkin, A.P.; Yang, P. Production of PHB from CO2-derived acetate with minimal processing assessed for space biomanufacturing. Front. Microbiol. 2021, 12, 700010. [Google Scholar] [CrossRef]
- Su, Y.; Cestellos-Blanco, S.; Kim, J.M.; Shen, Y.-X.; Kong, Q.; Lu, D.; Liu, C.; Zhang, H.; Cao, Y.; Yang, P. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation. Joule 2020, 4, 800–811. [Google Scholar] [CrossRef]
- Hecht, M.; Hoffman, J.; Rapp, D.; McClean, J.; SooHoo, J.; Schaefer, R.; Aboobaker, A.; Mellstrom, J.; Hartvigsen, J.; Meyen, F. Mars oxygen ISRU experiment (MOXIE). Space Sci. Rev. 2021, 217, 1–76. [Google Scholar] [CrossRef]
- Calvinho, K.U.; Laursen, A.B.; Yap, K.M.; Goetjen, T.A.; Hwang, S.; Murali, N.; Mejia-Sosa, B.; Lubarski, A.; Teeluck, K.M.; Hall, E.S. Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy Environ. Sci. 2018, 11, 2550–2559. [Google Scholar] [CrossRef]
- da Silva Freitas, W.; D’Epifanio, A.; Mecheri, B. Electrocatalytic CO2 reduction on nanostructured metal-based materials: Challenges and constraints for a sustainable pathway to decarbonization. J. CO2 Util. 2021, 50, 101579. [Google Scholar] [CrossRef]
- Casebolt, R.; Levine, K.; Suntivich, J.; Hanrath, T. Pulse check: Potential opportunities in pulsed electrochemical CO2 reduction. Joule 2021, 5, 1987–2026. [Google Scholar] [CrossRef]
- Chen, J.; Wang, T.; Li, Z.; Yang, B.; Zhang, Q.; Lei, L.; Feng, P.; Hou, Y. Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts. Nano Res. 2021, 14, 3188–3207. [Google Scholar] [CrossRef]
- Chen, Q.; Tsiakaras, P.; Shen, P. Electrochemical Reduction of Carbon Dioxide: Recent Advances on Au-Based Nanocatalysts. Catalysts 2022, 12, 1348. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Z.; Li, G.; Li, L.; Lin, Z. Recent advances on nanomaterials for electrocatalytic CO2 conversion. Energy Fuels 2021, 35, 7485–7510. [Google Scholar] [CrossRef]
- Tran, K.; Ulissi, Z.W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 2018, 1, 696–703. [Google Scholar] [CrossRef]
- Xie, L.; Liang, J.; Priest, C.; Wang, T.; Ding, D.; Wu, G.; Li, Q. Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO2 reduction. Chem. Commun. 2021, 57, 1839–1854. [Google Scholar] [CrossRef]
- Giusi, D.; Miceli, M.; Genovese, C.; Centi, G.; Perathoner, S.; Ampelli, C. In situ electrochemical characterization of CuxO-based gas-diffusion electrodes (GDEs) for CO2 electrocatalytic reduction in presence and absence of liquid electrolyte and relationship with C2+ products formation. Appl. Catal. B Environ. 2022, 318, 121845. [Google Scholar] [CrossRef]
- Yang, K.; Yang, Z.; Zhang, C.; Gu, Y.; Wei, J.; Li, Z.; Ma, C.; Yang, X.; Song, K.; Li, Y. Recent advances in CdS-based photocatalysts for CO2 photocatalytic conversion. Chem. Eng. J. 2021, 418, 129344. [Google Scholar] [CrossRef]
- Yang, K.D.; Lee, C.W.; Jin, K.; Im, S.W.; Nam, K.T. Current status and bioinspired perspective of electrochemical conversion of CO2 to a long-chain hydrocarbon. J. Phys. Chem. Lett. 2017, 8, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Khan, I. Strategies for Improved Electrochemical CO2 Reduction to Value-Added Products by Highly Anticipated Copper-Based Nanoarchitectures. Chem. Rec. 2022, 22, e202100219. [Google Scholar] [CrossRef]
- Fan, Q.; Zhang, M.; Jia, M.; Liu, S.; Qiu, J.; Sun, Z. Electrochemical CO2 reduction to C2+ species: Heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater. Today Energy 2018, 10, 280–301. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Li, D.; Li, Z.; Bu, R.; Lu, Y. Tandem strategy for electrochemical CO2 reduction reaction. Chem Catal. 2022, 2, 3395–3429. [Google Scholar] [CrossRef]
- Zhang, J.; Sewell, C.D.; Huang, H.; Lin, Z. Closing the anthropogenic chemical carbon cycle toward a sustainable future via CO2 valorization. Adv. Energy Mater. 2021, 11, 2102767. [Google Scholar] [CrossRef]
- Sun, M.; Wong, H.H.; Wu, T.; Dougherty, A.W.; Huang, B. Entanglement of spatial and energy segmentation for C1 pathways in CO2 reduction on carbon skeleton supported atomic catalysts. Adv. Energy Mater. 2022, 12, 2103781. [Google Scholar] [CrossRef]
- Rehman, A.; Nazir, G.; Rhee, K.Y.; Park, S.-J. Electrocatalytic and photocatalytic sustainable conversion of carbon dioxide to value-added chemicals: State-of-the-art progress, challenges, and future directions. J. Environ. Chem. Eng. 2022, 10, 108219. [Google Scholar] [CrossRef]
- Li, R.; Xiang, K.; Liu, Z.; Peng, Z.; Zou, Y.; Wang, S. Recent Advances in Upgrading of Low-Cost Oxidants to Value-Added Products by Electrocatalytic Reduction Reaction. Adv. Funct. Mater. 2022, 32, 2208212. [Google Scholar] [CrossRef]
- He, C.; Duan, D.; Low, J.; Bai, Y.; Jiang, Y.; Wang, X.; Chen, S.; Long, R.; Song, L.; Xiong, Y. Cu2−xS derived copper nanoparticles: A platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion. Nano Res. 2021, 1–5. [Google Scholar] [CrossRef]
- Wijaya, D.T.; Lee, C.W. Metal-Organic framework catalysts: A versatile platform for bioinspired electrochemical conversion of carbon dioxide. Chem. Eng. J. 2022, 446, 137311. [Google Scholar] [CrossRef]
- Franco, F.; Rettenmaier, C.; Jeon, H.S.; Cuenya, B.R. Transition metal-based catalysts for the electrochemical CO2 reduction: From atoms and molecules to nanostructured materials. Chem. Soc. Rev. 2020, 49, 6884–6946. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, G.; Chen, L.; Lai, W.; Yuan, Y.; Lu, Y.; Ma, C.; Zhang, W.; Huang, H. Tuning the reaction path of CO2 electroreduction reaction on indium single-atom catalyst: Insights into the active sites. Nano Res. 2022, 15, 4014–4022. [Google Scholar] [CrossRef]
- Sargeant, E.; Rodríguez, P. Electrochemical conversion of CO2 in non-conventional electrolytes: Recent achievements and future challenges. Electrochem. Sci. Adv. 2022, e2100178. [Google Scholar]
- Cheng, Y.; Wang, H.; Qian, T.; Yan, C. Interfacial engineering of carbon-based materials for efficient electrocatalysis: Recent advances and future. EnergyChem 2022, 4, 100074. [Google Scholar] [CrossRef]
- Shan, J.; Shi, Y.; Li, H.; Chen, Z.; Shuai, Y.; Wang, Z. Effective CO2 electroreduction toward C2H4 boosted by Ce-doped Cu nanoparticles. Chem. Eng. J. 2022, 433, 133769. [Google Scholar] [CrossRef]
- Liu, L.; Li, M.; Chen, F.; Huang, H. Recent Advances on Single-Atom Catalysts for CO2 Reduction. Small Struct. 2022, 4, 2200188. [Google Scholar] [CrossRef]
- Vinoth, S.; Ong, W.-J.; Pandikumar, A. Defect engineering of BiOX (X= Cl, Br, I) based photocatalysts for energy and environmental applications: Current progress and future perspectives. Coord. Chem. Rev. 2022, 464, 214541. [Google Scholar] [CrossRef]
- Yan, Z.; Wu, T. Highly Selective Electrochemical CO2 Reduction to C2 Products on a g-C3N4-Supported Copper-Based Catalyst. Int. J. Mol. Sci. 2022, 23, 14381. [Google Scholar] [CrossRef]
- Garba, M.D.; Usman, M.; Khan, S.; Shehzad, F.; Galadima, A.; Ehsan, M.F.; Ghanem, A.S.; Humayun, M. CO2 towards fuels: A review of catalytic conversion of carbon dioxide to hydrocarbons. J. Environ. Chem. Eng. 2021, 9, 104756. [Google Scholar] [CrossRef]
- Sa, Y.J.; Lee, C.W.; Lee, S.Y.; Na, J.; Lee, U.; Hwang, Y.J. Catalyst–electrolyte interface chemistry for electrochemical CO2 reduction. Chem. Soc. Rev. 2020, 49, 6632–6665. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Huang, M.; Zhao, X.; Mou, S.; Dong, F. Interfacial electrolyte effects on electrocatalytic CO2 reduction. ACS Catal. 2021, 12, 331–362. [Google Scholar] [CrossRef]
- Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631–675. [Google Scholar] [CrossRef]
- Neyrizi, S.; Kiewiet, J.; Hempenius, M.A.; Mul, G. What It Takes for Imidazolium Cations to Promote Electrochemical Reduction of CO2. ACS Energy Lett. 2022, 7, 3439–3446. [Google Scholar] [CrossRef]
- Salimijazi, F.; Kim, J.; Schmitz, A.M.; Grenville, R.; Bocarsly, A.; Barstow, B. Constraints on the efficiency of engineered electromicrobial production. Joule 2020, 4, 2101–2130. [Google Scholar] [CrossRef]
- Tahir, M.; Ali Khan, A.; Tasleem, S.; Mansoor, R.; Fan, W.K. Titanium carbide (Ti3C2) MXene as a promising co-catalyst for photocatalytic CO2 conversion to energy-efficient fuels: A review. Energy Fuels 2021, 35, 10374–10404. [Google Scholar] [CrossRef]
- Gunasekar, G.H.; Park, K.; Jung, K.-D.; Yoon, S. Recent developments in the catalytic hydrogenation of CO2 to formic acid/formate using heterogeneous catalysts. Inorg. Chem. Front. 2016, 3, 882–895. [Google Scholar] [CrossRef]
- Papasizza, M.; Yang, X.; Cheng, J.; Cuesta, A. Electrocatalytic reduction of CO2 in neat and water-containing imidazolium-based ionic liquids. Curr. Opin. Electrochem. 2020, 23, 80–88. [Google Scholar] [CrossRef]
- Ma, Z.; Wan, T.; Zhang, D.; Yuwono, J.A.; Tsounis, C.; Jiang, J.; Chou, Y.-H.; Lu, X.; Kumar, P.V.; Ng, Y.H. Atomically Dispersed Cu Catalysts on Sulfide-Derived Defective Ag Nanowires for Electrochemical CO2 Reduction. ACS Nano 2023, 17, 2387–2398. [Google Scholar] [CrossRef]
- Al Sadat, W.I.; Archer, L.A. The O2-assisted Al/CO2 electrochemical cell: A system for CO2 capture/conversion and electric power generation. Sci. Adv. 2016, 2, e1600968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.G.; Wu, S.Q.; Deng, W.H.; Xu, G.; Hu, F.L.; Hill, J.P.; Wei, W.; Su, S.Q.; Shrestha, L.K.; Sato, O. Selective CO2 capture and high proton conductivity of a functional star-of-david catenane metal–organic framework. Adv. Mater. 2017, 29, 1703301. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.Y.; Jun, S.W.; Yoon, G.; Kwon, S.G.; Shin, D.Y.; Seo, P.; Yoo, J.M.; Shin, H.; Chung, Y.-H.; Kim, H. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 15478–15485. [Google Scholar] [CrossRef]
- Fu, J.; Liu, K.; Li, H.; Hu, J.; Liu, M. Bimetallic atomic site catalysts for CO2 reduction reactions: A review. Environ. Chem. Lett. 2022, 20, 243–262. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Colmenares, J.C.; Tsiplakides, D.; Triantafyllidis, K.S. Nanoengineered electrodes for biomass-derived 5-hydroxymethylfurfural electrocatalytic oxidation to 2,5-furandicarboxylic acid. ACS Sustain. Chem. Eng. 2021, 9, 1970–1993. [Google Scholar] [CrossRef]
- Liang, B.; Zhao, Y.; Yang, J. Recent advances in developing artificial autotrophic microorganism for reinforcing CO2 fixation. Front. Microbiol. 2020, 11, 592631. [Google Scholar] [CrossRef]
- Feng, J.; Zeng, S.; Feng, J.; Dong, H.; Zhang, X. CO2 electroreduction in ionic liquids: A review. Chin. J. Chem. 2018, 36, 961–970. [Google Scholar] [CrossRef]
- Guan, Y.; Liu, M.; Rao, X.; Liu, Y.; Zhang, J. Electrochemical reduction of carbon dioxide (CO2): Bismuth-based electrocatalysts. J. Mater. Chem. A 2021, 9, 13770–13803. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Z.J.; Gong, J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem. Int. Ed. 2017, 56, 11326–11353. [Google Scholar] [CrossRef]
- Zhu, D.D.; Liu, J.L.; Qiao, S.Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423–3452. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, X.; Xue, H.; Pang, H.; Xu, Q. Metal–organic frameworks as a platform for clean energy applications. EnergyChem 2020, 2, 100027. [Google Scholar] [CrossRef]
- Qin, S.; Ge, C.; Kong, X.; Fu, M.; Zhuang, Z.; Li, X. Photothermal Catalytic Reduction of CO2 by Cobalt Silicate Heterojunction Constructed from Clay Minerals. Catalysts 2022, 13, 32. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, L.-Z.; Li, S.; Huang, X.; Chang, J.-N.; Wang, J.-H.; Zhou, J.; Li, S.-L.; Lan, Y.-Q. Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4. Nat. Commun. 2021, 12, 6390. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yan, R.; Zhang, D.; Fan, T. Challenges and perspectives in designing artificial photosynthetic systems. Chem. Eur. J. 2016, 22, 9870–9885. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, M.; Wang, X.; Zhou, X. Electrocatalytic Reduction of CO2 to C1 Compounds by Zn-Based Monatomic Alloys: A DFT Calculation. Catalysts 2022, 12, 1617. [Google Scholar] [CrossRef]
- Taheri, A.; Berben, L.A. Making C–H bonds with CO2: Production of formate by molecular electrocatalysts. Chem. Commun. 2016, 52, 1768–1777. [Google Scholar] [CrossRef]
- Jouny, M.; Lv, J.-J.; Cheng, T.; Ko, B.H.; Zhu, J.-J.; Goddard III, W.A.; Jiao, F. Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 2019, 11, 846–851. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Waldvogel, S.R.; Jiang, X. Electrochemistry of carbon dioxide on carbon electrodes. ACS Appl. Mater. Interfaces 2016, 8, 28357–28371. [Google Scholar] [CrossRef]
- Di, Z.; Qi, Y.; Yu, X.; Hu, F. The Progress of Metal-Organic Framework for Boosting CO2 Conversion. Catalysts 2022, 12, 1582. [Google Scholar] [CrossRef]
- Yoo, C.J.; Dong, W.J.; Park, J.Y.; Lim, J.W.; Kim, S.; Choi, K.S.; Odongo Ngome, F.O.; Choi, S.-Y.; Lee, J.-L. Compositional and geometrical effects of bimetallic Cu–Sn catalysts on selective electrochemical CO2 reduction to CO. ACS Appl. Energy Mater. 2020, 3, 4466–4473. [Google Scholar] [CrossRef]
- Matavos-Aramyan, S.; Soukhakian, S.; Jazebizadeh, M.H.; Moussavi, M.; Hojjati, M.R. On engineering strategies for photoselective CO2 reduction–A thorough review. Appl. Mater. Today 2020, 18, 100499. [Google Scholar] [CrossRef]
- Wang, F. Artificial photosynthetic systems for CO2 reduction: Progress on higher efficiency with cobalt complexes as catalysts. ChemSusChem 2017, 10, 4393–4402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govindan, B.; Madhu, R.; Abu Haija, M.; Kusmartsev, F.V.; Banat, F. Pd-Decorated 2D MXene (2D Ti3C2Tix) as a High-Performance Electrocatalyst for Reduction of Carbon Dioxide into Fuels toward Climate Change Mitigation. Catalysts 2022, 12, 1180. [Google Scholar] [CrossRef]
- Mostafa, M.M.M.; Bajafar, W.; Gu, L.; Narasimharao, K.; Abdel Salam, M.; Alshehri, A.; Khdary, N.H.; Al-Faifi, S.; Chowdhury, A.D. Electrochemical Characteristics of Nanosized Cu, Ni, and Zn Cobaltite Spinel Materials. Catalysts 2022, 12, 893. [Google Scholar] [CrossRef]
- Li, X.; Chang, S.; Wang, Y.; Zhang, L. Silver-Carbonaceous Microsphere Precursor-Derived Nano-Coral Ag Catalyst for Electrochemical Carbon Dioxide Reduction. Catalysts 2022, 12, 479. [Google Scholar] [CrossRef]
- Costentin, C.; Drouet, S.; Robert, M.; Savéant, J.-M. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 2012, 338, 90–94. [Google Scholar] [CrossRef]
- Angamuthu, R.; Byers, P.; Lutz, M.; Spek, A.L.; Bouwman, E. Electrocatalytic CO2 conversion to oxalate by a copper complex. Science 2010, 327, 313–315. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, Z.B.; Gray, T.S.; Moraveck, K.B.; Gunnoe, T.B.; Zangari, G. Electrochemical reduction of carbon dioxide to syngas and formate at dendritic copper–indium electrocatalysts. ACS Catal. 2017, 7, 5381–5390. [Google Scholar] [CrossRef]
- Zhao, Z.; Peng, X.; Liu, X.; Sun, X.; Shi, J.; Han, L.; Li, G.; Luo, J. Efficient and stable electroreduction of CO2 to CH4 on CuS nanosheet arrays. J. Mater. Chem. A 2017, 5, 20239–20243. [Google Scholar] [CrossRef]
- Huang, J.; Hu, Q.; Guo, X.; Zeng, Q.; Wang, L. Rethinking Co(CO3)0.5(OH)·0.11H2O: A new property for highly selective electrochemical reduction of carbon dioxide to methanol in aqueous solution. Green Chem. 2018, 20, 2967–2972. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.; Zhao, X.; Yao, T.; Chen, W.; You, R.; Zhao, C.; Wu, G.; Wang, J.; Huang, W. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem. 2018, 130, 1962–1966. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, L.; Yang, P.; Hu, C.; Luo, Z.; Chang, X.; Zhao, Z.J.; Gong, J. Low-coordinated edge sites on ultrathin palladium nanosheets boost carbon dioxide electroreduction performance. Angew. Chem. Int. Ed. 2018, 57, 11544–11548. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Liang, Y.; Li, H.; Zhao, X.; Chen, Y.; Zhang, B.; Zhu, W.; Zeng, J. Harmonizing the electronic structures of the adsorbate and catalysts for efficient CO2 reduction. Nano Lett. 2019, 19, 6547–6553. [Google Scholar] [CrossRef]
- Jiang, H.; Gong, Y.; Jiao, L.; Qian, Y.; Pan, C.; Zheng, L.; Cai, X.; Liu, B.; Yu, S. Regulating coordination environment of single-atom Ni electrocatalysts templated by MOF for boosting CO2 reduction. Angew. Chem. Int. Ed 2019, 59, 2705–2709. [Google Scholar]
- Ren, W.; Tan, X.; Yang, W.; Jia, C.; Xu, S.; Wang, K.; Smith, S.C.; Zhao, C. Isolated diatomic Ni-Fe metal–nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. 2019, 58, 6972–6976. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, L.; Libretto, N.J.; Li, X.; Li, C.; Wan, Y.; He, C.; Lee, J.; Gregg, J.; Zong, H. Ensemble effect in bimetallic electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16635–16642. [Google Scholar] [CrossRef]
- Pan, J.; Sun, Y.; Deng, P.; Yang, F.; Chen, S.; Zhou, Q.; Park, H.S.; Liu, H.; Xia, B.Y. Hierarchical and ultrathin copper nanosheets synthesized via galvanic replacement for selective electrocatalytic carbon dioxide conversion to carbon monoxide. Appl. Catal. B Environ. 2019, 255, 117736. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, H.; Livi, K.J.; Raciti, D.; Zong, H.; Gregg, J.; Onadeko, M.; Wan, Y.; Watson, A.; Wang, C. Copper nanocubes for CO2 reduction in gas diffusion electrodes. Nano Lett. 2019, 19, 8461–8468. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Xi, S.; Du, Y.; Hai, X.; Wang, J.; Xu, H.; Wu, G.; Zhang, J.; Lu, J. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. 2019, 131, 15013–15018. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, C.; Tu, Y.; Si, R.; Wei, J.; Zhang, S.; Wang, Z.; Li, J.-F.; Wang, Y.; Deng, D. Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Res. 2019, 12, 2313–2317. [Google Scholar] [CrossRef]
- Gu, J.; Hsu, C.-S.; Bai, L.; Chen, H.M.; Hu, X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Chen, G.; Zhou, G.; Yin, L.C.; Veder, J.P.; Johannessen, B.; Saunders, M.; Yang, S.Z.; De Marco, R.; Liu, C. A universal seeding strategy to synthesize single atom catalysts on 2D materials for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 1906157. [Google Scholar] [CrossRef]
- Liu, S.; Yang, H.B.; Hung, S.F.; Ding, J.; Cai, W.; Liu, L.; Gao, J.; Li, X.; Ren, X.; Kuang, Z. Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew. Chem. Int. Ed. 2020, 59, 798–803. [Google Scholar] [CrossRef]
- Gong, Y.N.; Jiao, L.; Qian, Y.; Pan, C.Y.; Zheng, L.; Cai, X.; Liu, B.; Yu, S.H.; Jiang, H.L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem. 2020, 132, 2727–2731. [Google Scholar] [CrossRef]
- Zhang, A.; Liang, Y.; Li, H.; Zhang, B.; Liu, Z.; Chang, Q.; Zhang, H.; Zhu, C.-F.; Geng, Z.; Zhu, W. In-situ surface reconstruction of InN nanosheets for efficient CO2 electroreduction into formate. Nano Lett. 2020, 20, 8229–8235. [Google Scholar] [CrossRef]
- Xie, W.; Li, H.; Cui, G.; Li, J.; Song, Y.; Li, S.; Zhang, X.; Lee, J.Y.; Shao, M.; Wei, M. NiSn atomic pair on an integrated electrode for synergistic electrocatalytic CO2 reduction. Angew. Chem. 2021, 133, 7458–7464. [Google Scholar] [CrossRef]
- Guo, J.-H.; Zhang, X.-Y.; Dao, X.-Y.; Sun, W.-Y. Nanoporous metal–organic framework-based ellipsoidal nanoparticles for the catalytic electroreduction of CO2. ACS Appl. Nano Mater. 2020, 3, 2625–2635. [Google Scholar] [CrossRef]
- Zhong, M.; Tran, K.; Min, Y.; Wang, C.; Wang, Z.; Dinh, C.-T.; De Luna, P.; Yu, Z.; Rasouli, A.S.; Brodersen, P. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020, 581, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Mao, X.; Yuan, G.; Zhang, D.; Pan, B.; Deng, J.; Shi, Y.; Han, N.; Li, C.; Zhang, L. Size-dependent selectivity of electrochemical CO2 reduction on converted In2O3 nanocrystals. Angew. Chem. 2021, 133, 15978–15982. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Hu, W. Exclusive CO2-to-formate conversion over single-atom alloyed Cu-based catalysts. Green Energy Environ. 2022, 7, 855–857. [Google Scholar] [CrossRef]
- Zhang, S.; Mo, Z.; Wang, J.; Liu, H.; Liu, P.; Hu, D.; Tan, T.; Wang, C. Ultra-stable oxygen species in Ag nanoparticles anchored on g-C3N4 for enhanced electrochemical reduction of CO2. Electrochim. Acta 2021, 390, 138831. [Google Scholar] [CrossRef]
- Zhao, Y.; Miao, Z.; Wang, F.; Liang, M.; Liu, Y.; Wu, M.; Diao, L.; Mu, J.; Cheng, Y.; Zhou, J. N-doped carbon-encapsulated nickel on reduced graphene oxide materials for efficient CO2 electroreduction to syngas with potential-independent H2/CO ratios. J. Environ. Chem. Eng. 2021, 9, 105515. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Zhang, H.; Zhang, S.; Meng, G.; Liu, Q.; Sun, Z.; Luo, J.; Liu, X. Polycrystalline SnSx nanofilm enables CO2 electroreduction to formate with high current density. Chem. Commun. 2022, 58, 7654–7657. [Google Scholar] [CrossRef]
- Zhai, J.; Kang, Q.; Liu, Q.; Lai, D.; Lu, Q.; Gao, F. In-situ generation of In2O3 nanoparticles inside In [Co(CN)6] quasi-metal-organic-framework nanocubes for efficient electroreduction of CO2 to formate. J. Colloid Interface Sci. 2022, 608, 1942–1950. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Wang, T.; Pei, J.; Shang, H.; Zhou, D.; Li, H.; Dong, J.; Wang, Y.; Cao, R.; Zhuang, Z. Discovery of main group single Sb–N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863. [Google Scholar] [CrossRef]
- Gao, S.; Wang, T.; Jin, M.; Zhang, S.; Liu, Q.; Hu, G.; Yang, H.; Luo, J.; Liu, X. Bifunctional Nb-NC atomic catalyst for aqueous Zn-air battery driving CO2 electrolysis. Sci. China Mater. 2022, 66, 1013–1023. [Google Scholar]
- Peterson, A.A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J.K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315. [Google Scholar] [CrossRef]
- Li, C.W.; Kanan, M.W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 2012, 134, 7231–7234. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Y.; Deng, C.; Li, X.; Xue, Y.; Yan, Y.-M.; Sun, K. Composition dependent activity of Cu–Pt nanocrystals for electrochemical reduction of CO2. Chem. Commun. 2015, 51, 1345–1348. [Google Scholar] [CrossRef]
- Ni, W.; Li, C.; Zang, X.; Xu, M.; Huo, S.; Liu, M.; Yang, Z.; Yan, Y.-M. Efficient electrocatalytic reduction of CO2 on CuxO decorated graphene oxides: An insight into the role of multivalent Cu in selectivity and durability. Appl. Catal. B Environ. 2019, 259, 118044. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.W.; Kanan, M.W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 19969–19972. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G.; Wang, J.; Bao, X. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Dong, X.; Chen, W.; Song, Y.; Li, G.; Wei, W.; Sun, Y. Efficient CO2 Electroreduction over Silver Hollow Fiber Electrode. Catalysts 2022, 12, 453. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Wang, Y.; Bai, Q.; Gao, Y.; Zhang, Z. Synthesis and electrocatalytic performance of multi-component nanoporous PtRuCuW alloy for direct methanol fuel cells. Catalysts 2015, 5, 1003–1015. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-H.; Liu, M.-M.; Chen, J.-L.; Fang, S.-M.; Zhou, P.-P. Recent advances in Cu2O-based composites for photocatalysis: A review. Dalton Trans. 2021, 50, 4091–4111. [Google Scholar] [CrossRef]
- Niu, Z.-Z.; Gao, F.-Y.; Zhang, X.-L.; Yang, P.-P.; Liu, R.; Chi, L.-P.; Wu, Z.-Z.; Qin, S.; Yu, X.; Gao, M.-R. Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 electroreduction to multicarbon products. J. Am. Chem. Soc. 2021, 143, 8011–8021. [Google Scholar] [CrossRef]
- Halder, A.; Curtiss, L.A.; Fortunelli, A.; Vajda, S. Perspective: Size selected clusters for catalysis and electrochemistry. J. Chem. Phys. 2018, 148, 110901. [Google Scholar] [CrossRef] [Green Version]
- Cao, T.; Lin, R.; Liu, S.; Cheong, W.-C.M.; Li, Z.; Wu, K.; Zhu, Y.; Wang, X.; Zhang, J.; Li, Q. Atomically dispersed Ni anchored on polymer-derived mesh-like N-doped carbon nanofibers as an efficient CO2 electrocatalytic reduction catalyst. Nano Res. 2022, 15, 3959–3963. [Google Scholar] [CrossRef]
- Azhari, N.J.; Nurdini, N.; Mardiana, S.; Ilmi, T.; Fajar, A.T.; Makertihartha, I.; Kadja, G.T. Zeolite-based catalyst for direct conversion of CO2 to C2+ hydrocarbon: A review. J. CO2 Util. 2022, 59, 101969. [Google Scholar] [CrossRef]
- Choukroun, D.; Daems, N.; Kenis, T.; Van Everbroeck, T.; Hereijgers, J.; Altantzis, T.; Bals, S.; Cool, P.; Breugelmans, T. Bifunctional nickel–nitrogen-doped-carbon-supported copper electrocatalyst for CO2 reduction. J. Phys. Chem. C 2020, 124, 1369–1381. [Google Scholar] [CrossRef]
- Cho, J.H.; Lee, C.; Hong, S.H.; Jang, H.Y.; Back, S.; Seo, M.g.; Lee, M.; Min, H.K.; Choi, Y.; Jang, Y.J. Transition Metal Ion Doping on ZIF-8 for Enhanced the Electrochemical CO2 Reduction Reaction. Adv. Mater. 2022, 2208224. [Google Scholar] [CrossRef] [PubMed]
- Zha, B.; Li, C.; Li, J. Efficient electrochemical reduction of CO2 into formate and acetate in polyoxometalate catholyte with indium catalyst. J. Catal. 2020, 382, 69–76. [Google Scholar] [CrossRef]
- Gao, S.; Lin, Y.; Jiao, X.; Sun, Y.; Luo, Q.; Zhang, W.; Li, D.; Yang, J.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Bhugun, I.; Lexa, D.; Saveant, J.-M. Ultraefficient selective homogeneous catalysis of the electrochemical reduction of carbon dioxide by an iron (0) porphyrin associated with a weak Broensted acid cocatalyst. J. Am. Chem. Soc. 1994, 116, 5015–5016. [Google Scholar] [CrossRef]
- Leung, K.; Nielsen, I.M.; Sai, N.; Medforth, C.; Shelnutt, J.A. Cobalt− porphyrin catalyzed electrochemical reduction of carbon dioxide in water. 2. mechanism from first principles. J. Phys. Chem. A 2010, 114, 10174–10184. [Google Scholar] [CrossRef] [Green Version]
- Tornow, C.E.; Thorson, M.R.; Ma, S.; Gewirth, A.A.; Kenis, P.J. Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. J. Am. Chem. Soc. 2012, 134, 19520–19523. [Google Scholar] [CrossRef]
- Agarwal, J.; Johnson, R.P.; Li, G. Reduction of CO2 on a tricarbonyl rhenium (I) complex: Modeling a catalytic cycle. J. Phys. Chem. A 2011, 115, 2877–2881. [Google Scholar] [CrossRef]
- Centi, G.; Quadrelli, E.A.; Perathoner, S. Catalysis for CO2 conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ. Sci. 2013, 6, 1711–1731. [Google Scholar] [CrossRef]
- Dominguez-Ramos, A.; Irabien, A. The carbon footprint of Power-to-Synthetic Natural Gas by Photovoltaic solar powered Electrochemical Reduction of CO2. Sustain. Prod. Consum. 2019, 17, 229–240. [Google Scholar] [CrossRef]
- Lo, A.-Y.; Taghipour, F. Review and prospects of microporous zeolite catalysts for CO2 photoreduction. Appl. Mater. Today 2021, 23, 101042. [Google Scholar] [CrossRef]
- Mota-Lima, A. The electrified plasma/liquid interface as a platform for highly efficient CO2 electroreduction to oxalate. J. Phys. Chem. C 2020, 124, 10907–10915. [Google Scholar] [CrossRef]
- Golru, S.S.; Biddinger, E.J. Effect of additives in aqueous electrolytes on CO2 electroreduction. Chem. Eng. J. 2022, 428, 131303. [Google Scholar] [CrossRef]
- Schizodimou, A.; Kyriacou, G. Acceleration of the reduction of carbon dioxide in the presence of multivalent cations. Electrochim. Acta 2012, 78, 171–176. [Google Scholar] [CrossRef]
- Jung, H.; Lee, S.Y.; Lee, C.W.; Cho, M.K.; Won, D.H.; Kim, C.; Oh, H.-S.; Min, B.K.; Hwang, Y.J. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C–C coupling from CO2 reduction reaction. J. Am. Chem. Soc. 2019, 141, 4624–4633. [Google Scholar] [CrossRef]
- Leung, C.-F.; Ho, P.-Y. Molecular catalysis for utilizing CO2 in fuel electro-generation and in chemical feedstock. Catalysts 2019, 9, 760. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Zhang, X.; Liu, Y.; Qiao, J.; Zhou, X.-D.; Xu, N.; Malcombe, J.L.; Yi, J.; Zhang, J. Metal chalcogenide-associated catalysts enabling CO2 electroreduction to produce low-carbon fuels for energy storage and emission reduction: Catalyst structure, morphology, performance, and mechanism. J. Mater. Chem. A 2021, 9, 2526–2559. [Google Scholar] [CrossRef]
- Zeng, F.; Mebrahtu, C.; Xi, X.; Liao, L.; Ren, J.; Xie, J.; Heeres, H.J.; Palkovits, R. Catalysts design for higher alcohols synthesis by CO2 hydrogenation: Trends and future perspectives. Appl. Catal. B Environ. 2021, 291, 120073. [Google Scholar] [CrossRef]
- Dokania, A.; Ramirez, A.; Bavykina, A.; Gascon, J. Heterogeneous catalysis for the valorization of CO2: Role of bifunctional processes in the production of chemicals. ACS Energy Lett. 2018, 4, 167–176. [Google Scholar] [CrossRef]
- Zignani, S.C.; Lo Faro, M.; Palella, A.; Spadaro, L.; Trocino, S.; Lo Vecchio, C.; Aricò, A.S. Bifunctional CuO-Ag/KB Catalyst for the Electrochemical Reduction of CO2 in an Alkaline Solid-State Electrolysis Cell. Catalysts 2022, 12, 293. [Google Scholar] [CrossRef]
- Ogura, K.; Ferrell III, J.R.; Cugini, A.V.; Smotkin, E.S.; Salazar-Villalpando, M.D. CO2 attraction by specifically adsorbed anions and subsequent accelerated electrochemical reduction. Electrochim. Acta 2010, 56, 381–386. [Google Scholar] [CrossRef]
- Smieja, J.M.; Sampson, M.D.; Grice, K.A.; Benson, E.E.; Froehlich, J.D.; Kubiak, C.P. Manganese as a substitute for rhenium in CO2 reduction catalysts: The importance of acids. Inorg. Chem. 2013, 52, 2484–2491. [Google Scholar] [CrossRef]
- Yoshida, T.; Kamato, K.; Tsukamoto, M.; Iida, T.; Schlettwein, D.; Wöhrle, D.; Kaneko, M. Selective electroacatalysis for CO2 reduction in the aqueous phase using cobalt phthalocyanine/poly-4-vinylpyridine modified electrodes. J. Electroanal. Chem. 1995, 385, 209–225. [Google Scholar] [CrossRef]
- Woo, S.-J.; Choi, S.; Kim, S.-Y.; Kim, P.S.; Jo, J.H.; Kim, C.H.; Son, H.-J.; Pac, C.; Kang, S.O. Highly selective and durable photochemical CO2 reduction by molecular Mn (I) catalyst fixed on a particular dye-sensitized TiO2 platform. ACS Catal. 2019, 9, 2580–2593. [Google Scholar] [CrossRef]
- Martindale, B.C.; Compton, R.G. Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid. Chem. Commun. 2012, 48, 6487–6489. [Google Scholar] [CrossRef] [PubMed]
- Panzone, C.; Philippe, R.; Chappaz, A.; Fongarland, P.; Bengaouer, A. Power-to-Liquid catalytic CO2 valorization into fuels and chemicals: Focus on the Fischer-Tropsch route. J. CO2 Util. 2020, 38, 314–347. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, F.; Xia, C. A review on cathode processes and materials for electro-reduction of carbon dioxide in solid oxide electrolysis cells. J. Power Sources 2021, 493, 229713. [Google Scholar] [CrossRef]
- Subramanian, K.; Asokan, K.; Jeevarathinam, D.; Chandrasekaran, M. Electrochemical membrane reactor for the reduction of carbondioxide to formate. J. Appl. Electrochem. 2007, 37, 255–260. [Google Scholar] [CrossRef]
- Narayanan, S.; Haines, B.; Soler, J.; Valdez, T. Electrochemical conversion of carbon dioxide to formate in alkaline polymer electrolyte membrane cells. J. Electrochem. Soc. 2010, 158, A167. [Google Scholar] [CrossRef]
- Ampelli, C.; Centi, G.; Passalacqua, R.; Perathoner, S. Synthesis of solar fuels by a novel photoelectrocatalytic approach. Energy Environ. Sci. 2010, 3, 292–301. [Google Scholar] [CrossRef]
- Whipple, D.T.; Finke, E.C.; Kenis, P.J. Microfluidic reactor for the electrochemical reduction of carbon dioxide: The effect of pH. Electrochem. Solid-State Lett. 2010, 13, B109. [Google Scholar] [CrossRef]
- Jayashree, R.S.; Mitchell, M.; Natarajan, D.; Markoski, L.J.; Kenis, P.J. Microfluidic hydrogen fuel cell with a liquid electrolyte. Langmuir 2007, 23, 6871–6874. [Google Scholar] [CrossRef] [PubMed]
- Hatsukade, T.; Kuhl, K.P.; Cave, E.R.; Abram, D.N.; Jaramillo, T.F. Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces. Phys. Chem. Chem. Phys. 2014, 16, 13814–13819. [Google Scholar] [CrossRef] [PubMed]
Half Electrochemical Thermodynamic Reactions | Standard Potentials (V vs. SHE) |
---|---|
CO2 (g) + 2H+ + 2e− = HCOOH (l) | −0.250 |
CO2 (g) + 2H2O (l) + 2e− = HCOO− (aq) + OH− | −1.078 |
CO2 (g) + 2H+ + 2e− = CO (g) + H2O (l) | −0.106 |
CO2 (g) + 2H2O (l) + 2e− = CO (g) + 2OH− | −0.934 |
2CO2 (g) + 2H+ + 2e− = H2C2O4 (aq) | −0.500 |
2CO2 (g) + 2e− = C2O42− (aq) | −0.590 |
CO2 (g) + 4H+ + 4e− = C (s) + 2H2O (l) | 0.210 |
CO2 (g) + 2H2O (l) + 4e− = C (s) + 4OH− | −0.627 |
CO2 (g) + 4H+ + 4e− = CH2O (l) + H2O (l) | −0.070 |
CO2 (g) + 3H2O (l) + 4e− = CH2O (l) + 4OH− | −0.898 |
CO2 (g) + 6H+ + 6e− = CH3OH (l) + H2O (l) | 0.016 |
CO2 (g) + 5H2O (l) + 6e− = CH3OH (l) + 6OH− | −0.812 |
CO2 (g) + 8H+ + 8e− = CH4 (g) + 2H2O (l) | 0.169 |
CO2 (g) + 6H2O (l) + 8e− = CH4 (g) + 8OH− | −0.659 |
2CO2 (g) + 12H+ + 12e− = CH2CH2 (g) + 4H2O (l) | 0.064 |
2CO2 (g) + 8H2O (l) + 12e− = CH2CH2 (g) + 12OH− | −0.764 |
2CO2 (g) + 12H+ + 12e− = CH3CH2OH (l) + 3H2O (l) | 0.084 |
2CO2 (g) + 9H2O (l) + 12e− = CH3CH2OH (l) + 12OH− | −0.744 |
Electrocatalyst | Potential (V vs. RHE) | Major Products | FE (%) | Reference |
---|---|---|---|---|
Cu–In alloys (In: 80 at%) | −1.0 | formate | 62.0 | 2017 [79] |
CuS@Ni Foam | −1.1 | methane | 73.0 | 2017 [80] |
Co(CO3)0.5(OH)⋅0.11H2O | −0.98 | methane | 97.0 | 2018 [81] |
Co/Zn@ZIFs | −0.52 | CO | 94.0 | 2018 [82] |
ultrathin Pd nanosheets | −0.5 | CO | 94.0 | 2018 [83] |
Mn−doped In2S3 | −0.9 | formate | 86.0 | 2019 [84] |
Ni1–N2–C | −0.8 | CO | 96.8 | 2019 [85] |
Ni/Fe–N–C–DAC | −0.7 | CO | 99.0 | 2019 [86] |
Pd–Au | −0.5 | CO | 80.0 | 2019 [87] |
ultrathin porous Cu nanosheets | −1.0 | CO | 74.1 | 2019 [88] |
Cu nanocubes | −0.5 | C2H4 | 60.0 | 2019 [89] |
Fe–N5–C | −0.46 | CO | 97.0 | 2019 [90] |
Fe–N4–C | −0.5 | CO | 94.9 | 2019 [91] |
Fe3+–N–C | −0.45 | CO | 90.0 | 2019 [92] |
Ni−graphene oxide | −0.63 | CO | 96.5 | 2019 [93] |
Ni−N4−C | −0.65 | CO | 90.0 | 2019 [94] |
Ni−N2−C | −0.8 | CO | 98.0 | 2019 [95] |
InN NSs | −0.9 | formate | 91.0 | 2020 [96] |
NiSn−APC | −0.82 | formate | 86.1 | 2020 [97] |
Ni20−N−C | −0.53 | CO | 97 | 2020 [98] |
Cu−Al | −1.50 | C2H4 | 80 | 2020 [99] |
5 nm In2O3 NPs | −0.7 | formate | 80.0 | 2021 [100] |
Pb1Cu | −0.8 | formate | 96.0 | 2021 [101] |
SAC−Ag/g−C3N4 | −0.7 | CO | 93.7 | 2021 [102] |
40Ni@N−C/rGO | −0.97 | CO | 92.0 | 2021 [103] |
polycrystalline SnSx NFs | −1.0 | formate | 97.0 | 2022 [104] |
In2O3@In−Co PBA | −0.96 | formate | 85.0 | 2022 [105] |
Sb−SAs/NC | −0.8 | formate | 94.0 | 2022 [106] |
Nb−N−C | −0.8 | CO | 90.0 | 2022 [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, C.; Ni, W.; Li, H. Recent Progress in Electrocatalytic Reduction of CO2. Catalysts 2023, 13, 644. https://doi.org/10.3390/catal13040644
Ren C, Ni W, Li H. Recent Progress in Electrocatalytic Reduction of CO2. Catalysts. 2023; 13(4):644. https://doi.org/10.3390/catal13040644
Chicago/Turabian StyleRen, Chaojun, Wei Ni, and Hongda Li. 2023. "Recent Progress in Electrocatalytic Reduction of CO2" Catalysts 13, no. 4: 644. https://doi.org/10.3390/catal13040644
APA StyleRen, C., Ni, W., & Li, H. (2023). Recent Progress in Electrocatalytic Reduction of CO2. Catalysts, 13(4), 644. https://doi.org/10.3390/catal13040644