Feasibility Assessment on Remanufacturing of Ni–Mo/γ–Al2O3 Catalyst for Residue Hydrodesulfurization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Elemental Composition of the Ni–Mo/γ–Al2O3 Catalyst during the Remanufacturing Process
2.2. Textural Properties of the Ni–Mo/γ–Al2O3 Catalyst during the Remanufacturing Process
2.3. Crystal Structures of the Ni–Mo/γ–Al2O3 Catalyst during the Remanufacturing Process
2.4. Reduction Properties of the Ni–Mo/γ–Al2O3 Catalyst during the Remanufacturing Process
2.5. FT-IR Analysis of the Ni–Mo/γ–Al2O3 Catalyst during the Remanufacturing Process
2.6. Quantitative Investigation of Impurities in the Ni–Mo/γ–Al2O3 Catalyst during the Remanufacturing Process
2.7. HDS Activity Test for the Remanufactured Ni–Mo/γ–Al2O3 Catalyst
3. Materials and Methods
3.1. Catalyst
3.2. Catalyst Remanufacturing Process
3.2.1. Oil Washing
3.2.2. Complete Incineration
3.2.3. Acid Leaching
3.3. Catalyst Characterization
3.4. HDS Performance Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akcil, A.; Vegliò, F.; Ferella, F.; Okudan, M.D.; Tuncuk, A. A review of metal recovery from spent petroleum catalysts and ash. Waste Manag. 2015, 45, 420–433. [Google Scholar] [CrossRef]
- Chen, B.; Du, H.; Guo, Y.; Wang, S.; Peng, J.; Zhang, Y.; Li, L.; Xu, C. Recovering valuable metals from spent hydrodesulfurization catalysts by co-leaching, dissociation, and stepwise precipitation. J. Environ. Chem. Eng. 2023, 11, 109365. [Google Scholar] [CrossRef]
- Ahn, S.Y.; Jang, W.J.; Shim, J.O.; Jeon, B.H.; Roh, H.S. CeO2-based oxygen storage capacity materials in environmental and energy catalysis for carbon neutrality: Extended application and key catalytic properties. Catal. Rev.-Sci. Eng. 2023, 1–84. [Google Scholar] [CrossRef]
- Shafiq, I.; Shafique, S.; Akhter, P.; Yang, W.; Hussain, M. Recent developments in alumina supported hydrodesulfurization catalysts for the production of sulfur-free refinery products: A technical review. Catal. Rev.-Sci. Eng. 2022, 64, 1–86. [Google Scholar] [CrossRef]
- Al-Sheeha, H.; Marafi, M.; Raghavan, V.; Rana, M.S. Recycling and recovery routes for spent hydroprocessing catalyst waste. Ind. Eng. Chem. Res. 2013, 52, 12794–12801. [Google Scholar] [CrossRef]
- IEA. Global Energy Review 2021; IEAL: Paris, France, 2021. [Google Scholar]
- Lee, Y.L.; Kim, K.J.; Hong, G.R.; Roh, H.S. Target-oriented water–gas shift reactions with customized reaction conditions and catalysts. Chem. Eng. J. 2023, 458, 141422. [Google Scholar] [CrossRef]
- Marafi, M.; Stanislaus, A. Spent catalyst waste management: A review, Part I-Developments in hydroprocessing catalyst waste reduction and use. Resour. Conserv. Recycl. 2008, 52, 859–873. [Google Scholar] [CrossRef]
- Li, L.; Ju, F.; Ling, H. Reactivation of NiSO4/ZnO-Al2O3-SiO2 adsorbent for reactive adsorption desulfurization. Fuel 2023, 339, 127411. [Google Scholar] [CrossRef]
- Srour, H.; Devers, E.; Mekki-Berrada, A.; Toufaily, J.; Hamieh, T.; Batiot-Dupeyrat, C.; Pinard, L. Regeneration of an aged hydrodesulfurization catalyst: Conventional thermal vs non-thermal plasma technology. Fuel 2021, 306, 121674. [Google Scholar] [CrossRef]
- Gao, J.; Cao, Y.; Wu, T.; Li, Y. Self-circulation of oily spent hydrodesulphurization (HDS) catalyst by catalytic pyrolysis for high quality oil recovery. Environ. Res. 2023, 222, 115359. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.; Chen, Y.; Wang, C. Efficient removal of oil from spent hydrodesulphurization catalysts using microwave pyrolysis method. J. Anal. Appl. Pyrolysis. 2018, 135, 169–175. [Google Scholar] [CrossRef]
- Liang, X.; Tang, J.; Li, L.; Wu, Y.; Sun, Y. A review of metallurgical processes and purification techniques for recovering Mo, V, Ni, Co, Al from spent catalysts. J. Clean. Prod. 2022, 376, 134108. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, L.; Han, Y.; Zhang, Y.; Liu, X.; Xu, S. Cleaner recycling of spent Ni–Mo/γ-Al2O3 catalyst based on mineral phase reconstruction. J. Clean. Prod. 2019, 232, 266–273. [Google Scholar] [CrossRef]
- TENG, Q.; YANG, Z.C.; WANG, H.J. Recovery of vanadium and nickel from spent-residue oil hydrotreating catalyst by direct acid leaching-solvent extraction. Trans. Nonferrous Met. Soc. China 2023, 33, 325–336. [Google Scholar] [CrossRef]
- Xie, Y.; Zhao, S.; Wang, M.; Zhang, G.; Li, Q.; Cao, Z.; Guan, W.; Wu, S. A Novel Technology of Molybdenum Extraction from Spent HDS Catalysts. J. Sustain. Metall. 2022, 8, 994–1000. [Google Scholar] [CrossRef]
- Humadi, J.I.; Nawaf, A.T.; Jarullah, A.T.; Ahmed, M.A.; Hameed, S.A.; Mujtaba, I.M. Design of new nano-catalysts and digital basket reactor for oxidative desulfurization of fuel: Experiments and modelling. Chem. Eng. Res. Des. 2023, 190, 634–650. [Google Scholar] [CrossRef]
- Tang, Y.; Li, S.; Qi, Y.; Yang, S.; Zhou, Q.; Zhang, R.; Qian, B.; Su, B.; Zhang, L.; Dai, B. Coke evolution during the air- and oxy-firing regeneration of a spent Ni/ZnO sulfur adsorbent. J. Environ. Chem. Eng. 2023, 11, 109455. [Google Scholar] [CrossRef]
- Gao, J.; Hao, M.; Wu, T.; Li, Y. A fast and efficient method for the efficient recovery of crude oil from spent hydrodesulphurization catalyst. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 642, 128650. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, C.; Chen, Y.; Wang, C. Efficient Phase Transformation of γ-Al 2 O 3 to α-Al 2 O 3 in Spent Hydrodesulphurization Catalyst by Microwave Roasting Method. Ind. Eng. Chem. Res. 2019, 58, 1495–1501. [Google Scholar] [CrossRef]
- Morales, F.J.; Ancheyta, J.; Torres, P.; Alonso, F. Experimental methodologies to perform accelerated deactivation studies of hydrotreating catalysts. Fuel 2023, 332, 126074. [Google Scholar] [CrossRef]
- Zhu, H.; Mao, Z.; Liu, B.; Yang, T.; Feng, X.; Jin, H.; Peng, C.; Yang, C.; Wang, J.; Fang, X. Regulating catalyst morphology to boost the stability of Ni–Mo/Al2O3 catalyst for ebullated-bed residue hydrotreating. Green Energy Environ. 2021, 6, 283–290. [Google Scholar] [CrossRef]
- Iwamoto, R. Regeneration of residue hydrodesulfurization catalyst. J. Japan Pet. Inst. 2013, 56, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.L.; Kim, K.J.; Hong, G.R.; Ahn, S.Y.; Kim, B.J.; Park, H.R.; Yun, S.J.; Bae, J.W.; Jeon, B.H.; Roh, H.S. Sulfur-Tolerant Pt/CeO2Catalyst with Enhanced Oxygen Storage Capacity by Controlling the Pt Content for the Waste-to-Hydrogen Processes. ACS Sustain. Chem. Eng. 2021, 9, 15287–15293. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, 1st ed.; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Thommes, M.; Cychosz, K.A. Physical adsorption characterization of nanoporous materials: Progress and challenges. Adsorption 2014, 20, 233–250. [Google Scholar] [CrossRef]
- Landers, J.; Gor, G.Y.; Neimark, A.V. Density functional theory methods for characterization of porous materials. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 437, 3–32. [Google Scholar] [CrossRef]
- Soni, K.; Rana, B.S.; Sinha, A.K.; Bhaumik, A.; Nandi, M.; Kumar, M.; Dhar, G.M. 3-D ordered mesoporous KIT-6 support for effective hydrodesulfurization catalysts. Appl. Catal. B Environ. 2009, 90, 55–63. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Yin, C.; Wu, Y.; Chai, Y.; Dong, D.; Li, X.; Liu, C. One-pot synthesis of ordered mesoporous NiMo-Al2O3 catalysts for dibenzothiophene hydrodesulfurization. Appl. Catal. B Environ. 2016, 198, 493–507. [Google Scholar] [CrossRef]
- Jang, W.J.; Kim, H.M.; Shim, J.O.; Yoo, S.Y.; Jeon, K.W.; Na, H.S.; Lee, Y.L.; Jeong, D.W.; Bae, J.W.; Nah, I.W.; et al. Key properties of Ni-MgO-CeO2, Ni-MgO-ZrO2, and Ni-MgO-Ce(1-x)Zr(x)O2 catalysts for the reforming of methane with carbon dioxide. Green Chem. 2018, 20, 1621–1633. [Google Scholar] [CrossRef]
- Bore, M.T.; Pham, H.N.; Ward, T.L.; Datye, A.K. Role of pore curvature on the thermal stability of gold nanoparticles in mesoporous silica. Chem. Commun. 2004, 22, 2620–2621. [Google Scholar] [CrossRef]
- Wang, E.; Yang, F.; Song, M.; Chen, G.; Zhang, Q.; Wang, F.; Bing, L.; Wang, G.; Han, D. Recent advances in the unsupported catalysts for the hydrodesulfurization of fuel. Fuel Process. Technol. 2022, 235, 107386. [Google Scholar] [CrossRef]
- Cervantes, J.A.M.; Huirache-Acuña, R.; de León, J.N.D.; Moyado, S.F.; Cruz-Reyes, J.; Alonso-Núñez, G. Unsupported CoNixMo sulfide hydrodesulfurization catalysts prepared by the thermal decomposition of trimetallic tetrabutylammonium thiomolybdate: Effect of nickel on sulfur removal. React. Kinet. Mech. Catal. 2020, 131, 187–198. [Google Scholar] [CrossRef]
- Bernard, P.; Stelmachowski, P.; Broś, P.; Makowski, W.; Kotarba, A. Demonstration of the Influence of Specific Surface Area on Reaction Rate in Heterogeneous Catalysis. J. Chem. Educ. 2021, 98, 935–940. [Google Scholar] [CrossRef]
- Marafi, M.; Stanislaus, A.; Furimsky, E. Handbook of Spent Hydroprocessing Catalysts, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Zhang, M.; Wang, C.; Wang, K.; Han, Z.; Bello, S.S.; Guan, G.; Abudula, A.; Xu, G. Gentle hydrotreatment of shale oil in fixed bed over Ni-Mo/Al2O3 for upgrading. Fuel 2020, 281, 118495. [Google Scholar] [CrossRef]
- Cai, B.; Zhou, X.C.; Miao, Y.C.; Luo, J.Y.; Pan, H.; Huang, Y.B. Enhanced catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over a robust Cu-Ni bimetallic catalyst. ACS Sustain. Chem. Eng. 2017, 5, 1322–1331. [Google Scholar] [CrossRef]
- Biswas, P.; Narayanasarma, P.; Kotikalapudi, C.M.; Dalai, A.K.; Adjaye, J. Characterization and activity of ZrO2 doped SBA-15 supported NiMo catalysts for HDS and HDN of bitumen derived heavy gas oil. Ind. Eng. Chem. Res. 2011, 50, 7882–7895. [Google Scholar] [CrossRef]
- Kobayashi, K.; Nagai, M. Active sites of sulfided NiMo/Al2O3 catalysts for 4,6-dimethyldibenzothiophene hydrodesulfurization-effects of Ni and Mo components, sulfidation, citric acid and phosphate addition. Catal. Today 2017, 292, 74–83. [Google Scholar] [CrossRef]
- Liu, Z.; Han, W.; Hu, D.; Sun, S.; Hu, A.; Wang, Z.; Jia, Y.; Zhao, X.; Yang, Q.; Ni, E.O.; et al. Effects of Ni–Al2O3 interaction on NiMo/Al2O3 hydrodesulfurization catalysts. J. Catal. 2020, 387, 62–72. [Google Scholar] [CrossRef]
- Vakros, J.; Bourikas, K.; Kordulis, C.; Lycourghiotis, A. Influence of the impregnation pH on the surface characteristics and the catalytic activity of the Mo/γ-Al2O3 and CoMo/γ-Al2O3 hydrodesulfurization catalysts prepared by equilibrium deposition filtration (EDF). J. Phys. Chem. B. 2003, 107, 1804–1813. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Z.; Zheng, P.; Chen, Z.; Duan, A.; Xu, C.; Jiao, J.; Zhang, H.; Cao, Z.; Ge, B. Synthesis of NiMo catalysts supported on mesoporous Al2O3 with different crystal forms and superior catalytic performance for the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. J. Catal. 2016, 344, 680–691. [Google Scholar] [CrossRef]
- Gutiérrez, O.Y.; Klimova, T. Effect of the support on the high activity of the (Ni)Mo/ZrO2-SBA-15 catalyst in the simultaneous hydrodesulfurization of DBT and 4,6-DMDBT. J. Catal. 2011, 281, 50–62. [Google Scholar] [CrossRef]
- Yan, S.; Su, F.; Wang, X.; Yao, Z.; Liu, J. The mechanism of additives to unsupported Ni-Mo hydrodesulphurization catalyst. IOP Conf. Ser. Earth Environ. Sci. 2020, 474, 052008. [Google Scholar] [CrossRef]
- Liu, Z.; Han, W.; Hu, D.; Nie, H.; Wang, Z.; Sun, S.; Deng, Z.; Yang, Q. Promoting effects of SO42-on a NiMo/γ-Al2O3hydrodesulfurization catalyst. Catal. Sci. Technol. 2020, 10, 5218–5230. [Google Scholar] [CrossRef]
- Brito, J.L.; Laine, J.; Pratt, K.C. Temperature-programmed reduction of Ni-Mo oxides. J. Mater. Sci. 1989, 24, 425–431. [Google Scholar] [CrossRef]
- Zhou, T.N.; Yin, H.L.; Liu, Y.Q.; Han, S.N.; Chai, Y.M.; Liu, C.G. Effect of phosphorus content on the active phase structure of NiMo/Al2O3 catalyst. Ranliao Huaxue Xuebao/J. Fuel Chem. Technol. 2010, 38, 69–74. [Google Scholar] [CrossRef]
- Ríos-Caloch, G.; Santes, V.; Escobar, J.; Valle-Orta, M.; Barrera, M.C.; Hernandez-Barrera, M. Effect of chitosan addition on NiMo/Al2O3 catalysts for dibenzothiophene hydrodesulfurization. Int. J. Chem. React. Eng. 2012, 10. [Google Scholar] [CrossRef]
- Rollmann, L.D. Systematics of shape selectivity in common zeolites. J. Catal. 1977, 47, 113–121. [Google Scholar] [CrossRef]
- Spence, J.A.; Vahrman, M. Aliphatic hydrocarbons in a low-temperature tar. J. Appl. Chem. 1967, 17, 143–146. [Google Scholar] [CrossRef]
- Ahmed, D.J.; Al-Abdaly, B.I.; Hussein, S.J. Synthesis and Characterization of New nano catalyst Mo-Ni/TiO2-γAl2O3 for Hydrodesulphurization of Iraqi Gas Oil. Baghdad Sci. J. 2021, 18, 1557–1567. [Google Scholar] [CrossRef]
- Zhou, J.; Hua, Z.; Liu, Z.; Wu, W.; Zhu, Y.; Shi, J. Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties. ACS Catal. 2011, 1, 287–291. [Google Scholar] [CrossRef]
- Ahn, S.Y.; Kim, K.J.; Kim, B.J.; Shim, J.O.; Jang, W.J.; Roh, H.S. Unravelling the active sites and structure-activity relationship on Cu–ZnO–Al2O3 based catalysts for water-gas shift reaction. Appl. Catal. B Environ. 2023, 325, 122320. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, Z.; Xiao, C.; Li, P.; Zhao, Z.; Xu, C.; Meng, Q.; Li, J.; Duan, A.; Chen, Z. Hydrotreating Performance of FCC Diesel and Dibenzothiophene over NiMo Supported Zirconium Modified Al-TUD-1 Catalysts. Ind. Eng. Chem. Res. 2018, 57, 11868–11882. [Google Scholar] [CrossRef]
Catalyst | Elemental Composition (wt.%) a | ||||
---|---|---|---|---|---|
Ni | Mo | Al | V | S | |
NMA – F | 3.19 | 8.30 | 45.51 | - | - |
NMA – OW | 3.13 | 5.24 | 29.03 | 1.89 | 8.46 |
NMA – CI | 4.25 | 7.20 | 37.56 | 2.75 | 1.08 |
NMA – AL | 2.23 | 0.79 | 40.44 | 0.27 | 0.32 |
Catalyst | S.A. (m2/g) a | Pore Volume (cm3/g) a | Mean Pore Diameter (nm) a | CO Uptake (μmol/g) b | Active Sites (1018 atoms/gcat) b | Metal S.A. (m2/g) b | Mechanical Strength (N/mm2) c |
---|---|---|---|---|---|---|---|
NMA – F | 150.5 | 0.515 | 10.9 | 17.2 | 7.57 | 8.73 | 34.7 |
NMA – OW | 42.9 | 0.142 | 7.6 | 1.5 | 0.69 | 1.19 | 23.7 |
NMA – CI | 149.3 | 0.502 | 9.1 | 23.1 | 10.41 | 12.46 | 33.6 |
NMA – AL | 204.2 | 0.714 | 9.9 | 1.6 | 0.76 | 3.87 | 29.6 |
Catalyst | Pore Volume (cm3/g) | ||
---|---|---|---|
Micropore (dp < 2 nm) | Mesopore (2 nm < dp < 50 nm) | Macropore (dp > 50 nm) | |
NMA – F | - | 0.499 (97.0%) | 0.016 (3.0%) |
NMA – OW | - | 0.140 (98.4%) | 0.002 (1.6%) |
NMA – CI | - | 0.497 (99.0%) | 0.005 (1.0%) |
NMA – AL | - | 0.707 (99.0%) | 0.007 (1.0%) |
Catalyst | Active Sites (1018 atoms/gcat) | DBT Conversion (%) a | Reaction Rate (μmolDBT/gcat∙s) a | TOF (s−1) a | Ea (kJ/mol) | HDS Kinetic Constant × 10−7 (mol/g∙s) a |
---|---|---|---|---|---|---|
NMA – F | 7.57 | 99 | 6.37 | 0.51 | 4.3 | 14.3 |
NMA – OW | 0.69 | 66 | 4.06 | 3.53 | 17.7 | 3.4 |
NMA – AL | 0.76 | 75 | 4.59 | 3.65 | 19.5 | 4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, S.-Y.; Na, W.-J.; Kim, K.-J.; Kim, B.-J.; Park, H.-K.; Roh, H.-S. Feasibility Assessment on Remanufacturing of Ni–Mo/γ–Al2O3 Catalyst for Residue Hydrodesulfurization. Catalysts 2023, 13, 738. https://doi.org/10.3390/catal13040738
Ahn S-Y, Na W-J, Kim K-J, Kim B-J, Park H-K, Roh H-S. Feasibility Assessment on Remanufacturing of Ni–Mo/γ–Al2O3 Catalyst for Residue Hydrodesulfurization. Catalysts. 2023; 13(4):738. https://doi.org/10.3390/catal13040738
Chicago/Turabian StyleAhn, Seon-Yong, Woo-Jin Na, Kyoung-Jin Kim, Beom-Jun Kim, Hea-Kyung Park, and Hyun-Seog Roh. 2023. "Feasibility Assessment on Remanufacturing of Ni–Mo/γ–Al2O3 Catalyst for Residue Hydrodesulfurization" Catalysts 13, no. 4: 738. https://doi.org/10.3390/catal13040738
APA StyleAhn, S. -Y., Na, W. -J., Kim, K. -J., Kim, B. -J., Park, H. -K., & Roh, H. -S. (2023). Feasibility Assessment on Remanufacturing of Ni–Mo/γ–Al2O3 Catalyst for Residue Hydrodesulfurization. Catalysts, 13(4), 738. https://doi.org/10.3390/catal13040738