3D Flower-like TiO2 Nanostructures: Anatase-To-Rutile Phase Transformation and Photoelectrochemical Application
Abstract
:1. Introduction
Nanostructure | Anatase Fraction, fA | The Optimum Mixture, fA | Application | References |
---|---|---|---|---|
0D | 36–89% | 36% | photocatalysis | [19] |
80% | 80% | photocatalysis | [20,21] | |
80–100% | 100% | photocatalysis | [22] | |
80% or 92% | improved the photodegradation for mixed-phase TiO2 materials compared to anatase | photocatalysis | [23] | |
not specified | improved the separation and transfer of photogenerated electrons and holes | photocatalysis | [24] | |
1D | 80–100% | improved photodegradation for mixed-phase TiO2 nanotubes compared to anatase nanotubes | photocatalysis | [25] |
29–100% | 57% | photocatalysis | [26] | |
15–98% | 98% | photocatalysis | [27] | |
2D | 0–100% | 74% | photoanode in PEC | [28] |
0–82% | 60% | photocatalysis | [6] | |
not specified | studies the role of phase junction in PEC water splitting | photoanode in PEC | [29] | |
3D | 14–91% | 82% | photocatalysis | [30] |
not specified | improved Iph compared to anatase | photoanode in PEC | [31] | |
not specified | improved the photodegradation for mixed-phase TiO2 materials compared to P25 | photocatalysis | [32] | |
not specified | improved charge separation due to the migration across the anatase–rutile interface | photocatalysis | [33] | |
40–77% | 77% | photocatalysis | [34] |
2. Results and Discussion
2.1. Phase Transformation Mechanism in TiO2 Flower-like Nanostructures
2.2. Photoelectrochemical Application
3. Materials and Methods
3.1. Materials Preparation
3.2. Characterization Techniques
3.3. Photoelectrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Li, J.; Wu, N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2015, 5, 1360–1384. [Google Scholar] [CrossRef]
- Sar, J.; Kolodziejak, K.; Wysmulek, K.; Orlinski, K.; Kusior, A.; Radecka, M.; Trenczek-Zajac, A.; Zakrzewska, K.; Pawlak, D.A.; Pawlak, D.A. Eutectic Composites for Photoelectrochemical Solar Cells (PSCs). In Photoelectrochemical Solar Cells; Scrivener Publishing LLC: Beverly, MA, USA, 2018; pp. 305–347. [Google Scholar]
- Tee, S.Y.; Win, K.Y.; Teo, W.S.; Koh, L.D.; Liu, S.; Teng, C.P.; Han, M.Y. Recent progress in energy-driven water splitting. Adv. Sci. 2017, 4, 1600337. [Google Scholar] [CrossRef] [Green Version]
- Marschall, R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 2014, 24, 2421–2440. [Google Scholar] [CrossRef]
- Su, R.; Bechstein, R.; Sø, L.; Vang, R.T.; Sillassen, M.; Esbjörnsson, B.; Palmqvist, A.; Besenbacher, F. How the anatase-to-rutile ratio influences the photoreactivity of TiO2. J. Phys. Chem. C 2011, 115, 24287–24292. [Google Scholar] [CrossRef]
- Wahab, A.K.; Ould-Chikh, S.; Meyer, K.; Idriss, H. On the “possible” synergism of the different phases of TiO2 in photo-catalysis for hydrogen production. J. Catal. 2017, 352, 657–671. [Google Scholar] [CrossRef]
- Zhang, H.; Banfield, J.F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. J. Phys. Chem. B 2000, 104, 3481–3487. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef] [Green Version]
- Jing, Z.; Qian, X.; Meijun, L.; Zhaochi, F.; Can, L. UV raman spectroscopic study on TiO2. II. effect of nanoparticle size on the outer/inner phase transformations. J. Phys. Chem. C 2009, 113, 1698–1704. [Google Scholar] [CrossRef]
- Gilbert, B.; Zhang, H.; Huang, F.; Finnegan, M.P.; Waychunas, G.A.; Banfield, J.F. Special phase transformation and crystal growth pathways observed in nanoparticles. Geochem. Trans. 2003, 4, 20–27. [Google Scholar] [CrossRef]
- Li, W.; Ni, C.; Lin, H.; Huang, C.P.; Shah, S.I. Size dependence of thermal stability of TiO2 nanoparticles. J. Appl. Phys. 2004, 96, 6663–6668. [Google Scholar] [CrossRef] [Green Version]
- Ranade, M.R.; Navrotsky, A.; Zhang, H.Z.; Banfield, J.F.; Elder, S.H.; Zaban, A.; Borse, P.H.; Kulkarni, S.K.; Doran, G.S.; Whitfield, H.J. Energetics of nanocrystalline TiO2. Proc. Natl. Acad. Sci. USA 2001, 99, 6476–6481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.M.; Zhang, W.X.; Jiang, Q. Phase Stability of Nanoanatase. Adv. Eng. Mater. 2003, 5, 787–788. [Google Scholar] [CrossRef]
- Zhang, H.; Banfield, J.F. Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem. 1998, 8, 2073–2076. [Google Scholar] [CrossRef]
- Ariana, R. Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Phys. Rev. B 2016, 51, 13023. [Google Scholar] [CrossRef]
- Sang, L.; Zhao, Y.; Burda, C. TiO2 nanoparticles as functional building blocks. Am. Chem. Soc. 2014, 114, 9283–9318. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Zhou, B. Titanium dioxide nanomaterials for sensor applications. Chem. Rev. 2014, 114, 10131–10176. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.C.; Lin, H.C.; Chen, C.H.; Liao, Y.T.; Yang, C.M. Nonaqueous seeded growth of flower-like mixed-phase titania nanostructures for photocatalytic applications. J. Solid State Chem. 2010, 183, 1917–1924. [Google Scholar] [CrossRef]
- Hurum, D.C.; Agrios, A.G.; Gray, K.A.; Rajh, T.; Thurnauer, M.C. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 2003, 107, 4545–4549. [Google Scholar] [CrossRef]
- Li, G.; Ciston, S.; Saponjic, Z.V.; Chen, L.; Dimitrijevic, N.M.; Rajh, T.; Gray, K.A. Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications. J. Catal. 2008, 253, 105–110. [Google Scholar] [CrossRef]
- Sclafani, A.; Herrmann, J.M. Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. J. Phys. Chem. 1996, 100, 13655–13661. [Google Scholar] [CrossRef]
- Siah, W.R.; Lintang, H.O.; Shamsuddin, M.; Yuliati, L. High photocatalytic activity of mixed anatase-rutile phases on commercial TiO2 nanoparticles. IOP Conf. Ser. Mater. Sci. Eng. 2016, 107, 012005. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.; Bai, Y.; Li, C.; Gao, Y.; Li, R.; Li, C. Boosting photocatalytic water splitting by tuning built-in electric field at phase junction. J. Mater. Chem. A 2019, 7, 10264–10272. [Google Scholar] [CrossRef]
- Boehme, M.; Ensinger, W. Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photocatalytic degradation of methylene-blue. Nano-Micro. Lett. 2011, 3, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.; Mondal, I.; Ghosh, S.; Chattopadhyay, N.; Pal, U. Fabrication of mixed phase TiO2 heterojunction nanorods and their enhanced photoactivities. Phys. Chem. Chem. Phys. 2016, 18, 15260–15268. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Liu, X.; Huang, J. Heterogeneous nanotubular anatase/rutile titania composite derived from natural cellulose substance and its photocatalytic property. CrystEngComm 2013, 15, 5586–5590. [Google Scholar] [CrossRef]
- Płacheta, K.; Kot, A.; Banas-Gac, J.; Zając, M.; Sikora, M.; Radecka, M.; Zakrzewska, K. Evolution of surface properties of titanium oxide thin films. Appl. Surf. Sci. 2023, 608, 155046. [Google Scholar] [CrossRef]
- Li, A.; Wang, Z.; Yin, H.; Wang, S.; Yan, P.; Huang, B.; Wang, X.; Li, R.; Zong, X.; Han, H.; et al. Understanding the anatase-rutile phase junction in charge separation and transfer in a TiO2 electrode for photoelectrochemical water splitting. Chem. Sci. 2016, 7, 6076–6082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.; Cai, Q.; Fang, H.; Situ, G.; Qiu, J.; Song, S.; Chen, J. Photocatalytic activity of TiO2 containing anatase nanoparticles and rutile nanoflower structure consisting of nanorods. J. Environ. Sci. (China) 2013, 25, 2460–2468. [Google Scholar] [CrossRef]
- Meng, M.; Li, C.; Li, J.; Wu, J.; Feng, Y.; Sun, L.; Yuan, H.; Liu, K. 3D TiO2 nanotube arrays with anatase-rutile phase junction and oxygen vacancies for promoted photoelectrochemical water splitting. J. Phys. D. Appl. Phys. 2023, 56, 055502. [Google Scholar] [CrossRef]
- Wang, Q.; Fang, X.; Hao, P.; Ren, H.; Zhao, Y.; Huang, F.; Xie, J.; Cui, G.; Tang, B. Controllable fabrication of TiO2 anatase/rutile phase junctions by a designer solvent for promoted photocatalytic performance. Chem. Commun. 2020, 56, 11827–11830. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Tian, G.; Chen, Y.; Wang, J.Q.; Cao, X.; Shi, Y.; Pan, K.; Fu, H. Synthesis of hierarchical TiO2 nanoflower with anatase-rutile heterojunction as Ag support for efficient visible-light photocatalytic activity. Dalt. Trans. 2013, 42, 11242–11251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; He, H.; Tian, Y.; Lan, K.; Liu, Q.; Wang, C.; Liu, Y.; Elzatahry, A.; Che, R.; Li, W.; et al. Synthesis of uniform ordered mesoporous TiO2 microspheres with controllable phase junctions for efficient solar water splitting. Chem. Sci. 2019, 10, 1664–1670. [Google Scholar] [CrossRef] [Green Version]
- Kusior, A.; Wnuk, A.; Trenczek-Zajac, A.; Zakrzewska, K.; Radecka, M. TiO2 nanostructures for photoelectrochemical cells (PECs). Int. J. Hydrogen Energy 2015, 40, 4936–4944. [Google Scholar] [CrossRef]
- Radecka, M.; Kusior, A.; Trenczek-Zajac, A.; Zakrzewska, K. Oxide Nanomaterials for Photoelectrochemical Hydrogen Energy Sources; Elsevier Ltd.: London, UK, 2018; Volume 72, ISBN 9780128150771. [Google Scholar]
- Park, T.J.; Levchenko, A.A.; Zhou, H.; Wong, S.S.; Navrotsky, A. Shape-dependent surface energetics of nanocrystalline TiO2. J. Mater. Chem. 2010, 20, 8639–8645. [Google Scholar] [CrossRef]
- Peng, X.; Wang, J.; Thomas, D.F.; Chen, A. Tunable growth of TiO2 nanostructures on Ti substrates. Nanotechnology 2005, 16, 2389–2395. [Google Scholar] [CrossRef]
- Hardcastle, F.D.; Ishihara, H.; Sharma, R.; Biris, A.S. Photoelectroactivity and Raman spectroscopy of anodized titania (TiO2) photoactive water-splitting catalysts as a function of oxygen-annealing temperature. J. Mater. Chem. 2011, 21, 6337–6345. [Google Scholar] [CrossRef]
- Huang, J.H.; Wong, M.S. Structures and properties of titania thin films annealed under different atmosphere. Thin Solid Films 2011, 520, 1379–1384. [Google Scholar] [CrossRef]
- Mali, S.S.; Shinde, P.S.; Betty, C.A.; Bhosale, P.N.; Lee, W.J.; Patil, P.S. Nanocoral architecture of TiO2 by hydrothermal process: Synthesis and characterization. Appl. Surf. Sci. 2011, 257, 9737–9746. [Google Scholar] [CrossRef]
- Ma, W.; Lu, Z.; Zhang, M. Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy. Appl. Phys. A Mater. Sci. Process. 1998, 66, 621–627. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, Q.; Zhou, Y. Hydrothermal synthesis of anatase flower-like nanostructures for photocatalytic degradation of dye. Cryst. Res. Technol. 2011, 46, 1202–1206. [Google Scholar] [CrossRef]
- Qian, Y.; Chen, Q.; Chen, Z.; Fan, C.; Zhou, G. Preparation of ultrafine powders of TiO2 by hydrothermal H2O2 oxidation starting from metallic Ti. J. Mater. Chem. 1993, 3, 203–205. [Google Scholar] [CrossRef]
- Tengvall, P.; Elwing, H.; Lundström, I. Titanium gel made from metallic titanium and hydrogen peroxide. J. Colloid Interface Sci. 1989, 130, 405–413. [Google Scholar] [CrossRef]
- Tengvall, P.; Lundström, I.; Sjöqvist, L.; Elwing, H.; Bjursten, L.M. Titanium-hydrogen peroxide interaction: Model studies of the influence of the inflammatory response on titanium implants. Biomaterials 1989, 10, 166–175. [Google Scholar] [CrossRef]
- Low, J.M.; Curtain, B.; Philipps, M.; Liu, Z.Q.; Ionescu, M. High temperature diffraction study of in-situ crystallization of nanostructured TiO2 photocatalysts. J. Aust. Ceram. Soc. 2012, 48, 198–204. [Google Scholar]
- Zhang, H.; Banfield, J.F. New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles. Am. Mineral. 1999, 84, 528–535. [Google Scholar] [CrossRef]
- Choudhury, B.; Choudhury, A. Local structure modification and phase transformation of TiO2 nanoparticles initiated by oxygen defects, grain size, and annealing temperature. Int. Nano Lett. 2013, 3, 55. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, M.; Feng, Z.; Chen, J.; Li, C. UV Raman spectroscopic study on TiO2-I. phase transformation at the surface and in the bulk. J. Phys. Chem. B 2006, 110, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liu, H.; Xin, Y.; Cheng, X. TiO2 nanobelts—Effect of calcination temperature on optical, photoelectrochemical and photocatalytic properties. Electrochim. Acta 2013, 111, 284–291. [Google Scholar] [CrossRef]
- Orendorz, A.; Brodyanski, A.; Lösch, J.; Bai, L.H.; Chen, Z.H.; Le, Y.K.; Ziegler, C.; Gnaser, H. Structural transformations in nanocrystalline anatase TiO2 films upon annealing in air. Surf. Sci. 2006, 600, 4347–4351. [Google Scholar] [CrossRef]
- Trenczek-Zajac, A.; Banas-Gac, J.; Radecka, M. TiO2@Cu2O n-n type heterostructures for photochemistry. Materials 2021, 14, 3725. [Google Scholar] [CrossRef]
- Radecka, M. TiO2 for photoelectrolytic decomposition of water. Thin Solid Films 2004, 451–452, 98–104. [Google Scholar] [CrossRef]
- Altowyan, A.S.; Shaban, M.; Abdelkarem, K.; El Sayed, A.M. The influence of electrode thickness on the structure and water splitting performance of iridium oxide nanostructured films. Nanomaterials 2022, 12, 3272. [Google Scholar] [CrossRef]
- Sengupta, D.; Das, P.; Mondal, B.; Mukherjee, K. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application—A review. Renew. Sustain. Energy Rev. 2016, 60, 356–376. [Google Scholar] [CrossRef]
- Fiechter, S.; Bogdanoff, P. Oxygen Evolution and Reduction Catalysts: Structural and Electronic Aspects of Transition Metal Based Compounds and Composites. In Photoelectrochemical Water Splitting. Materials, Processes and Architectures; The Royal Society of Chemistry: Cambridge, UK, 2013; ISBN 9781849737739. [Google Scholar]
- Trenczek-Zajac, A.; Banas, J.; Radecka, M. Photoactive TiO2/MoS2 electrode with prolonged stability. Int. J. Hydrogen Energy 2018, 43, 6824–6837. [Google Scholar] [CrossRef]
- Trenczek-Zajac, A.; Kusior, A.; Mazurków, J.; Michalec, K.; Synowiec, M.; Radecka, M. Interface design, surface-related properties, and their role in interfacial electron transfer. Part II: Photochemistry-related topics. Adv. Inorg. Chem. 2022, 79, 411–442. [Google Scholar] [CrossRef]
- Kusior, A.; Trenczek-Zajac, A.; Mazurków, J.; Michalec, K.; Synowiec, M.; Radecka, M. Interface design, surface-related properties, and their role in interfacial electron transfer. Part I: Materials-related topics. Adv. Inorg. Chem. 2022, 79, 373–409. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, Y.; Zhang, P.; Zhou, J.; Wu, J.; Li, K.; Wang, W.; Chen, L. Controllable one-step synthesis of mixed-phase TiO2 nanocrystals with equivalent anatase/rutile ratio for enhanced photocatalytic performance. Nanomaterials 2021, 11, 1347. [Google Scholar] [CrossRef] [PubMed]
- Yaemsunthorn, K.; Kobielusz, M.; Macyk, W. TiO2 with tunable anatase-to-rutile nanoparticles ratios: How does the photoactivity depend on the phase composition and the nature of photocatalytic reaction? ACS Appl. Nano Mater. 2021, 4, 633–643. [Google Scholar] [CrossRef]
- Qiu, C.; Lin, J.; Shen, J.; Liu, D.; Zhang, Z.; Lin, H.; Wang, X. Regulation of the rutile/anatase TiO2 heterophase interface by Ni12P5 to improve photocatalytic hydrogen evolution. Catal. Sci. Technol. 2020, 10, 3709–3719. [Google Scholar] [CrossRef]
- Lee, S.; Cho, A.Y.; Rim, Y.S.; Park, J. Synergistic design of anatase-rutile TiO2 nanostructured heterophase junctions toward efficient photoelectrochemical water oxidation. Coatings 2020, 10, 557. [Google Scholar] [CrossRef]
- Trenczek-Zajac, A.; Banas, J. Pre-and post-oxidation treatment of titanium as a method of improving the response of TiO2-based photoanodes in PECs. Funct. Mater. Lett. 2016, 9, 1641004. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Spurr, R.A.; Myers, H. Quantitative analysis of anatase-rutile mixtures with an X-Ray diffractometer. Anal. Chem. 1957, 29, 760–762. [Google Scholar] [CrossRef]
t (min) | TiO2 Nanoflowers | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
450 °C | 600 °C | l (μm) | ||||||||
Argon | Air | |||||||||
dXRD (nm) | fA (%) | dXRD (nm) | fA (%) | dXRD (nm) | fA (%) | |||||
Argon | Air | Anatase | Rutile | Anatase | Rutile | |||||
15 | 8 | 14 | 97–99 | 13 | 19 | 21.7 | 15 | 13 | 73.7 | 0.71 |
30 | 8 | 10 | 16 | 22 | 37.7 | 16 | 13 | 72.0 | 0.99 | |
45 | 10 | 11 | 14 | 20 | 56.6 | 17 | 15 | 77.2 | 1.40 | |
60 | 9 | 12 | 15 | 19 | 77.1 | 17 | 16 | 75.9 | 1.58 | |
120 | 12 | 17 | 17 | 88.7 | 19 | 16 | 83.5 | 2.30 | ||
160 | 13 | 18 | 12 | 92.8 | 3.21 | |||||
240 | 13 | 19 | 5 | 95.0 | 4.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusior, A.; Jeleń, P.; Sitarz, M.; Świerczek, K.; Radecka, M. 3D Flower-like TiO2 Nanostructures: Anatase-To-Rutile Phase Transformation and Photoelectrochemical Application. Catalysts 2023, 13, 671. https://doi.org/10.3390/catal13040671
Kusior A, Jeleń P, Sitarz M, Świerczek K, Radecka M. 3D Flower-like TiO2 Nanostructures: Anatase-To-Rutile Phase Transformation and Photoelectrochemical Application. Catalysts. 2023; 13(4):671. https://doi.org/10.3390/catal13040671
Chicago/Turabian StyleKusior, Anna, Piotr Jeleń, Maciej Sitarz, Konrad Świerczek, and Marta Radecka. 2023. "3D Flower-like TiO2 Nanostructures: Anatase-To-Rutile Phase Transformation and Photoelectrochemical Application" Catalysts 13, no. 4: 671. https://doi.org/10.3390/catal13040671
APA StyleKusior, A., Jeleń, P., Sitarz, M., Świerczek, K., & Radecka, M. (2023). 3D Flower-like TiO2 Nanostructures: Anatase-To-Rutile Phase Transformation and Photoelectrochemical Application. Catalysts, 13(4), 671. https://doi.org/10.3390/catal13040671