Recent Progress of MIL MOF Materials in Degradation of Organic Pollutants by Fenton Reaction
Abstract
:1. Introduction
2. Research Progress of MILs as Catalysts in Fenton Reaction
2.1. The Development of MILs
2.2. The Classification of MILs
2.2.1. MIL-100
2.2.2. MIL-101
2.2.3. MIL-53
2.2.4. MIL-88
2.3. The Stability of MILs
3. Synthetic Techniques of MILs
3.1. Hydrothermal Synthesis
3.2. Steam-Assisted Conversion
3.3. Microwave-Assisted Synthesis
4. Modification and Activation of MILs
4.1. Metal Sites
4.1.1. Bimetal Sites
4.1.2. Metal Nanoparticle Doping
4.2. Ligand
4.3. Activation
5. The Applications of MILs in Fenton Reaction System
5.1. Application of MILs in Electro-Fenton Reaction System
5.2. Application of MILs in Photo-Fenton Reaction System
6. Summary and Outlook
- (1)
- Few studies have conducted long-term stable tests on the developed materials and the reaction system, so we do not know whether many MIL materials have long-term stability and circularity.
- (2)
- Many MILs face the problem of inactivation after repeated use and need to be regenerated. However, more suitable regeneration methods need to be further studied.
- (3)
- Due to the suitable chemical and mechanical stability of some MILs, as well as the limitations of many synthesis methods, some MILs are difficult to be used in real life and mass production.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kang, N.; Zhou, W.; Qi, Z.; Li, Y.; Wang, Z.; Li, Q.; Lv, K. Recent Progress of Natural Mineral Materials in Environmental Remediation. Catalysts 2022, 12, 996. [Google Scholar] [CrossRef]
- Kumar, O.; Shahzad, K.; Nazir, M.; Farooq, M.; Malik, M.; Shah, S.; Rehman, A. Photo-Fenton activated C3N4x/AgOy@Co1−xBi0.1−yO7 dual s-scheme heterojunction towards degradation of organic pollutants. Opt. Mater. 2022, 126, 112199. [Google Scholar] [CrossRef]
- Chen, J.; Fang, S.; Shen, Q.; Fan, J.; Li, Q.; Lv, K. Recent Advances of Doping and Surface Modifying Carbon Nitride with Characterization Techniques. Catalysts 2022, 12, 962. [Google Scholar] [CrossRef]
- Girones, L.; Oliva, A.L.; Negrin, V.L.; Marcovecchio, J.E.; Arias, A.H. Persistent organic pollutants (POPs) in coastal wetlands: A review of their occurrences, toxic effects, and biogeochemical cycling. Mar. Pollut. Bull. 2021, 172, 112864. [Google Scholar] [CrossRef]
- Nazir, M.; Najam, T.; Jabeen, S.; Wattoo, M.; Bashir, M.; Shah, S.; Rehman, A. Facile synthesis of Tri-metallic layered double hydroxides (NiZnAl-LDHs): Adsorption of Rhodamine-B and methyl orange from water. Inorg. Chem. Commun. 2022, 145, 110008. [Google Scholar] [CrossRef]
- Groffen, T.; Rijnders, J.; Doorn, L.; Jorissen, C.; De Borger, S.M.; Luttikhuis, D.O.; Deyn, L.; Covaci, A.; Bervoets, L. Preliminary study on the distribution of metals and persistent organic pollutants (POPs), including perfluoroalkylated acids (PFAS), in the aquatic environment near Morogoro, Tanzania, and the potential health risks for humans. Environ. Res. 2021, 192, 110299. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jiang, H.; Wang, H.; Show, P.L.; Ivanets, A.; Luo, D.; Wang, C. MXenes as heterogeneous Fenton-like catalysts for removal of organic pollutants: A review. J. Environ. Chem. Eng. 2022, 10, 108954. [Google Scholar] [CrossRef]
- Han, Z.; Fan, X.; Yu, S.; Li, X.; Wang, S.; Lu, L. Metal-organic frameworks (MOFs): A novel platform for laccase immobilization and application. J. Environ. Chem. Eng. 2022, 10, 108795. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, X.; Feng, Y.; Zhang, X.; Wang, H.; Yao, J. Modified metal-organic frameworks as photocatalysts. Appl. Catal. B Environ. 2018, 231, 317–342. [Google Scholar] [CrossRef]
- Bhuyan, A.; Ahmaruzzaman, M. Metal-organic frameworks: A new generation potential material for aqueous environmental remediation. Inorg. Chem. Commun. 2022, 140, 109436. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, W.; Li, J.; You, Z. A novel route for the facile synthesis of NH2-MIL-53(Fe) and its highly efficient and selective adsorption of congo red. Inorg. Chem. Acta 2023, 547, 121332. [Google Scholar] [CrossRef]
- Tran, T.V.; Jalil, A.A.; Nguyen, D.; Alhassan, M.; Nabgan, W.; Cao, A.T.; Nguyen, T.M.; Vo, D.-V.N. A critical review on the synthesis of NH2-MIL-53(Al) based materials for detection and removal of hazardous pollutants. Environ. Res. 2023, 216, 114422. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Wu, R.; Su, T.; Wang, Y.; Li, L. Synthesis of Co-doped Fe metal–organic framework MIL-101(Fe,Co) and efficient degradation of organic dyes in water. Sep. Purif. Technol. 2023, 304, 122300. [Google Scholar] [CrossRef]
- Tan, C.-E.; Su, E.-C.; Wey, M.-Y. Mixed imidazole ligand MIL-88A for enhanced photo-Fenton decomposition of azo dye. Sol. Energy 2022, 246, 89–103. [Google Scholar] [CrossRef]
- Dapaah, M.F.; Niu, Q.; Yu, Y.-Y.; You, T.; Liu, B.; Cheng, L. Efficient persistent organic pollutant removal in water using MIL-metal–organic framework driven Fenton-like reactions: A critical review. Chem. Eng. J. 2022, 431, 134182. [Google Scholar] [CrossRef]
- Alothman, Z.A.; Shahid, M. Recent advances in removal of toxic elements from water using MOFs: A critical review. Arab. J. Chem. 2022, 15, 104319. [Google Scholar] [CrossRef]
- Shen, M.; Ma, H. Metal-organic frameworks (MOFs) and their derivative as electrode materials for lithium-ion batteries. Coord. Chem. Rev. 2022, 470, 214715. [Google Scholar] [CrossRef]
- Musarurwa, H.; Tavengwa, N.T. Smart metal-organic framework (MOF) composites and their applications in environmental remediation. Mater. Today Commun. 2022, 33, 104823. [Google Scholar] [CrossRef]
- Mohammadifard, Z.; Saboori, R.; Mirbagheri, N.S.; Sabbaghi, S. Heterogeneous photo-Fenton degradation of formaldehyde using MIL-100(Fe) under visible light irradiation. Environ. Pollut. 2019, 251, 783–791. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Purkait, M.; Sastri, C.; Gumma, S. CeO2 nanoparticles incorporated MIL-100(Fe) composites for loading of an anticancer drug: Effects of HF in composite synthesis and drug loading capacity. Inorg. Chim. Acta 2022, 533, 120784. [Google Scholar] [CrossRef]
- Hou, X.; Shi, J.; Wang, N.; Wen, Z.; Sun, M.; Qu, J.; Hu, Q. Removal of antibiotic tetracycline by metal-organic framework MIL-101(Cr) loaded nano zero-valent iron. J. Mol. Liq. 2020, 313, 113512. [Google Scholar] [CrossRef]
- Lim, J.H.; Goh, K.; Ng, D.Y.F.; Jiang, X.; Chuah, C.Y.; Chew, J.W.; Wang, R. Alternating spin-and-spray electrospun scaffold membranes with fractionated MIL-101(Cr) adsorbent for high-performance single-pass dye adsorption process. Chem. Eng. J. 2022, 450, 137963. [Google Scholar] [CrossRef]
- Chen, X.; Sun, D.; Wu, W.; Wu, P.; Yang, F.; Liu, J.; Ma, Z.; Zhang, Y.; Zheng, D. Boosting the electrochemcial activity of Fe-MIL-101 via acid modulators for highly sensitive detection of o-nitrophenol. Microchem. J. 2022, 183, 108076. [Google Scholar] [CrossRef]
- Liu, F.; Cao, J.; Yang, Z.; Xiong, W.; Xu, Z.; Song, P.; Jia, M.; Sun, S.; Zhang, Y.; Zhong, X. Heterogeneous activation of peroxymonosulfate by cobalt-doped MIL-53(Al) for efficient tetracycline degradation in water: Coexistence of radical and non-radical reactions. J. Colloid Interface Sci. 2021, 581, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, C.; Chen, Y.; Chen, X.; Peng, K.; He, J.; Yu, H.; Zhu, L. Material characterization combined with simple green chemistry method for integrated analysis of catalyst performance: A case study on MIL-53(Fe). Green Anal. Chem. 2022, 3, 100039. [Google Scholar] [CrossRef]
- Sun, A.; Wu, Y.; He, Z.; Bai, P.; Lyu, J.; Guo, X. Manipulated adsorption of C8 aromatics in MIL-53(Cr) through pre-adsorbing water molecules. J. Taiwan Inst. Chem. Eng. 2021, 122, 222–230. [Google Scholar] [CrossRef]
- Liao, X.; Wang, F.; Wang, F.; Cai, Y.; Yao, Y.; Teng, B.-T.; Hao, Q. Synthesis of (100) surface oriented MIL-88A-Fe with rod-like structure and its enhanced fenton-like performance for phenol removal. Appl. Catal. B Environ. 2019, 259, 118064. [Google Scholar] [CrossRef]
- Hmoudah, M.; El-Qanni, A.; Tesser, R.; Esposito, R.; Petrone, A.; Jung, O.; Salmi, T.; Russo, V.; Serio, M. Assessment of the robustness of MIL-88A in an aqueous solution: Experimental and DFT investigations. Mater. Sci. Eng. B 2023, 288, 116179. [Google Scholar] [CrossRef]
- Wu, Y.-n.; Fang, Y.; Fu, J.; He, L.; Kabtamu, D.M.; Matović, L.; Li, F.; Li, J. Optimized scalable synthesis and granulation of MIL-88B(Fe) for efficient arsenate removal. J. Environ. Chem. Eng. 2022, 10, 108556. [Google Scholar] [CrossRef]
- Yang, J.; Han, L.; Yang, W.; Liu, Q.; Fei, Z.; Chen, X.; Zhang, Z.; Tang, J.; Cui, M.; Qiao, X. In situ synthetic hierarchical porous MIL-53(Cr) as an efficient adsorbent for mesopores-controlled adsorption of tetracycline. Microporous Mesoporous Mater. 2022, 332, 111667. [Google Scholar] [CrossRef]
- Ren, Y.; Yin, Y.; Zhang, J.; Lv, L.; Zhang, W. Trade-off between Fenton-like activity and structural stability of MILs(Fe). Chem. Eng. J. 2021, 420, 129583. [Google Scholar] [CrossRef]
- Qian, X.; Yadian, B.; Wu, R.; Long, Y.; Zhou, K.; Zhu, B.; Huang, Y. Structure stability of metal-organic framework MIL-53 (Al) in aqueous solutions. Int. J. Hydrogen Energy 2013, 38, 6710–16715. [Google Scholar] [CrossRef]
- Yuan, B.; Wang, X.; Zhou, X.; Xiao, J.; Li, Z. Novel room-temperature synthesis of MIL-100(Fe) and its excellent adsorption performances for separation of light hydrocarbons. Chem. Eng. J. 2019, 355, 679–686. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, C.; Xia, J.; He, Y.; Pu, L.; Wu, Y.; Zhao, X.; Tan, X.; Xiang, Z.; Jing, J.; et al. A novel porphyrin-doped MIL-53(Fe) photocatalyst with enhanced photocatalytic performance. Mater. Lett. 2023, 330, 133297. [Google Scholar] [CrossRef]
- Huang, P.; Yao, L.; Chang, Q.; Sha, Y.; Jiang, G.; Zhang, S.; Li, Z. Room-temperature preparation of highly efficient NH2-MIL-101(Fe) catalyst: The important role of -NH2 in accelerating Fe(III)/Fe(II) cycling. Chemosphere 2022, 291, 133026. [Google Scholar] [CrossRef]
- Jahromi, F.B.; Elhambakhsh, A.; Keshavarz, P.; Panahi, F. Insight into the application of amino acid-functionalized MIL-101(Cr) micro fluids for high-efficiency CO2 absorption: Effect of amine number and surface area. Fuel 2023, 334, 126603. [Google Scholar] [CrossRef]
- Wei, J.; Shen, W.; Liu, Y. Facile synthesis of SrWO4@MIL-88A(Fe) heterojunctions and their deep treatment of dye wastewater and municipal landfill leachate using photo-Fenton technology. J. Ind. Eng. Chem. 2023, 120, 103–120. [Google Scholar] [CrossRef]
- Chen, C.; Wang, F.; Li, Q.; Wang, Y.; Ma, J. Embedding of SO3H-functionalized ionic liquids in mesoporous MIL-101(Cr) through polyoxometalate bridging: A robust heterogeneous catalyst for biodiesel production. Colloid Surf. A 2022, 648, 129432. [Google Scholar] [CrossRef]
- Chen, P.; Duan, X.; Li, G.; Qiu, X.; Wang, S.; Huang, Y.; Stavitskaya, A.; Jiang, H. Construction of ZIF-67/MIL-88(Fe, Ni) catalysts as a novel platform for efficient overall water splitting. Int. J. Hydrogen Energy 2023, 48, 7170–7180. [Google Scholar] [CrossRef]
- Teerachawanwong, P.; Dilokekunakul, W.; Phadungbut, P.; Klomkliang, N.; Supasitmongkol, S.; Chaemchuen, S.; Verpoort, F. Insights into the heat contributions and mechanism of CO2 adsorption on metal–organic framework MIL-100 (Cr, Fe): Experiments and molecular simulations. Fuel 2023, 331, 125863. [Google Scholar] [CrossRef]
- Hou, L.; Wang, L.; Song, Y.; Liu, L. A multiresponsive luminescent hydroxyl-functionalized MIL-53(Al) for detection of F− and water. Chin. J. Anal. Chem. 2023, 51, 100195. [Google Scholar] [CrossRef]
- Yu, J.; Hao, H.; Fan, G.; Zhao, B. Combined experimental and molecular simulation investigation of dodecylamine adsorption onto MIL-100(Fe) for wastewater treatment. J. Environ. Chem. Eng. 2022, 10, 108756. [Google Scholar] [CrossRef]
- Noushadi, A.; Fotovat, F.; Hamzehlouyan, T.; Vahidi, M. Application of an amino-functionalized MIL-53(Al) MOF as an efficient, selective, and durable adsorbent for SO2 removal. J. Environ. Chem. Eng. 2022, 10, 108768. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, F.; Yang, J.; Li, J. Rapid and HF-free synthesis of MIL-100(Cr) via steam-assisted method. Mater. Lett. 2019, 252, 286–288. [Google Scholar] [CrossRef]
- Dong, W.; Liu, X.; Shi, W.; Huang, Y. Metal–organic framework MIL-53(Fe): Facile microwave-assisted synthesis and use as a highly active peroxidase mimetic for glucose biosensing. RSC. Adv. 2015, 5, 17451–17457. [Google Scholar] [CrossRef]
- Huang, P.; Chang, Q.; Jiang, G.; Xiao, K.; Wang, X. MIL-101(FeII3,Mn) with dual-reaction center as Fenton-like catalyst for highly efficient peroxide activation and phenol degradation10. Sep. Purif. Technol. 2023, 306, 122582. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J. Iron-copper bimetallic metal-organic frameworks for efficient Fenton-like degradation of sulfamethoxazole under mild conditions. Chemosphere 2020, 241, 125002. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Siddique, M.S.; Guo, Y.; Wu, M.; Yang, Y.; Yang, H. Low-crystalline bimetallic metal-organic frameworks as an excellent platform for photo-fenton degradation of organic contaminants: Intensified synergism between hetero-metal nodes. Appl. Catal. B Environ. 2021, 286, 119950. [Google Scholar] [CrossRef]
- Zhang, S.; Li, M.; Wang, J.; Zhang, R.; Ma, X.; Tao, H. Bimetal-organic framework MIL-53(Fe,Ni) stimulates peroxydisulfate to degrade rhodamine B: Properties and degradation mechanism. Colloid Surf. A 2023, 664, 131208. [Google Scholar] [CrossRef]
- Ahmad, M.; Quan, X.; Chen, S.; Yu, H. Tuning Lewis acidity of MIL-88B-Fe with mix-valence coordinatively unsaturated iron centers on ultrathin Ti3C2 nanosheets for efficient photo-Fenton reaction. Appl. Catal. B Environ. 2020, 264, 118534. [Google Scholar] [CrossRef]
- Liu, Z.; Su, R.; Sun, X.; Zhou, W.; Gao, B.; Yue, Q.; Li, Q. The obvious advantage of amino-functionalized metal-organic frameworks: As a persulfate activator for bisphenol F degradation. Sci. Total Environ. 2020, 741, 140464. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Mehta, S.K.; Devi, P.; Kansal, S.K. Bi2WO6/NH2-MIL-88B(Fe) heterostructure: An efficient sunlight driven photocatalyst for the degradation of antibiotic tetracycline in aqueous medium. Adv. Powder Technol. 2021, 32, 4788–4804. [Google Scholar] [CrossRef]
- Feng, X.; Long, R.; Liu, C.; Liu, X. Visible-light-driven removal of tetracycline hydrochloride and microplastics (HDPE) by nano flower hybrid heterojunction NH2-MIL-88B(Fe)/MoS2 via enhanced electron-transfer. Sep. Purif. Technol. 2022, 302, 122138. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J. Metal Organic Framework with Coordinatively Unsaturated Sites as Efficient Fenton-like Catalyst for Enhanced Degradation of Sulfamethazine. Environ. Sci. Technol. 2018, 52, 5367–5377. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Jia, H.; Zhang, A.; Pei, Z.; Luo, M.; Xue, J.; Shen, Q.; Liu, X.; Xu, B. MIL-100 (Fe) with mix-valence coordinatively unsaturated metal site as Fenton-like catalyst for efficiently removing tetracycline hydrochloride: Boosting Fe(III)/Fe(II) cycle by photoreduction. Sep. Purif. Technol. 2021, 262, 118334. [Google Scholar] [CrossRef]
- Liang, H.; Liu, R.; An, X.; Hu, C.; Zhang, X.; Liu, H. Bimetal-organic frameworks with coordinatively unsaturated metal sites for highly efficient Fenton-like catalysis. Chem. Eng. J. 2021, 414, 128669. [Google Scholar] [CrossRef]
- Ma, X.; Wen, J.; Guo, H.; Ren, G. Facile template fabrication of Fe-Mn mixed oxides with hollow microsphere structure for efficient and stable catalytic oxidation of 1,2-dichlorobenzene. Chem. Eng. J. 2020, 382, 122940. [Google Scholar] [CrossRef]
- Wu, Q.; Siddique, M.S.; Yu, W. Iron-nickel bimetallic metal-organic frameworks as bifunctional Fenton-like catalysts for enhanced adsorption and degradation of organic contaminants under visible light: Kinetics and mechanistic studies. J. Hazard. Mater. 2021, 401, 123261. [Google Scholar] [CrossRef]
- Šuligoj, A.; Ristić, A.; Dražić, G.; Pintar, A.; Logar, N.Z.; Tušar, N.N. Bimetal Cu-Mn porous silica-supported catalyst for Fenton-like degradation of organic dyes in wastewater at neutral pH. Catal. Today 2020, 358, 270–277. [Google Scholar] [CrossRef]
- Buragohain, A.; Couck, S.; Voort, P.; Denayer, J.; Biswas, S. Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=–F, –Cl, –Br, –CH3, –C6H4, –F2, –(CH3)2) materials. J. Solid State Chem. 2016, 238, 95–202. [Google Scholar] [CrossRef]
- Shi, H.; Li, C.; Wang, L.; Wang, W.; Bian, J.; Meng, X. Efficient photocatalytic degradation of ammonia nitrogen by Z-scheme NH2-MIL-101(Fe)/BiVO4 heterostructures. J. Alloys Compd. 2023, 933, 167815. [Google Scholar] [CrossRef]
- Gao, C.; Su, Y.; Quan, X.; Sharma, V.; Chen, S.; Yu, H.; Zhang, Y.; Niu, J. Electronic modulation of iron-bearing heterogeneous catalysts to accelerate Fe(III)/Fe(II) redox cycle for highly efficient Fenton-like catalysis. Appl. Catal. B Environ. 2020, 276, 119016. [Google Scholar] [CrossRef]
- Mortazavi, S.-S.; Abbasi, A.; Masteri-Farahani, M. Influence of SO3H groups incorporated as Brønsted acidic parts by tandem post-synthetic functionalization on the catalytic behavior of MIL-101(Cr) MOF for methanolysis of styrene oxide. Colloid Surf. A 2020, 599, 124703. [Google Scholar] [CrossRef]
- Jiang, Y.; Ran, J.; Mao, K.; Yang, X.; Zhong, L.; Yang, C.; Feng, X.; Zhang, H. Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments. Ecotoxicol. Environ. Saf. 2022, 236, 113464. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Wan, J.; Ma, Y.; Wang, Y.; Ding, S.; Li, X. Ferrous metal-organic frameworks with stronger coordinatively unsaturated metal sites for persulfate activation to effectively degrade dibutyl phthalate in wastewater. J. Hazard. Mater. 2019, 377, 163–171. [Google Scholar] [CrossRef]
- He, H.; Wang, Y.; Li, J.; Jiang, S.; Sidra, S.; Gong, W.; Tang, Y.; Hu, Y.; Wei, R.; Yang, D.; et al. Confined conductive and light-adsorbed network in metal organic frameworks (MIL-88B(Fe)) with enhanced photo-Fenton catalytic activity for sulfamethoxazole degradation. Chem. Eng. J. 2022, 427, 131962. [Google Scholar] [CrossRef]
- Huang, P.; Chang, Q.; Jiang, G.; Wang, X.; Zhu, H.; Liu, Q. Rapidly and ultra-sensitive colorimetric detection of H2O2 and glucose based on ferrous-metal organic framework with enhanced peroxidase-mimicking activity. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2023, 285, 12194. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Chen, Z.; Yu, Q.; Zhu, W.; Li, S.; Han, L.; Lu, X.; Li, S.; Wu, Y.; Lv, Z.; et al. Enhanced electrochemical removal of dye wastewater by PbO2 anodes using halloysite nanotubes with different surface charge properties. J. Electroanal. Chem. 2022, 923, 116816. [Google Scholar] [CrossRef]
- Priyadarshini, M.; Ahmad, A.; Ghangrekar, M. Efficient upcycling of iron scrap and waste polyethylene terephthalate plastic into Fe3O4@C incorporated MIL-53(Fe) as a novel electro-Fenton catalyst for the degradation of salicylic acid. Environ. Pollut. 2023, 332, 121242. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, W.; Lanzalaco, S.; Zhao, L.; Sirés, I.; Xia, P.; Zhai, J.; He, Q. Ultra-uniform MIL-88B(Fe)/Fe3S4 hybrids engineered by partial sulfidation to boost catalysis in electro-Fenton treatment of micropollutants: Experimental and mechanistic insights. Chem. Eng. J. 2023, 455, 140757. [Google Scholar] [CrossRef]
- Du, X.; Fu, W.; Su, P.; Zhang, Q.; Zhou, M. FeMo@porous carbon derived from MIL-53(Fe)@MoO3 as excellent heterogeneous electro-Fenton catalyst: Co-catalysis of Mo. J. Environ. Sci. 2023, 127, 652–666. [Google Scholar] [CrossRef]
- Li, K.; Zhang, S.; Tan, Q.; Wu, X.; Li, Y.; Li, Q.; Fan, J.; Lv, K. Insulator in photocatalysis: Essential roles and activation strategies. Chem. Eng. J. 2021, 426, 130772. [Google Scholar] [CrossRef]
- Li, J.; Li, K.; Tan, Q.; Li, Q.; Fan, J.; Wu, C.; Lv, K. Facile Preparation of Highly Active CO2 Reduction (001)TiO2/Ti3C2Tx Photocatalyst from Ti3AlC2 with Less Fluorine. Catalysts 2022, 12, 785. [Google Scholar] [CrossRef]
- Sun, D.; Yang, J.; Chen, F.; Chen, Z.; Lv, K. Hollow Nanospheres Organized by Ultra-Small CuFe2O4/C Subunits with Efficient Photo-Fenton-like Performance for Antibiotic Degradation and Cr(VI) Reduction. Catalysts 2022, 12, 687. [Google Scholar] [CrossRef]
- Zhang, T.; Guo, X.; Pei, H.; Zha, F.; Tang, X.; Tian, H.; Guo, R.; Liu, N.; Mo, Z. Design and synthesis of α-Fe2O3/MIL-53(Fe) composite as a photo-Fenton catalyst for efficient degradation of tetracycline hydrochloride. Colloid Surf. A 2023, 659, 130822. [Google Scholar] [CrossRef]
- Li, M.; Li, C.; Chunrui, Z.; Li, T.; Jiang, J.; Han, Z.; Zhang, C.; Sun, H.; Dong, S. Citric acid-modified MIL-88A(Fe) for enhanced photo-Fenton oxidation in water decontamination. Sep. Purif. Technol. 2023, 308, 122945. [Google Scholar] [CrossRef]
- Ortega-Moreno, G.A.; Ayala-Durán, S.C.; Barbero, B.P.; Narda, G.E.; Bernini, M.C.; Pupo Nogueira, R.F. Photo-Fenton degradation of sulfamethoxazole using MIL-53(Fe) under UVA LED irradiation and natural sunlight. J. Environ. Chem. Eng. 2022, 10, 107678. [Google Scholar] [CrossRef]
- Xiang, Q.; Yu, Z.; Wang, P.; He, N.; Tan, Q.; Wang, Q.; Xiao, X. Construction of Z-scheme N-doped BiFeO3/NH2-MIL-53(Fe) with the synergy of hydrogen peroxide and visible-light-driven photo-Fenton degradation of organic contaminants. Colloid Surf. A 2022, 654, 130112. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Duan, Z.; Yu, D.; Wang, Q.; Ji, D.; Liu, W. Zn/Co-ZIFs@MIL-101(Fe) metal–organic frameworks are effective photo-Fenton catalysts for RhB removal. Sep. Purif. Technol. 2022, 293, 121099. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, M.; Fu, J.; Wang, Y.; Muhammad, Y.; Li, S.; Wang, J.; Zhao, Z.; Zhao, Z. Construction of Cu-bridged Cu2O/MIL(Fe/Cu) catalyst with enhanced interfacial contact for the synergistic photo-Fenton degradation of thiacloprid. Chem. Eng. J. 2020, 395, 125184. [Google Scholar] [CrossRef]
- Jing, J.; Liu, Y.; Jing, L.; Zhou, P.; Xie, M.; He, M.; Yuan, J.; Song, Y.; Xu, Y. A novel Bi3.64Mo0.36O6.55/MIL-88A(Fe) nanorod composite material for enhancing photocatalytic activity in photo-Fenton system. Colloid Surf. A 2022, 654, 130116. [Google Scholar] [CrossRef]
- Wang, J.F.; Liu, Y.; Shao, P.; Zhu, Z.Y.; Ji, H.D.; Du, Z.X.; Wang, C.C.; Liu, W.; Gao, L.J. Efficient ofloxacin degradation via photo-Fenton process over eco-friendly MIL-88A(Fe): Performance, degradation pathways, intermediate library establishment and toxicity evaluation. Environ. Res. 2022, 210, 112937. [Google Scholar] [CrossRef]
- Fang, Z.; Liu, Y.; Qi, J.; Xu, Z.; Qi, T.; Wang, L. Establishing a high-speed electron transfer channel via CuS/MIL-Fe heterojunction catalyst for photo-Fenton degradation of acetaminophen. Appl. Catal. B Environ. 2023, 320, 121979. [Google Scholar] [CrossRef]
- Ma, Y.; Li, M.; Jiang, J.; Li, T.; Wang, X.; Song, Y.; Dong, S. In-situ prepared MIL-53(Fe)/BiOI photocatalyst for efficient degradation of tetracycline under visible-light driven photo-Fenton system: Investigation of performance and mechanism. J. Alloys Compd. 2021, 870, 159524. [Google Scholar] [CrossRef]
- Hang, J.; Yi, X.; Wang, C.; Fu, H.; Wang, P.; Zhao, Y. Heterogeneous photo-Fenton degradation toward sulfonamide matrix over magnetic Fe3S4 derived from MIL-100(Fe). J. Hazard. Mater. 2022, 424, 127415. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhong, Z.; Muhammad, Y.; He, H.; Zhao, Z.; Nie, S.; Zhao, Z. Defect engineering of NH2-MIL-88B(Fe) using different monodentate ligands for enhancement of photo-Fenton catalytic performance of acetamiprid degradation. Chem. Eng. J. 2020, 398, 125684. [Google Scholar] [CrossRef]
Entry | MILs | Synthetic Material | Synthetic Condition | Synthetic Time | Ref. |
---|---|---|---|---|---|
1 | MIL-53(Fe) | FeCl3•6H2O and H2BDC dissolved in DMF | 170 °C | 24 h | [34] |
2 | NH2-MIL-101(Fe) | FeCl3•4H2O and NH2–H2BDC | Room temperature | 24 h | [35] |
3 | MIL-101(Cr) | Cr(NO3)3•9H2O,HF and H2BDC | 493 K | 8 h | [36] |
4 | MIL-88A(Fe) | FeCl3•6H2O and C4H4O4 dissolved in anhydrous ethanol | Room temperature | 24 h | [37] |
5 | SO3H-MIL-101(Cr) | 1,3-propanesultone and imidazole dissolved in ethanol solvent | 50 °C | 24 h | [38] |
6 | MIL-88(Fe, Ni) | FeCl3 ·6H2O, Ni(NO3)2·6H2O and TPA dissolved in DMF and NaOH | 100 °C | 48 h | [39] |
7 | MIL-100(Cr, Fe) | MIL-100 (Cr): chromium (III), trimesic acid and DI water MIL-100(Fe): FeCl3·6H2O, trimesic acid and DMF | 493 K and 423 K | 15 h and 20 h | [40] |
8 | OH-MIL-53(Al) | AlCl3•6H2O and BDC-OH in DMF | 125 °C | 8 h | [41] |
9 | MIL-100(Fe) | FeSO4•7H2O and H3BDC with NaOH | Room temperature | 24 h | [42] |
10 | NH2 -MIL-53(Al) | AlCl3•6H2O and NH2-BDC dissolved in DMF | 130 °C | 72 h | [43] |
Entry | MILs | Characterization Result | Target Compound | Removal Efficiency | Photo-Fenton Conditions | Ref. |
---|---|---|---|---|---|---|
1 | MIL-101(FeII3, Mn) | Phenol | >99% (10 min) | catalyst, 100 mg/L; pH = 6; H2O2, 20 mM; Temp. 35 °C | [46] | |
2 | Fe0.75Cu0.25(BDC) | SMX | 100% (120 min) | catalyst, 500 mg/L; pH = 5.6; H2O2, 6 mM; Temp. 25 °C | [47] | |
3 | L-MIL-53(Fe, Mn) | CIP | >89% (30 min) | catalyst, 100 mg/L; pH = 7; H2O2, 5 mM; Temp. 25 °C; visible light | [48] | |
4 | MIL-53(Fe, Ni) | RhB | >93% (180 min) | catalyst, 300 mg/L; pH 4~12; PDS, 0.1 mM; Temp. room temperature | [49] | |
5 | nZVI/MIL-101(Cr) | TC | >90% (120 min) | catalyst, 250 mg/L; pH = 7; H2O2, 50 mM; Temp. room temperature | [21] | |
6 | CUCs-MIL-88B(Fe)/Ti3C2 | SMX | >90% (120 min) | catalyst, 200 mg/L; pH = 3; H2O2, 10 mM; Temp. room temperature; visible light | [50] | |
7 | NH2-MIL-101(Fe) | BPF | >90% (40 min) | catalyst, 300 mg/L; pH = 6.2; PS, 1 mM; Temp. 25 °C | [51] | |
8 | NH2-MIL-101(Fe) | BPA | >95% (30 min) | catalyst, 200 mg/L; pH = 6; H2O2, 10 mM; Temp. 30 °C | [35] | |
9 | Bi2WO6/ NH2 -MIL-88B(Fe) | TC | >89% (130 min) | catalyst, 350 mg/L; pH = 4; Temp. room temperature; visible light | [52] | |
10 | MoS2/ NH2 -MIL-88B(Fe) | TC | >96%(30 min) | catalyst, 500 mg/L; PH = 7; Temp. 35 °C; visible light | [53] | |
11 | CUS-MIL-100(Fe) | SMT | 100% (180 min) | catalyst, 500 mg/L; pH = 4; H2O2, 6 mM; Temp. 25 °C | [54] | |
12 | CUS-MIL-250 | TC-HCL | >95% (80 min) | catalyst, 200 mg/L; pH = 4; H2O2, 2 mM; Temp. room temperature; visible light | [55] | |
13 | CUMSs/ MIL-101(Fe, Cu) | CIP | 100% (30 min) | catalyst, 100 mg/L; pH = 7; H2O2, 3 mM; Temp. 25 °C | [56] |
Entry | MILs | SBET Area m2/g | Target Compound | Removal Efficiency | Photo-Fenton Conditions | Ref. |
---|---|---|---|---|---|---|
1 | MIL-88A(Fe)-CA | - | MB and CBZ | >97% | catalyst, 125 mg/L; pH = 3; H2O2, 25 mM; Temp. 40 °C | [76] |
2 | MIL-53(Fe) | - | SMX | >96% (120 min) | catalyst, 2 mmol/L; pH = 4; H2O2, 2 mM; Temp. room temperature | [77] |
3 | N-BiFeO3/ NH2-MIL-53(Fe) | - | TCH | >99% (60 min) | catalyst, 200 mg/L; pH = 7; H2O2, 0.2 mL/L; Temp. room temperature | [78] |
4 | Zn/Co-ZiFs@ MIL-101(Fe) | 376 | RhB | >95% (3 h) | catalyst, 200 mg/L; pH = 5; H2O2 90 mM; Temp. 5 °C | [79] |
5 | Cu2O/ MIL(Fe/Cu) | 1553 | TCL | >80% (80 min) | catalyst, 50 mg/L; pH = 7; H2O2, 49 mM; Temp. 25 °C | [80] |
6 | Bi3.64Mo0.63O6.55/ MIL-88A(Fe) | 80.196 | TCH | >84% (30 min) | catalyst, 500 mg/L; pH = 7; H2O2 2.5 mL/L; Temp. room temperature | [81] |
7 | MIL-88A(Fe) | 13.17 | OFL | 100% (50 min) | catalyst, 250 mg/L; pH = 7; H2O2 1 mL/L; Temp. room temperature | [82] |
8 | CuS/MIL-Fe | 914.19 | APAP | 100% (30 min) | catalyst, 200 mg/L; pH = 5; H2O2 15 mM; Temp. room temperature | [83] |
9 | MIL-53(Fe)/BiOI | - | TC | >86% (14 min) | catalyst, 200 mg/L; pH = 7; H2O2 10 mM; Temp. room temperature | [84] |
10 | Fe3S4 | - | SMX | 100% (10 min) | catalyst, 300 mg/L; pH = 5; H2O2 0.2 mL/L; Temp. room temperature | [85] |
11 | NH2 -MIL-88B(Fe) | - | ACTM | 100% (40 min) | catalyst, 140 mg/L; pH neutral; H2O2 0.21 mL/L; Temp. 25 °C | [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, K.; Shu, B.; Lv, K.; Huang, P.; Chang, Q.; Wu, L.; Wang, S.; Cao, L. Recent Progress of MIL MOF Materials in Degradation of Organic Pollutants by Fenton Reaction. Catalysts 2023, 13, 734. https://doi.org/10.3390/catal13040734
Xiao K, Shu B, Lv K, Huang P, Chang Q, Wu L, Wang S, Cao L. Recent Progress of MIL MOF Materials in Degradation of Organic Pollutants by Fenton Reaction. Catalysts. 2023; 13(4):734. https://doi.org/10.3390/catal13040734
Chicago/Turabian StyleXiao, Keru, Bao Shu, Kangle Lv, Peipei Huang, Qing Chang, Laiyan Wu, Songbo Wang, and Lingling Cao. 2023. "Recent Progress of MIL MOF Materials in Degradation of Organic Pollutants by Fenton Reaction" Catalysts 13, no. 4: 734. https://doi.org/10.3390/catal13040734
APA StyleXiao, K., Shu, B., Lv, K., Huang, P., Chang, Q., Wu, L., Wang, S., & Cao, L. (2023). Recent Progress of MIL MOF Materials in Degradation of Organic Pollutants by Fenton Reaction. Catalysts, 13(4), 734. https://doi.org/10.3390/catal13040734