The Effect of Polymer Matrix on the Catalytic Properties of Supported Palladium Catalysts in the Hydrogenation of Alkynols
Abstract
:1. Introduction
2. Results
2.1. Characterization of Catalysts
2.2. Hydrogenation of Alkynols
2.2.1. Hydrogenation of 3,7,11-Trimethyldodecyn-1-ol-3 (C15-yn)
2.2.2. Hydrogenation of 2-Hexyn-1-ol
3. Materials and Methods
3.1. Materials
3.2. Preparation of K2PdCl4 Precursor Solution
3.3. Synthesis of Catalysts
3.4. Characterization of Catalysts
3.5. Hydrogenation of Alkynols
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stoffels, M.A.; Klauck, F.J.R.; Hamadi, T.; Glorius, F.; Leker, J. Technology Trends of Catalysts in Hydrogenation Reactions: A Patent Landscape Analysis. Adv. Synth. Catal. 2020, 362, 1258–1274. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Teixeira, A.R.; Shi, Y.; Born, S.C.; Lin, H.; Li Song, Y.; Martin, B.; Schenkel, B.; Lachegurabi, M.P.; Jensen, K.F. Catalytic hydrogenation of N-4-nitrophenyl nicotinamide in a micro-packed bed reactor. Green Chem. 2018, 20, 886–893. [Google Scholar] [CrossRef] [Green Version]
- Mironenko, R.M.; Belskaya, O.B.; Likholobov, V.A. Approaches to the synthesis of Pd/C catalysts with controllable activity and selectivity in hydrogenation reactions. Catal. Today 2019, 357, 152–165. [Google Scholar] [CrossRef]
- Zhao, X.; Chang, Y.; Chen, W.-J.; Wu, Q.; Pan, X.; Chen, K.; Weng, B. Recent Progress in Pd-Based Nanocatalysts for Selective Hydrogenation. ACS Omega 2022, 7, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Bonrath, W.; Medlock, J.; Schutz, J.; Wustenberg, B.; Netscher, T. Hydrogenation in the Vitamins and Fine Chemicals Industry—An Overview. In Hydrogenation; Karamé, I., Ed.; IntechOpen: London, UK, 2012; pp. 17–47. [Google Scholar] [CrossRef] [Green Version]
- Albuquerque, B.L.; Denicourt-Nowicki, A.; Mériadec, C.; Domingos, J.B.; Roucoux, A. Water soluble polymer–surfactant complexes-stabilized Pd(0) nanocatalysts: Characterization and structure–activity relationships in biphasic hydrogenation of alkenes and α,β-unsaturated ketones. J. Catal. 2016, 340, 144–153. [Google Scholar] [CrossRef]
- Monguchi, Y.; Ichikawa, T.; Sajiki, H. Recent Development of Palladium-Supported Catalysts for Chemoselective Hydrogenation. Chem. Pharm. Bull. 2017, 65, 2–9. [Google Scholar] [CrossRef] [Green Version]
- McMillan, L.; Gilpin, L.F.; Baker, J.; Brennan, C.; Hall, A.; Lundie, D.T.; Lennon, D. The application of a supported palladium catalyst for the hydrogenation of aromatic nitriles. J. Mol. Catal. A Chem. 2016, 411, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Dobrezberger, K.; Bosters, J.; Moser, N.; Yigit, N.; Nagl, A.; Föttinger, K.; Lennon, D.; Rupprechter, G. Hydrogenation on Palladium Nanoparticles Supported by Graphene Nanoplatelets. J. Phys. Chem. C 2020, 124, 23674–23682. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Du, J.; Zhou, Q.; Li, H.; Wang, C.; Tang, J. Selective and leaching-resistant palladium catalyst on a porous polymer support for phenol hydrogenation. J. Colloid Interface Sci. 2021, 604, 876–884. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, A.; Chen, J.; Chen, L.; Hua, J. Hydrogenation catalysis of nanosized palladium supported by polymer/silica disupporter. II. Effects of the characteristics of the catalyst on hydrogenation. J. Appl. Polym. Sci. 2003, 89, 3661–3665. [Google Scholar] [CrossRef]
- Lee, S.; Shin, S.-J.; Baek, H.; Choi, Y.; Hyun, K.; Seo, M.; Kim, K.; Koh, D.-Y.; Kim, H.; Choi, M. Dynamic metal-polymer interaction for the design of chemoselective and long-lived hydrogenation catalysts. Sci. Adv. 2020, 6, eabb7369. [Google Scholar] [CrossRef] [PubMed]
- Ródenas, M.; El Haskouri, J.; Ros-Lis, J.V.; Marcos, M.D.; Amorós, P.; Úbeda, M.Á.; Pérez-Pla, F. Highly Active Hydrogenation Catalysts Based on Pd Nanoparticles Dispersed along Hierarchical Porous Silica Covered with Polydopamine as Interfacial Glue. Catalysts 2020, 10, 449. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Jiang, J.; Gao, Q.; Ruan, M.; Yu, H.; Qi, L. A novel nanoscale catalyst system composed of nanosized Pd catalysts immobilized on Fe3O4@SiO2-PAMAM. Nanotechnology 2008, 19, 075714. [Google Scholar] [CrossRef] [PubMed]
- Zharmagambetova, A.K.; Talgatov, E.T.; Auyezkhanova, A.S.; Tumabayev, N.Z.; Bukharbayeva, F.U. Effect of polyvinylpyrrolidone on the catalytic properties of Pd/γ-Fe2O3 in phenylacetylene hydrogenation. React. Kinet. Mech. Catal. 2020, 131, 153–166. [Google Scholar] [CrossRef]
- Zharmagambetova, A.K.; Seitkalieva, K.S.; Talgatov, E.T.; Auezkhanova, A.S.; Dzhardimalieva, G.I.; Pomogailo, A.D. Polymer Modified Supported Palladium Catalysts for the Hydrogenation of Acetylene Compounds. Kinet. Catal. 2016, 57, 360–367. [Google Scholar] [CrossRef]
- Moreno-Marrodan, C.; Liguori, F.; Barbaro, P.; Sawa, H. Continuous flow catalytic partial hydrogenation of hydrocarbons and alcohols over hybrid Pd/ZrO2/PVA wall reactors. Appl. Catal. A Gen. 2018, 558, 34–43. [Google Scholar] [CrossRef]
- Karakhanov, E.A.; Zolotukhina, A.V.; Ivanov, A.O.; Maximov, A.L. Dendrimer-Encapsulated Pd Nanoparticles, Immobilized in Silica Pores, as Catalysts for Selective Hydrogenation of Unsaturated Compounds. ChemistryOpen 2019, 8, 358–381. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Shi, C.; Liang, C. Highly selective catalysts for the hydrogenation of alkynols: A review. Chin. J. Catal. 2021, 42, 2105–2121. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Y.; Li, C.; Liu, Q.; Williams, C.T.; Liang, C. PVP–Pd@ZIF-8 as highly efficient and stable catalysts for selective hydrogenation of 1,4-butynediol. Catal. Sci. Technol. 2014, 4, 329–332. [Google Scholar] [CrossRef]
- Pomogailo, A.D.; Dzhardimalieva, G.I. Hybrid Polymer-Immobilized Nanosized Pd Catalysts for Hydrogenation Reaction Obtained via Frontal Polymerization. J. Catal. 2012, 2013, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mirzoeva, E.S.; Bronstein, L.; Valetsky, P.M.; Sulman, E.M. Catalytic hydrogenation properties of Pd- and Rh-containing polymers immobilized on Al2O3. React. Polym. 1995, 24, 243–250. [Google Scholar] [CrossRef]
- Mostafa, M.M.M.; Saleh, T.S.; Bawaked, S.M.; Alghamdi, K.S.; Narasimharao, K. Efficient and Eco-Friendly Perspectives for C-H Arylation of Benzothiazole Utilizing Pd Nanoparticle-Decorated Chitosan. Catalysts 2022, 12, 1000. [Google Scholar] [CrossRef]
- Albano, G.; Petri, A.; Aronica, L.A. Palladium Supported on Bioinspired Materials as Catalysts for C–C Coupling Reactions. Catalysts 2023, 13, 210. [Google Scholar] [CrossRef]
- Nikoshvili, L.Z.; Tikhonov, B.B.; Ivanov, P.E.; Stadolnikova, P.Y.; Sulman, M.G.; Matveeva, V.G. Recent Progress in Chitosan-Containing Composite Materials for Sustainable Approaches to Adsorption and Catalysis. Catalysts 2023, 13, 367. [Google Scholar] [CrossRef]
- Zharmagambetova, A.K.; Auyezkhanova, A.S.; Talgatov, E.T.; Jumekeyeva, A.I. Chitosan-Modified Palladium Catalysts in Hydrogenation of n-Hex-2-yne. Theor. Exp. Chem. 2021, 57, 371–376. [Google Scholar] [CrossRef]
- Zharmagambetova, A.K.; Auyezkhanova, A.S.; Talgatov, E.T.; Akhmetova, S.N.; Tumabayev, N.Z.; Rafikova, K.S.; Talgatov, E.T.; Akhmetova, S.N. Polysaccharide-Stabilized Nanocatalysts in Hydrogenation of Phenylacetylene. Theor. Exp. Chem. 2020, 56, 39–45. [Google Scholar] [CrossRef]
- Zharmagambetova, A.; Auyezkhanova, A.; Talgatov, E.; Jumekeyeva, A.; Buharbayeva, F.; Akhmetova, S.; Myltykbayeva, Z.; Lopez Nieto, J.M. Synthesis of polymer protected Pd-Ag/ZnO catalysts for phenylacetylene hydrogenation. J. Nanoparticle Res. 2022, 24, 1–17. [Google Scholar] [CrossRef]
- Zhong, R.; Yang, J.; Hu, Z.; Xu, B. Removal of Residual Polyvinylpyrrolidone (PVP) from Au Nanoparticles Immobilized in SiO2 by Ultraviolet-Ozone Treatment. ACS Appl. Nano Mater. 2019, 2, 5720–5729. [Google Scholar] [CrossRef]
- Devi, P.G.; Velu, A.S. Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method. J. Theor. Appl. Phys. 2016, 10, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Vijaya, N.; Selvasekarapandian, S.; Nithya, H.; Sanjeeviraja, C. Proton Conducting Polymer Electrolyte based on Poly (N-vinyl pyrrolidone) Doped with Ammonium Iodide. Int. J. Electroact. Mater. 2015, 3, 20–27. [Google Scholar]
- Reddy, G.K.; Peck, T.C.; Roberts, C.A. “PdO vs. PtO”—The Influence of PGM Oxide Promotion of Co3O4 Spinel on Direct NO Decomposition Activity. Catalysts 2019, 9, 62. [Google Scholar] [CrossRef] [Green Version]
- Talgatov, E.T.; Auezkhanova, A.S.; Kapysheva, U.N.; Bakhtiyrova, S.K.; Zharmagambetova, A.K. Synthesis and Detoxifying Properties of Pectin-Montmorillonite Composite. J. Inorg. Organomet. Polym. 2016, 26, 1387–1391. [Google Scholar] [CrossRef]
- Cinausero, N.; Azema, N.; Cochez, M.; Ferriol, M.; Essahli, M.; Ganachaud, F.; Lopez-Cuesta, J.-M. Influence of the surface modification of alumina nanoparticles on the thermal stability and fire reaction of PMMA composites. Polym. Adv. Technol. 2008, 19, 701–709. [Google Scholar] [CrossRef]
- Wan Ngah, W.S.; Teong, L.C.; Hanafiah, M.A.K.M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym. 2011, 83, 1446–1456. [Google Scholar] [CrossRef]
- Zharmagambetova, A.K.; Talgatov, E.T.; Auyezkhanova, A.S.; Tumabayev, N.Z.; Bukharbayeva, F.U. Behavior of Pd-supported catalysts in phenylacetylene hydrogenation: Effect of combined use of polyvinylpyrrolidone and NaOH for magnetic support modification. Polym. Adv. Technol. 2021, 32, 2735–2743. [Google Scholar] [CrossRef]
- Baganizi, D.R.; Nyairo, E.; Duncan, S.A.; Singh, S.R.; Dennis, V.A. Interleukin-10 Conjugation to Carboxylated PVP-Coated Silver Nanoparticles for ImprovedStability and Therapeutic Efficacy. Nanomaterials 2017, 7, 165. [Google Scholar] [CrossRef] [Green Version]
- Mireles, L.K.; Wu, M.-R.; Saadeh, N.; Yahia, L.; Sacher, E. Physicochemical Characterization of Polyvinyl Pyrrolidone: A Tale of Two Polyvinyl Pyrrolidones. ACS Omega 2020, 5, 30461–30467. [Google Scholar] [CrossRef]
- Zharmagambetova, A.K.; Zamanbekova, A.T.; Darmenbayeva, A.S.; Auyezkhanova, A.S.; Jumekeyeva, A.I.; Talgatov, E.T. Effect of Polymers on the Formation of Nanosized Palladium Catalysts and Their Activity and Selectivity in the Hydrogenation of Acetylenic Alcohols. Theor. Exp. Chem. 2017, 53, 265–269. [Google Scholar] [CrossRef]
- Parambhath, V.B.; Nagar, R.; Ramaprabhu, S. Effect of Nitrogen Doping on Hydrogen Storage Capacity of Palladium Decorated Graphene. Langmuir 2012, 28, 7826–7833. [Google Scholar] [CrossRef]
- Rusinque, B.; Escobedo, S.; de Lasa, H. Photoreduction of a Pd-Doped Meso-porous TiO2 Photocatalyst for Hydrogen Production under Visible Light. Catalysts 2020, 10, 74. [Google Scholar] [CrossRef] [Green Version]
- Mintcheva, N.; Aljulaih, A.A.; Wunderlich, W.; Kulinich, S.A.; Iwamori, S. La-ser-Ablated ZnO Nanoparticles and Their Photocatalytic Activity toward Organic Pollutants. Materials 2018, 11, 1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claros, M.; Setka, M.; Jimenez, Y.P.; Vallejos, S. AACVD Synthesis and Characterization of Iron and Copper Oxides Modified ZnO Structured Films. Nanomaterials 2020, 10, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diculescu, V.C.; Beregoi, M.; Evanghelidis, A.; Negrea, R.F.; Apostol, N.G.; Enculescu, I. Palladium/palladium oxide coated electrospun fibers for wearable sweat pH-sensors. Sci. Rep. 2019, 9, 8902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Jiang, P.; Jiang, M.; Wang, T.-W.; Guo, C.-F.; Xie, S.-S.; Wang, Z.-L. The shape evolution of gold seeds and gold@silver core-shell nanostructures. Nanotechnology 2009, 20, 305602. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Zhao, B.; Wang, Z.; Gong, Y.; Guofeng, L.; Ma, X.; Yu, L.; Wang, Y. Tuning the Catalytic Performance for the Semi-hydrogenation of Alkynols by Selectively Poisoning the Active Sites of Pd Catalysts. Green Chem. 2019, 21, 4143–4151. [Google Scholar] [CrossRef]
- Chen, X.; Shi, C.; Wang, X.B.; Li, W.-Y.; Liang, C. Intermetallic PdZn nanoparticles catalyze the continuous-flow hydrogenation of alkynols to cis-enols. Commun. Chem. 2021, 4, 175. [Google Scholar] [CrossRef]
- Berguerand, C.; Yuranov, I.; Cárdenas-Lizana, F.; Yuranova, T.; Kiwi-Minsker, L. Size-Controlled Pd Nanoparticles in 2-Butyne-1,4-diol Hydrogenation: Support Effect and Kinetics Study. J. Phys. Chem. C 2014, 118, 12250–12259. [Google Scholar] [CrossRef]
Catalyst | Mass of Palladium in Mother Liquor, mg | The Amount of Pd Absorbed | Pd Content in Catalyst, % | ||
---|---|---|---|---|---|
Before Adsorption | After Adsorption | mg | % | ||
1%Pd/ZnO | 10.1 | 0.3 | 9.8 | 97 | 1.0 |
1%Pd-PVP/ZnO | 10.1 | 0.1 | 10.0 | 99 | 1.0 |
0.5%Pd/ZnO | 5.0 | 0.2 | 4.8 | 96 | 0.5 |
0.5%Pd-PVP/ZnO | 5.0 | 0.1 | 4.9 | 98 | 0.5 |
0.25%Pd-PVP/ZnO | 2.5 | 0.1 | 2.4 | 96 | 0.25 |
Sample | Surface Area, m2 g−1 |
---|---|
ZnO | 9.8 |
PVP/ZnO | 5.2 |
0.5%Pd/ZnO | 9.3 |
0.5%Pd-PVP/ZnO | 5.9 |
Catalyst | Wmax·10−6 (mol s−1) * | TOF s−1 | TON | SC=C,% |
---|---|---|---|---|
1%Pd/ZnO | 7.2 | 1.5 | 17,000 | 91 |
1%Pd-PVP/ZnO | 70.0 | 15.0 | 62,000 | 98 |
0.5%Pd-PVP/ZnO | 67.8 | 28.9 | 21,100 | 98 |
0.25%Pd-PVP/ZnO | 21.0 | 18.0 | 42,300 | 98 |
Catalyst | Wmax·10−6 (mol s−1) * | Scis-hexen-1-ol,% |
---|---|---|
Pd/ZnO | 5.4 | 96.4 |
Pd-PVP/ZnO | 8.1 | 95.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talgatov, E.; Auyezkhanova, A.; Zharmagambetova, A.; Tastanova, L.; Bukharbayeva, F.; Jumekeyeva, A.; Aubakirov, T. The Effect of Polymer Matrix on the Catalytic Properties of Supported Palladium Catalysts in the Hydrogenation of Alkynols. Catalysts 2023, 13, 741. https://doi.org/10.3390/catal13040741
Talgatov E, Auyezkhanova A, Zharmagambetova A, Tastanova L, Bukharbayeva F, Jumekeyeva A, Aubakirov T. The Effect of Polymer Matrix on the Catalytic Properties of Supported Palladium Catalysts in the Hydrogenation of Alkynols. Catalysts. 2023; 13(4):741. https://doi.org/10.3390/catal13040741
Chicago/Turabian StyleTalgatov, Eldar, Assemgul Auyezkhanova, Alima Zharmagambetova, Lyazzat Tastanova, Farida Bukharbayeva, Aigul Jumekeyeva, and Talgat Aubakirov. 2023. "The Effect of Polymer Matrix on the Catalytic Properties of Supported Palladium Catalysts in the Hydrogenation of Alkynols" Catalysts 13, no. 4: 741. https://doi.org/10.3390/catal13040741
APA StyleTalgatov, E., Auyezkhanova, A., Zharmagambetova, A., Tastanova, L., Bukharbayeva, F., Jumekeyeva, A., & Aubakirov, T. (2023). The Effect of Polymer Matrix on the Catalytic Properties of Supported Palladium Catalysts in the Hydrogenation of Alkynols. Catalysts, 13(4), 741. https://doi.org/10.3390/catal13040741