Atmospheric and Efficient Selective Oxidation of Ethylbenzene Catalyzed by Cobalt Oxides Supported on Mesoporous Carbon Nitride
Abstract
:1. Introduction
2. Results and Discussions
2.1. Materials Characterization
2.2. Catalyst Activity
3. Experimental Section
3.1. Catalyst Preparation
3.1.1. Synthesis of Mpg-C3N4
3.1.2. Preparation of CoOx/Mpg-C3N4
3.1.3. Preparation of Other Supported CoOx Catalysts
3.2. Material Characterization
3.3. Catalytic Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaudhary, V.; Sharma, S. Study of ethylbenzene oxidation over polymer-silica hybrid supported Co (II) and Cu (II) complexes. Catal. Today 2021, 375, 601–613. [Google Scholar] [CrossRef]
- Chaudhary, V.; Sharma, S. Synthesis of polymer-silica hybrid-supported catalysts for solvent-free oxidation of ethylbenzene with TBHP. Asia Pac. J. Chem. Eng. 2020, 15, e2441. [Google Scholar] [CrossRef]
- Nandanwar, S.U.; Rathod, S.; Bansal, V.; Bokade, V.V. A review on selective production of acetophenone from oxidation of ethylbenzene over heterogeneous catalysts in a decade. Catal. Lett. 2021, 151, 2116–2131. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, S.; Ma, L.; Yang, M.; Qin, J.; Huang, X.; Gong, L.; Xiong, Y.; Li, R. A 3D-honeycomb-like catalyst: A nitrogen-doped carbon material with cobalt and manganese-oxide for C–H bond oxidation. Inorg. Chem. Front. 2019, 6, 3270–3287. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.; Jian, P.; Wang, L.; Yan, X. Promoted selective oxidation of ethylbenzene in liquid phase achieved by hollow CeVO4 microspheres. J. Colloid Interface Sci. 2022, 614, 102–109. [Google Scholar] [CrossRef]
- Selvaraj, M.; Park, D.W.; Kim, I.; Kawi, S.; Ha, C.S. Highly active mesoporous chromium silicate catalysts in side-chain oxidation of alkylaromatics. Dalton Trans. 2012, 41, 14204–14210. [Google Scholar] [CrossRef] [PubMed]
- Raji, V.; Chakraborty, M.; Parikh, P.A. Catalytic Performance of Silica-Supported Silver Nanoparticles for Liquid-Phase Oxidation of Ethylbenzene. Ind. Eng. Chem. Res. 2012, 51, 5691–5698. [Google Scholar] [CrossRef]
- Nilforoushan, S.; Ghiaci, M.; Hosseini, S.M.; Laurent, S.; Muller, R.N. Selective liquid phase oxidation of ethyl benzene to acetophenone by palladium nanoparticles immobilized on a g-C3N4–rGO composite as a recyclable catalyst. New J. Chem. 2019, 43, 6921–6931. [Google Scholar] [CrossRef]
- Li, Y.; Jie, S.; Li, K.; Liu, Z. Synthesis of efficient Co and N co-doped carbon catalysts with high surface areas for selective oxidation of ethylbenzene. New J. Chem. 2018, 42, 12677–12683. [Google Scholar] [CrossRef]
- Zhang, H.; Cai, A.; He, H.; Zhang, Q.; Zhang, F.; Zhang, G.; Fan, X.; Peng, W.; Li, Y. Nitrogen-doped 3D hollow carbon spheres for efficient selective oxidation of C–H bonds under mild conditions. New J. Chem. 2022, 46, 9727–9734. [Google Scholar] [CrossRef]
- Wang, X.; Blechert, S.; Antonietti, M. Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. ACS Catal. 2012, 2, 1596–1606. [Google Scholar] [CrossRef]
- Wang, Y.; Di, Y.; Antonietti, M.; Li, H.; Chen, X.; Wang, X. Excellent Visible-Light Photocatalysis of Fluorinated Polymeric Carbon Nitride Solids. Chem. Mater. 2010, 22, 5119–5121. [Google Scholar] [CrossRef]
- Chakraborty, I.; Ghosh, N.; Ghosh, D.; Dubey, B.; Pradhan, D.; Ghangrekar, M. Application of synthesized porous graphitic carbon nitride and its composite as excellent electrocatalysts in microbial fuel cell. Int. J. Hydrogen Energy 2020, 45, 31056–31069. [Google Scholar] [CrossRef]
- Wang, P.; Xia, K.; Chen, Y.; Tian, Q.; Xiong, R.; Han, B.; Gao, Q.; Zhou, C.; Yu, D. Acid-assisted synthesis of nitrogen-deficient mesoporous graphitic carbon nitride for hydrogen storage. Mater. Lett. 2021, 301, 130347. [Google Scholar] [CrossRef]
- Wu, M.; Yan, J.; Tang, X.; Zhao, M.; Jiang, Q. Synthesis of Potassium-Modified Graphitic Carbon Nitride with High Photocatalytic Activity for Hydrogen Evolution. ChemSusChem 2014, 7, 2654–2658. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Chen, T.; Liu, Q.; Zhang, Z.; Fang, X. Insight into the Enhanced Photocatalytic Activity of Potassium and Iodine Codoped Graphitic Carbon Nitride Photocatalysts. J. Phys. Chem. C 2016, 120, 25328–25337. [Google Scholar] [CrossRef]
- Chen, D.; Wang, K.; Ren, T.; Ding, H.; Zhu, Y. Synthesis and characterization of the ZnO/mpg-C3N4 heterojunction photocatalyst with enhanced visible light photoactivity. Dalton Trans. 2014, 43, 13105–13114. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Thomas, A.; Fu, X.; Antonietti, M. Metal-Containing Carbon Nitride Compounds: A New Functional Organic-Metal Hybrid Material. Adv. Mater. 2009, 21, 1609–1612. [Google Scholar] [CrossRef]
- Ghafuri, H.; Jafari, G.; Rashidizadeh, A.; Manteghi, F. Co2+ immobilized on highly ordered mesoporous graphitic carbon nitride (ompg-C3N4/Co2+) as an efficient and recyclable heterogeneous catalyst for one-pot tandem selective photo-oxidation/Knoevenagel condensation. Mol. Catal. 2019, 475, 110491. [Google Scholar] [CrossRef]
- Yang, C.; Fu, L.; Zhu, R.; Liu, Z. Influence of cobalt species on the catalytic performance of Co-NC/SiO2 for ethylbenzene oxidation. Phys. Chem. Chem. Phys. 2016, 18, 4635–4642. [Google Scholar] [CrossRef]
- Chen, Z.; Mitchell, S.; Vorobyeva, E.; Leary, R.K.; Hauert, R.; Furnival, T.; Ramasse, Q.M.; Thomas, J.M.; Midgley, P.A.; Dontsova, D.; et al. Stabilization of Single Metal Atoms on Graphitic Carbon Nitride. Adv. Funct. Mater. 2017, 27, 1605785. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, P.; Xu, X.; Li, Y.; Li, H.; Wang, Y. A novel catalyst Pd@ompg-C3N4 for highly chemoselective hydrogenation of quinoline under mild conditions. J. Catal. 2013, 297, 272–280. [Google Scholar] [CrossRef]
- Yi, X.-T.; Zhao, T.; Wang, F.; Xu, J.; Xue, B. Palladium Nanoparticles Supported on Exfoliated g-C3N4 as Efficient Catalysts for Selective Oxidation of Benzyl Alcohol by Molecular Oxygen. New J. Chem. 2021, 45, 13519–13528. [Google Scholar] [CrossRef]
- Bojdys, M.J.; Müller, J.-O.; Antonietti, M.; Thomas, A. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem. Eur. J. 2008, 14, 8177–8182. [Google Scholar] [CrossRef]
- Zhang, Y.; Mori, T.; Ye, J. Polymeric Carbon Nitrides: Semiconducting Properties and Emerging Applications in Photocatalysis and Photoelectrochemical Energy Conversion. Sci. Adv. Mater. 2012, 4, 282–291. [Google Scholar] [CrossRef]
- Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.; Carlsson, J.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908. [Google Scholar] [CrossRef]
- Xu, J.; Wu, H.-T.; Wang, X.; Xue, B.; Li, Y.-X.; Cao, Y. A new and environmentally benign precursor for the synthesis of mesoporous g-C3N4 with tunable surface area. Phys. Chem. Chem. Phys. 2013, 15, 4510–4517. [Google Scholar] [CrossRef]
- Shi, S.; Chen, C.; Wang, M.; Ma, J.; Gao, J.; Xu, J. Mesoporous strong base supported cobalt oxide as a catalyst for the oxidation of ethylbenzene. Catal. Sci. Technol. 2014, 4, 3606–3610. [Google Scholar] [CrossRef]
- Jie, S.; Yang, C.; Chen, Y.; Liu, Z. Facile synthesis of ultra-stable Co-N-C catalysts using cobalt porphyrin and peptides as precursors for selective oxidation of ethylbenzene. Mol. Catal. 2018, 458, 1–8. [Google Scholar] [CrossRef]
- Jie, S.; Lin, X.; Chao, Z.; Liu, Z. Effective ternary copper-cerium-cobalt catalysts synthesized via a modified pechini method for selective oxidation of ethylbenzene. Mater. Chem. Phys. 2018, 214, 239–246. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, C.; Li, Y.; Jiang, P.; Jiang, J.; Leng, Y. Solvent-free aerobic selective oxidation of hydrocarbons catalyzed by porous graphitic carbon encapsulated cobalt composites. New J. Chem. 2018, 42, 16829–16835. [Google Scholar] [CrossRef]
- Gao, L.; Zhuge, W.; Feng, X.; Sun, W.; Sun, X.; Zheng, G. Co/rGO synthesized via the alcohol-thermal method as a heterogeneous catalyst for the highly efficient oxidation of ethylbenzene with oxygen. New J. Chem. 2019, 43, 8189–8194. [Google Scholar] [CrossRef]
- Fu, L.; Chen, Y.; Zhao, S.; Liu, Z.; Zhu, R. Sulfur-mediated synthesis of N-doped carbon supported cobalt catalysts derived from cobalt porphyrin for ethylbenzene oxidation. RSC Adv. 2016, 6, 19482–19491. [Google Scholar] [CrossRef]
- Zhang, L.; Jie, S.; Liu, Z. Bicontinuous mesoporous Co, N co-doped carbon catalysts with high catalytic performance for ethylbenzene oxidation. New J. Chem. 2019, 43, 7275–7281. [Google Scholar] [CrossRef]
- Oh, Y.; Hwang, J.O.; Lee, E.; Yoon, M.; Le, V.; Kim, Y.; Kim, D.H.; Kim, S.O. Divalent Fe Atom Coordination in Two-Dimensional Microporous Graphitic Carbon Nitride. ACS Appl. Mater. Interfaces 2016, 8, 25438–25443. [Google Scholar] [CrossRef]
- Su, Q.; Sun, J.; Wang, J.; Yang, Z.; Cheng, W.; Zhang, S. Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates. Catal. Sci. Technol. 2014, 4, 1556–1562. [Google Scholar] [CrossRef]
- Yu, Z.-H.; Gan, Y.-L.; Xu, J.; Xue, B. Direct Catalytic Hydroxylation of Benzene to Phenol Catalyzed by FeCl3 Supported on Exfoliated Graphitic Carbon Nitride. Catal. Lett. 2020, 150, 301–311. [Google Scholar] [CrossRef]
- Zhu, J.; Wei, Y.; Chen, W.; Zhao, Z.; Thomas, A. Graphitic carbon nitride as a metal-free catalyst for NO decomposition. Chem. Commun. 2010, 46, 6965–6967. [Google Scholar] [CrossRef]
- Bahuguna, A.; Kumar, A.; Chhabra, T.; Kumar, A.; Krishnan, V. Potassium-Functionalized Graphitic Carbon Nitride Supported on Reduced Graphene Oxide as a Sustainable Catalyst for Knoevenagel Condensation. ACS Appl. Nano Mater. 2018, 1, 6711–6723. [Google Scholar] [CrossRef]
- Xu, J.; Long, K.-Z.; Wang, Y.; Xue, B.; Li, Y.-X. Fast and facile preparation of metal-doped g-C3N4 composites for catalytic synthesis of dimethyl carbonate. Appl. Catal. A 2015, 496, 1–8. [Google Scholar] [CrossRef]
- Chen, P.-W.; Li, K.; Yu, Y.-X.; Zhang, W.-D. Cobalt-doped graphitic carbon nitride photocatalysts with high activity for hydrogen evolution. Appl. Sur. Sci. 2017, 392, 608–615. [Google Scholar] [CrossRef]
- Yue, B.; Li, Q.; Iwai, H.; Kako, T.; Ye, J. Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Sci. Technol. Adv. Mater. 2011, 12, 034401. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Jie, S.; Zhu, R.; Zhang, N.; Wang, J.; Liu, Z. Co-N-C Catalysts Synthesized via Pyrolyzing the Ionic Liquids Solution Dissolved with Casein and Cobalt Porphyrin for Ethylbenzene Oxidation. ChemistrySelect 2017, 2, 4255–4260. [Google Scholar] [CrossRef]
- Imran, G.; Maheswari, R. Mn-incorporated SBA-1 cubic mesoporous silicates: Synthesis and characterization. Mater. Chem. Phys. 2015, 161, 237–242. [Google Scholar] [CrossRef]
- Pachamuthu, M.P.; Rajalakshmi, R.; Maheswari, R.; Ramanathan, A. Direct glycol assisted synthesis of an amorphous mesoporous silicate with framework incorporated Co2+: Characterization and catalytic application in ethylbenzene oxidation. RSC Adv. 2014, 4, 29909–29916. [Google Scholar] [CrossRef]
- Habibi, D.; Faraji, A.R.; Arshadi, M.; Fierro, J.L.G. Characterization and catalytic activity of a novel Fe nano-catalyst as efficient heterogeneous catalyst for selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol. J. Mol. Catal. A 2013, 372, 90–99. [Google Scholar] [CrossRef]
- Kalita, L.; Saikia, L. Palladium-Supported Nanoceria: A Highly Efficient Catalyst for Solvent-Free Selective Oxidation of Ethylbenzene to Acetophenone. ChemistrySelect 2020, 5, 4848–4855. [Google Scholar] [CrossRef]
- Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene. Angew. Chem. Int. Ed. 2006, 45, 4467–4471. [Google Scholar] [CrossRef]
Sample | SBET (m2·g−1) | Pore Size (nm) a | Pore Volume (cm3·g−1) | Mass (g) b |
---|---|---|---|---|
mpg-C3N4 | 84 | 13.2 | 0.30 | 2.44 |
3CoOx/mpg-C3N4-300 | 44 | 8.8 | 0.15 | 0.57 |
3CoOx/mpg-C3N4-350 | 32 | 10.2 | 0.15 | 0.53 |
3CoOx/mpg-C3N4-400 | 70 | 10.2 | 0.26 | 0.45 |
3CoOx/mpg-C3N4-450 | 56 | 10.5 | 0.87 | 0.35 |
3CoOx/mpg-C3N4-500 | 60 | 12.5 | 0.32 | 0.24 |
3CoOx/mpg-C3N4-400-R | 77 | 12.1 | 0.28 | – |
Material | Co (II) | Co (III) | Co0 | Na | Nb | Nc |
---|---|---|---|---|---|---|
mpg-C3N4 | – | – | – | 74.1 | 14.0 | 11.9 |
3CoOx/mpg-C3N4-350 | 32.7 | 62.0 | 5.3 | 70.1 | 20.1 | 9.8 |
3CoOx/mpg-C3N4-400 | 41.5 | 56.0 | 2.4 | 64.8 | 25.5 | 9.7 |
3CoOx/mpg-C3N4-450 | 35.3 | 61.6 | 3.1 | 68.0 | 22.9 | 9.1 |
3CoOx/mpg-C3N4-400R | 37.6 | 59.2 | 3.2 | 66.0 | 24.9 | 9.1 |
Catalyst | Con. (%) | Sel. (%) | ||
---|---|---|---|---|
AP | PE | BA | ||
/ | 1.6 | 26.6 | 17.5 | 55.9 |
3CoOx/g-C3N4 | 27.6 | 75.2 | 14.5 | 10.3 |
3CoOx/eg-C3N4 | 32.9 | 74.6 | 9.5 | 15.9 |
3CoOx/CNT | 19.6 | 63.5 | 18.8 | 17.7 |
3CoOx/FDU-12 | 8.6 | 71.9 | 11.2 | 16.9 |
3CoOx/mpg-C3N4-0.4 | 37.8 | 79.4 | 6.8 | 13.8 |
3CoOx/mpg-C3N4-0.6 | 62.0 | 84.7 | 4.8 | 10.6 |
3CoOx/mpg-C3N4-0.8 | 57.4 | 83.6 | 5.2 | 11.8 |
3CoOx/mpg-C3N4-1.2 | 35.9 | 75.5 | 15.2 | 9.3 |
3CoOx/mpg-C3N4-0.6 b | 10.7 | 67.8 | 27.1 | 5.1 |
3CoOx/mpg-C3N4-0.6-R | 60.3 | 81.2 | 5.9 | 12.9 |
Catalyst | Con. (%) | Sel. (%) | ||
---|---|---|---|---|
AP | PE | BA | ||
3CoOx/mpg-C3N4-300 | 11.7 | 69.2 | 7.6 | 23.3 |
3CoOx/mpg-C3N4-350 | 23.8 | 69.0 | 9.1 | 21.9 |
3CoOx/mpg-C3N4-400 | 62.0 | 84.7 | 4.8 | 10.6 |
3CoOx/mpg-C3N4-450 | 71.1 | 90.0 | 2.8 | 7.2 |
3CoOx/mpg-C3N4-500 | 76.6 | 91.4 | 1.8 | 6.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Zhang, X.-W.; Wang, F.; Xue, B.; Xu, J. Atmospheric and Efficient Selective Oxidation of Ethylbenzene Catalyzed by Cobalt Oxides Supported on Mesoporous Carbon Nitride. Catalysts 2023, 13, 828. https://doi.org/10.3390/catal13050828
Zhu Y, Zhang X-W, Wang F, Xue B, Xu J. Atmospheric and Efficient Selective Oxidation of Ethylbenzene Catalyzed by Cobalt Oxides Supported on Mesoporous Carbon Nitride. Catalysts. 2023; 13(5):828. https://doi.org/10.3390/catal13050828
Chicago/Turabian StyleZhu, Ye, Xue-Wen Zhang, Fei Wang, Bing Xue, and Jie Xu. 2023. "Atmospheric and Efficient Selective Oxidation of Ethylbenzene Catalyzed by Cobalt Oxides Supported on Mesoporous Carbon Nitride" Catalysts 13, no. 5: 828. https://doi.org/10.3390/catal13050828
APA StyleZhu, Y., Zhang, X. -W., Wang, F., Xue, B., & Xu, J. (2023). Atmospheric and Efficient Selective Oxidation of Ethylbenzene Catalyzed by Cobalt Oxides Supported on Mesoporous Carbon Nitride. Catalysts, 13(5), 828. https://doi.org/10.3390/catal13050828