Recent Progress in the Use of SnO2 Quantum Dots: From Synthesis to Photocatalytic Applications
Abstract
:1. Introduction
2. Synthesis Protocols
2.1. Microwave-Assisted Synthesis
2.2. Hydrothermal Synthesis
2.3. Wet Chemical Synthesis
2.4. Chemical Reduction Approach
2.5. Other Methods
3. Modification of SnO2 QDs for Photocatalytic Applications
3.1. Doping of SnO2 QDs
3.2. SnO2 QDs’ Decorated 1D Nanostructures
3.3. SnO2 QDs’ Integrated 2D Nanostructures
3.4. SnO2 QDs in Ternary Nanocomposites
4. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, C.Y.; Yang, J.K.; Xu, M.; Cui, Y.; Ren, W.W.; Zhang, J.X.; Zhao, H.L.; Liang, B. Recent intensification strategies of SnO2-based photocatalysts: A review. Chem. Eng. J. 2022, 427, 131564. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Mousavi Khadem, S.S.; Habibzadeh, S.; Esmaeili, A.; Abida, O.; Vatanpour, V.; Rabiee, N.; Bagherzadeh, M.; Iravani, S.; Reza Saeb, M.; et al. Quantum dots for photocatalysis: Synthesis and environmental applications. Green Chem. 2021, 23, 4931–4954. [Google Scholar] [CrossRef]
- Zhou, J.T.; Lyu, M.; Zhu, J.; Li, G.N.; Li, Y.T.; Jin, S.Z.; Song, J.L.; Niu, H.H.; Xu, J.Z.; Zhou, R. SnO2 Quantum Dot-Modified Mesoporous TiO2 Electron Transport Layer for Efficient and Stable Perovskite Solar Cells. ACS Appl. Energy Mater. 2022, 5, 3052–3063. [Google Scholar] [CrossRef]
- Kaur, R.; Rana, A.; Singh, R.K.; Chhabra, V.A.; Kim, K.-H.; Deep, A. Efficient photocatalytic and photovoltaic applications with nanocomposites between CdTe QDs and an NTU-9 MOF. RSC Adv. 2017, 7, 29015–29024. [Google Scholar] [CrossRef]
- Sun, P.; Xing, Z.; Li, Z.; Zhou, W. Recent advances in quantum dots photocatalysts. Chem. Eng. J. 2023, 458, 141399. [Google Scholar] [CrossRef]
- Kumar, N.; Dagupati, R.; Lim, J.; Choi, J. Bright red luminescence from Eu3+-activated noncytotoxic SnO2 quantum dots for latent fingerprint detection. Ceram. Int. 2022, 48, 17738–17748. [Google Scholar] [CrossRef]
- Wang, Y.L.; Fan, L.Q.; Sun, S.J.; Chen, J.J.; Wu, Z.X.; Zhu, T.T.; Huang, Y.F.; Wu, J.H. Ti3C2Tx MXene supported SnO2 quantum dots with oxygen vacancies as anode for Li-ion capacitors. Chem. Eng. J. 2022, 428, 131993. [Google Scholar] [CrossRef]
- Chen, D.Y.; Huang, S.S.; Huang, R.T.; Zhang, Q.; Le, T.T.; Cheng, E.B.; Hu, Z.J.; Chen, Z.W. Highlights on advances in SnO2 quantum dots: Insights into synthesis strategies, modifications and applications. Mater. Res. Lett. 2018, 6, 462–488. [Google Scholar] [CrossRef]
- Wu, T.T.; Zhen, C.; Wu, J.B.; Jia, C.X.; Haider, M.; Wang, L.Z.; Liu, G.; Cheng, H.M. Chlorine capped SnO2 quantum-dots modified TiO2 electron selective layer to enhance the performance of planar perovskite solar cells. Sci. Bull. 2019, 64, 547–552. [Google Scholar] [CrossRef]
- Xu, Y.; Matios, E.; Luo, J.M.; Li, T.; Lu, X.; Jiang, S.H.; Yue, Q.; Li, W.Y.; Kang, Y.J. SnO2 Quantum Dots Enabled Site-Directed Sodium Deposition for Stable Sodium Metal Batteries. Nano Lett. 2021, 21, 816–822. [Google Scholar] [CrossRef]
- Liu, J.Q.; Zhang, Q.R.; Tian, X.Y.; Hong, Y.; Nie, Y.C.; Su, N.N.; Jin, G.H.; Zhai, Z.X.; Fu, C. Highly efficient photocatalytic degradation of oil pollutants by oxygen deficient SnO2 quantum dots for water remediation. Chem. Eng. J. 2021, 404, 127146. [Google Scholar] [CrossRef]
- Sahu, B.K.; Kaur, G.; Das, A. Revealing Interplay of Defects in SnO2 Quantum Dots for Blue Luminescence and Selective Trace Ammonia Detection at Room Temperature. ACS Appl. Mater. Interfaces 2020, 12, 49227–49236. [Google Scholar] [CrossRef]
- Han, X.; Zhao, J.J.; An, L.; Li, Z.H.; Yu, X. One-step synthesis of oxygen vacancy-rich SnO2 quantum dots with ultrahigh visible-light photocatalytic activity. Mater. Res. Bull. 2019, 118, 110486. [Google Scholar] [CrossRef]
- Das, J.; Dhar, S.S. Synthesis of SnO2 quantum dots mediated by Camellia sinensis shoots for degradation of thiamethoxam. Toxicol. Environ. Chem. 2020, 102, 186–196. [Google Scholar] [CrossRef]
- Bhawna; Kumar, S.; Sharma, R.; Gupta, A.; Tyagi, A.; Singh, P.; Kumar, A.; Kumar, V. Recent insights into SnO2-based engineered nanoparticles for sustainable H-2 generation and remediation of pesticides. New J. Chem. 2022, 46, 4014–4048. [Google Scholar] [CrossRef]
- Wu, Z.D.; Jing, H.Y.; Zhao, Y.; Lu, K.R.; Liu, B.Y.; Yu, J.; Xia, X.F.; Lei, W.; Hao, Q.L. Grain boundary and interface interaction Co-regulation promotes SnO2 quantum dots for efficient CO2 reduction. Chem. Eng. J. 2023, 451, 138477. [Google Scholar] [CrossRef]
- Sun, B.; Chen, Y.Z.; Tao, L.; Zhao, H.B.; Zhou, G.D.; Xia, Y.D.; Wang, H.Y.; Zhao, Y. Nanorod Array of SnO2 Quantum Dot Interspersed Multiphase TiO2 Heterojunctions with Highly Photocatalytic Water Splitting and Self-Rechargeable Battery-Like Applications. ACS Appl. Mater. Interfaces 2019, 11, 2071–2081. [Google Scholar] [CrossRef]
- Mallikarjuna, K.; Rafiqul Bari, G.A.K.M.; Vattikuti, S.V.P.; Kim, H. Synthesis of carbon-doped SnO2 nanostructures for visible-light-driven photocatalytic hydrogen production from water splitting. Int. J. Hydrogen Energy 2020, 45, 32789–32796. [Google Scholar] [CrossRef]
- Sheikh, S.P.; Reddy, V.R.; Sen, P. Size-dependent nonlinear optical absorption in SnO2 quantum dots. J. Opt. Soc. Am. B-Opt. Phys. 2020, 37, 2788–2795. [Google Scholar] [CrossRef]
- Liu, J.Q.; Nie, Y.C.; Xue, W.T.; Wu, L.T.; Jin, H.; Jin, G.H.; Zhai, Z.X.; Fu, C. Size effects on structural and optical properties of tin oxide quantum dots with enhanced quantum confinement. J. Mater. Res. Technol.-JMRT 2020, 9, 8020–8028. [Google Scholar] [CrossRef]
- Mishra, S.R.; Ahmaruzzaman, M. Tin oxide based nanostructured materials: Synthesis and potential applications. Nanoscale 2022, 14, 1566–1605. [Google Scholar] [CrossRef]
- Jin, W.; Wang, H.; Liu, Y.L.; Yang, S.; Zhou, J.; Chen, W. SnO2 Quantum Dots-Functionalized MoO3 Nanobelts for High-Selectivity Ethylene Sensing. ACS Appl. Nano Mater. 2022, 5, 10485–10494. [Google Scholar] [CrossRef]
- Lee, J.H.; Mirzaei, A.; Kim, J.H.; Kim, J.Y.; Nasriddinov, A.F.; Rumyantseva, M.N.; Kim, H.W.; Kim, S.S. Gas-sensing behaviors of TiO2-layer-modified SnO2 quantum dots in self-heating mode and effects of the TiO2 layer. Sens. Actuator B-Chem. 2020, 310, 127870. [Google Scholar] [CrossRef]
- Koyyada, G.; Kumar, N.S.; Al-Ghurabi, E.H.; Asif, M.; Mallikarjuna, K. Enhanced solar-driven photocatalytic performance of a ternary composite of SnO2 quantum dots//AgVO3 nanoribbons//g-C3N4 nanosheets (0D/1D/2D) structures for hydrogen production and dye degradation. Environ. Sci. Pollut. Res. 2021, 28, 31585–31595. [Google Scholar] [CrossRef] [PubMed]
- Praveen, S.; Veeralingam, S.; Badhulika, S. A Flexible Self-Powered UV Photodetector and Optical UV Filter Based on beta-Bi2O3/SnO2 Quantum Dots Schottky Heterojunction. Adv. Mater. Interfaces 2021, 8, 2100373. [Google Scholar] [CrossRef]
- Xu, Z.J.; Jiang, Y.; Li, Z.X.; Chen, C.; Kong, X.Y.; Chen, Y.W.; Zhou, G.F.; Liu, J.M.; Kempa, K.; Gao, J.W. Rapid Microwave-Assisted Synthesis of SnO2 Quantum Dots for Efficient Planar Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 1887–1893. [Google Scholar] [CrossRef]
- Liu, H.R.; Chen, Z.L.; Wang, H.B.; Ye, F.H.; Ma, J.J.; Zheng, X.L.; Gui, P.B.; Xiong, L.B.; Wen, J.; Fang, G.J. A facile room temperature solution synthesis of SnO2 quantum dots for perovskite solar cells. J. Mater. Chem. A 2019, 7, 10636–10643. [Google Scholar] [CrossRef]
- Dutta, D.; Bahadur, D. Influence of confinement regimes on magnetic property of pristine SnO2 quantum dots. J. Mater. Chem. 2012, 22, 24545–24551. [Google Scholar] [CrossRef]
- Manikandan, D.; Yadav, A.K.; Jha, S.N.; Bhattacharyya, D.; Boukhvalov, D.W.; Murugan, R. XANES, EXAFS, EPR, and First-Principles Modeling on Electronic Structure and Ferromagnetism in Mn Doped SnO2 Quantum Dots. J. Phys. Chem. C 2019, 123, 3067–3075. [Google Scholar] [CrossRef]
- do Nascimento, J.L.A.; Chantelle, L.; dos Santos, I.M.G.; de Oliveira, A.L.M.; Alves, M.C.F. The Influence of Synthesis Methods and Experimental Conditions on the Photocatalytic Properties of SnO2: A Review. Catalysts 2022, 12, 428. [Google Scholar] [CrossRef]
- Zhao, X.X.; Yang, Q.; Quan, Z.W. Tin-based nanomaterials: Colloidal synthesis and battery applications. Chem. Commun. 2019, 55, 8683–8694. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.G.; Ma, C.T.; Zhang, D.; Ning, X.F. Facile and fast synthesis of SnO2 quantum dots for high performance solid-state asymmetric supercapacitor. J. Alloys Compd. 2020, 825, 153850. [Google Scholar] [CrossRef]
- Parthibavarman, M.; Sathishkumar, S.; Jayashree, M.; BoopathiRaja, R. Microwave Assisted Synthesis of Pure and Ag Doped SnO2 Quantum Dots as Novel Platform for High Photocatalytic Activity Performance. J. Clust. Sci. 2019, 30, 351–363. [Google Scholar] [CrossRef]
- Yu, B.; Li, Y.C.; Wang, Y.J.; Li, H.; Zhang, R.P. Facile hydrothermal synthesis of SnO2 quantum dots with enhanced photocatalytic degradation activity: Role of surface modification with chloroacetic acid. J. Environ. Chem. Eng. 2021, 9, 105618. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, S.H.; Zhou, L.; Chang, L.M.; Liu, W.Q.; Yin, D.M.; Yi, Z.; Wang, L.M. SnO2 Quantum Dots: Rational Design to Achieve Highly Reversible Conversion Reaction and Stable Capacities for Lithium and Sodium Storage. Small 2020, 16, e2000681. [Google Scholar] [CrossRef]
- Gao, L.; Wu, G.S.; Ma, J.; Jiang, T.C.; Chang, B.; Huang, Y.S.; Han, S. SnO2 Quantum Dots@Graphene Framework as a High-Performance Flexible Anode Electrode for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 12982–12989. [Google Scholar] [CrossRef]
- Chen, M.Y.; Chen, X.T.; Ma, W.C.; Sun, X.J.; Wu, L.J.; Lin, X.F.; Yang, Y.X.; Li, R.; Shen, D.Y.; Chen, Y.; et al. Highly Stable SnO2-Based Quantum-Dot Light-Emitting Diodes with the Conventional Device Structure. ACS Nano 2022, 16, 9631–9639. [Google Scholar] [CrossRef]
- Huang, Q.Q.; Liao, J.Y.; Zhang, Q.Y.; Lai, N.; Zhang, B.W.; Wang, C.; Yang, J.; Yang, Y.; Wang, J.; Zhang, G.L.; et al. The synergistic effect of lead-free quantum dots and SnO2 in glass-ceramics for broadband white-emission. J. Mater. Chem. C 2022, 10, 18285–18293. [Google Scholar] [CrossRef]
- Babu, B.; Koutavarapu, R.; Harish, V.V.N.; Shim, J.; Yoo, K. Novel in-situ synthesis of Au/SnO2 quantum dots for enhanced visible-light-driven photocatalytic applications. Ceram. Int. 2019, 45, 5743–5750. [Google Scholar] [CrossRef]
- Babu, B.; Harish, V.V.N.; Koutavarapu, R.; Shim, J.; Yoo, K. Enhanced visible-light-active photocatalytic performance using CdS nanorods decorated with colloidal SnO2 quantum dots: Optimization of core-shell nanostructure. J. Ind. Eng. Chem. 2019, 76, 476–487. [Google Scholar] [CrossRef]
- Babu, B.; Cho, M.; Byon, C.; Shim, J. Sunlight-driven photocatalytic activity of SnO2 QDs-g-C3N4 nanolayers. Mater. Lett. 2018, 212, 327–331. [Google Scholar] [CrossRef]
- Wahab, R.; Khan, F.; Al-Khedhairy, A.A. Quantization of SnO2 dots: Apoptosis and intrinsic effect of quantum dots for myoblast cancer cells with caspase 3/7 genes. Ceram. Int. 2020, 46, 6383–6395. [Google Scholar] [CrossRef]
- Fatimah, I.; Sahroni, I.; Muraza, O.; Doong, R.A. One-pot biosynthesis of SnO2 quantum dots mediated by Clitoria ternatea flower extract for photocatalytic degradation of rhodamine B. J. Environ. Chem. Eng. 2020, 8, 103879. [Google Scholar] [CrossRef]
- Chen, D.Y.; Huang, S.S.; Huang, R.T.; Zhang, Q.; Le, T.T.; Cheng, E.B.; Hu, Z.J.; Chen, Z.W. Convenient fabrication of Ni-doped SnO2 quantum dots with improved photodegradation performance for Rhodamine B. J. Alloys Compd. 2019, 788, 929–935. [Google Scholar] [CrossRef]
- Wang, Y.; Su, N.N.; Liu, J.Q.; Lin, Y.H.; Wang, J.K.; Guo, X.; Zhang, Y.H.; Qin, Z.K.; Liu, J.F.; Zhang, C.Y.; et al. Enhanced visible-light photocatalytic properties of SnO2 quantum dots by niobium modification. Results Phys. 2022, 37, 105515. [Google Scholar] [CrossRef]
- Chu, L.L.; Duo, F.F.; Zhang, M.L.; Wu, Z.S.; Sun, Y.Y.; Wang, C.; Dong, S.Y.; Sun, J.H. Doping induced enhanced photocatalytic performance of SnO2:Bi3+ quantum dots toward organic pollutants. Colloid Surf. A-Physicochem. Eng. Asp. 2020, 589, 124416. [Google Scholar] [CrossRef]
- Zhu, L.F.; Wang, M.Y.; Lam, T.K.; Zhang, C.Y.; Du, H.D.; Li, B.H.; Yao, Y.W. Fast microwave-assisted synthesis of gas-sensing SnO2 quantum dots with high sensitivity. Sens. Actuator B-Chem. 2016, 236, 646–653. [Google Scholar] [CrossRef]
- Babu, B.; Kadam, A.N.; Rao, G.T.; Lee, S.W.; Byon, C.; Shim, J. Enhancement of visible-light-driven photoresponse of Mn-doped SnO2 quantum dots obtained by rapid and energy efficient synthesis. J. Lumin. 2018, 195, 283–289. [Google Scholar] [CrossRef]
- Babu, B.; Cho, M.Y.; Byon, C.; Shim, J. One pot synthesis of Ag-SnO2 quantum dots for highly enhanced sunlight-driven photocatalytic activity. J. Alloys Compd. 2018, 731, 162–171. [Google Scholar] [CrossRef]
- Kaur, H.; Bhatti, H.S.; Singh, K. Dopant incorporation in ultrasmall quantum dots: A case study on the effect of dopant concentration on lattice and properties of SnO2 QDs. J. Mater. Sci.-Mater. Electron. 2019, 30, 2246–2264. [Google Scholar] [CrossRef]
- Shao, J.; Deng, K.; Chen, L.; Guo, C.M.; Zhao, C.S.; Cui, J.Y.; Shen, T.A.; Li, K.W.; Liu, J.Q.; Fu, C. Aqueous synthesis of Nb-modified SnO2 quantum dots for efficient photocatalytic degradation of polyethylene for in situ agricultural waste treatment. Green Process. Synth. 2021, 10, 499–506. [Google Scholar] [CrossRef]
- Wu, C.P.; Xie, K.X.; He, J.P.; Wang, Q.P.; Ma, J.M.; Yang, S.; Wang, Q.H. SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance. Rare Met. 2021, 40, 48–56. [Google Scholar] [CrossRef]
- Fan, D.W.; Liu, X.; Shao, X.R.; Zhang, Y.; Zhang, N.; Wang, X.Y.; Wei, Q.; Ju, H.X. A cardiac troponin I photoelectrochemical immunosensor: Nitrogen-doped carbon quantum dots-bismuth oxyiodide-flower-like SnO2. Microchim. Acta 2020, 187, 332. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, S.; Wang, G.; Tong, J.Y.; Li, J.; Pan, D.C. Quantum-Sized SnO2 Nanoparticles with Upshifted Conduction Band: A Promising Electron Transportation Material for Quantum Dot Light-Emitting Diodes. Langmuir 2020, 36, 6605–6609. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Li, Y.; Zhang, X.L.; Yang, L.; Luo, X. Heterostructured Perylene Diimide (PDI) Supramolecular Nanorods with SnO2 Quantum Dots for Enhanced Visible-Light Photocatalytic Activity and Stability. ChemCatChem 2022, 14, e202200087. [Google Scholar] [CrossRef]
- Babu, B.; Koutavarapu, R.; Shim, J.; Yoo, K. SnO2 quantum dots decorated NiFe2O4 nanoplates: 0D/2D heterojunction for enhanced visible-light-driven photocatalysis. Mater. Sci. Semicond. Process 2020, 107, 104834. [Google Scholar] [CrossRef]
- Hui, W.; Yang, Y.G.; Xu, Q.; Gu, H.; Feng, S.L.; Su, Z.H.; Zhang, M.R.; Wang, J.O.; Li, X.D.; Fang, J.F.; et al. Red-Carbon-Quantum-Dot-Doped SnO2 Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells. Adv. Mater. 2020, 32, e1906374. [Google Scholar] [CrossRef]
- Duan, Z.R.; Deng, L.; Shi, Z.; Zhang, H.J.; Zeng, H.X.; Crittenden, J. In situ growth of Ag-SnO2 quantum dots on silver phosphate for photocatalytic degradation of carbamazepine: Performance, mechanism and intermediates toxicity assessment. J. Colloid Interface Sci. 2019, 534, 270–278. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Ahmaruzzaman, M. Facile synthesis of SnO2 quantum dots and its photocatalytic activity in the degradation of eosin Y dye: A green approach. Mater. Lett. 2015, 139, 418–421. [Google Scholar] [CrossRef]
- Reddy, C.V.; Babu, B.; Shim, J. Synthesis of Cr-doped SnO2 quantum dots and its enhanced photocatalytic activity. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2017, 223, 131–142. [Google Scholar] [CrossRef]
- Begum, S.; Ahmaruzzaman, M. Green synthesis of SnO2 quantum dots using Parkia speciosa Hassk pods extract for the evaluation of anti-oxidant and photocatalytic properties. J. Photochem. Photobiol. B-Biol. 2018, 184, 44–53. [Google Scholar] [CrossRef]
- Mohanta, D.; Ahmaruzzaman, M. Biogenic synthesis of SnO2 quantum dots encapsulated carbon nanoflakes: An efficient integrated photocatalytic adsorbent for the removal of bisphenol A from aqueous solution. J. Alloys Compd. 2020, 828, 154093. [Google Scholar] [CrossRef]
- Babu, B.; Kadam, A.N.; Ravikumar, R.; Byon, C. Enhanced visible light photocatalytic activity of Cu-doped SnO2 quantum dots by solution combustion synthesis. J. Alloys Compd. 2017, 703, 330–336. [Google Scholar] [CrossRef]
- Ren, W.W.; Yang, J.K.; Zhang, J.X.; Li, W.; Sun, C.Y.; Zhao, H.L.; Wen, Y.T.; Sha, O.; Liang, B. Recent progress in SnO2/g-C3N4 heterojunction photocatalysts: Synthesis, modification, and application. J. Alloys Compd. 2022, 906, 164372. [Google Scholar] [CrossRef]
- Wei, Z.P.; Liu, M.N.; Li, H.G.; Sun, S.S.; Yang, L.Y. SnO2 Quantum Dots Decorated Reduced Graphene Oxide Nanosheets Composites for Electrochemical Supercapacitor Applications. Int. J. Electrochem. Sci. 2020, 15, 6257–6268. [Google Scholar] [CrossRef]
- Sharma, I.; Kumar, K.N.; Choi, J. Highly sensitive chemiresistive detection of NH3 by formation of WS2 nanosheets and SnO2 quantum dot heterostructures. Sens. Actuator B-Chem. 2023, 375, 132899. [Google Scholar] [CrossRef]
- Sahu, B.K.; Juine, R.N.; Sahoo, M.; Kumar, R.; Das, A. Interface of GO with SnO2 quantum dots as an efficient visible-light photocatalyst. Chemosphere 2021, 276, 130142. [Google Scholar] [CrossRef]
- Shao, S.F.; Chen, X.; Chen, Y.Y.; Zhang, L.; Kim, H.W.; Kim, S.S. ZnO Nanosheets Modified with Graphene Quantum Dots and SnO2 Quantum Nanoparticles for Room-Temperature H2S Sensing. ACS Appl. Nano Mater. 2020, 3, 5220–5230. [Google Scholar] [CrossRef]
- Zou, Y.Z.; Xie, Y.; Yu, S.; Chen, L.; Cui, W.; Dong, F.; Zhou, Y. SnO2 quantum dots anchored on g-C3N4 for enhanced visible-light photocatalytic removal of NO and toxic NO2 inhibition. Appl. Surf. Sci. 2019, 496, 143630. [Google Scholar] [CrossRef]
- Luo, J.T.; Li, C.; Yang, Q.T.; Yan, L.X.; Zhang, B.H.; Tao, R.; Rauf, S.; Li, H.L.; Fu, C. Facile Fabrication of MoS2 Nanoflowers/SnO2 Colloidal Quantum Dots Nanocomposite for Enhanced NO2 Sensing at Room Temperature. IEEE Sens. J. 2022, 22, 6295–6302. [Google Scholar] [CrossRef]
- Ren, L.; Yao, Y.; Wang, K.Y.; Li, S.T.; Zhu, K.J.; Liu, J. Novel one-step in situ growth of SnO2 quantum dots on reduced graphene oxide and its application for lithium ion batteries. J. Solid State Chem. 2019, 273, 128–131. [Google Scholar] [CrossRef]
- Sreekanth, T.V.M.; Ramaraghavulu, R.; Yoo, K.; Kim, J. Facile One-Pot Decoration of SnO2 Quantum Dots on the Surface of the Iron Phosphate Nanosheets for Enhanced Catalytic Decolorization of Methylene Blue Dye in the Presence of NaBH4. J. Clust. Sci. 2022, 33, 835–838. [Google Scholar] [CrossRef]
- Bai, J.Z.; Shen, Y.B.; Zhao, S.K.; Chen, Y.S.; Li, G.D.; Han, C.; Wei, D.Z.; Yuan, Z.Y.; Meng, F.L. Flower-like MoS2 hierarchical architectures assembled by 2D nanosheets sensitized with SnO2 quantum dots for high-performance NH3 sensing at room temperature. Sens. Actuator B-Chem. 2022, 353, 131191. [Google Scholar] [CrossRef]
- Dutta, D.; Thakur, D.; Bahadur, D. SnO2 quantum dots decorated silica nanoparticles for fast removal of cationic dye (methylene blue) from wastewater. Chem. Eng. J. 2015, 281, 482–490. [Google Scholar] [CrossRef]
- Du, F.; Zuo, X.; Yang, Q.; Yang, B.; Li, G.; Ding, Z.; Wu, M.; Ma, Y.; Jin, S.; Zhu, K. Facile assembly of TiO2 nanospheres/SnO2 quantum dots composites with excellent photocatalyst activity for the degradation of methyl orange. Ceram. Int. 2016, 42, 12778–12782. [Google Scholar] [CrossRef]
- Tajima, T.; Goto, H.; Nishi, M.; Ohkubo, T.; Nishina, Y.; Miyake, H.; Takaguchi, Y. A facile synthesis of a SnO2/Graphene oxide nano-nano composite and its photoreactivity. Mater. Chem. Phys. 2018, 212, 149–154. [Google Scholar] [CrossRef]
- Chen, D.; Huang, S.; Huang, R.; Zhang, Q.; Le, T.-T.; Cheng, E.; Yue, R.; Hu, Z.; Chen, Z. Construction of Ni-doped SnO2-SnS2 heterojunctions with synergistic effect for enhanced photodegradation activity. J. Hazard. Mater. 2019, 368, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Van Pham, V.; Mai, D.-Q.; Bui, D.-P.; Van Man, T.; Zhu, B.; Zhang, L.; Sangkaworn, J.; Tantirungrotechai, J.; Reutrakul, V.; Cao, T.M. Emerging 2D/0D g-C3N4/SnO2 S-scheme photocatalyst: New generation architectural structure of heterojunctions toward visible-light-driven NO degradation. Environ. Pollut. 2021, 286, 117510. [Google Scholar] [CrossRef]
- Fu, Z.; Qin, B.; Guo, X.; Wang, Y.; Xu, Y.; Qiao, Q.; Wang, Q.; Wang, F.; Gao, S.; Yang, Z. Enhancement of photocatalytic dye degradation and photoconversion capacity of graphene oxide/SnO2 nanocomposites. J. Alloys Compd. 2022, 898, 162796. [Google Scholar] [CrossRef]
- Niu, J.J.; Pan, J.Q.; Fu, W.D.; Xiao, G.S.; Fu, Y.Y.; Cao, J.; Wang, J.J.; Zheng, Y.Y.; Shi, L.; Li, C.R. The photovoltaic enhancement of Cu2O/SnO2 quantum dots/ZnO arrays transparent pn junction device via carrier injection and potential transition of SiO2 QDs. J. Mater. Sci.-Mater. Electron. 2022, 33, 7300–7311. [Google Scholar] [CrossRef]
- Zhu, J.K.; Li, H.; Cui, X.Q.; Yang, Z.Y.; Chen, B.; Li, Y.H.; Zhang, P.F.; Li, J.R. Efficient photocathodic protection performance of ZnIn2S4 nanosheets/SnO2 quantum dots/TiO2 nanotubes composite for 316 SS under visible light. J. Alloys Compd. 2022, 926, 166901. [Google Scholar] [CrossRef]
- Babu, B.; Koutavarapu, R.; Shim, J.; Yoo, K. Enhanced visible-light-driven photoelectrochemical and photocatalytic performance of Au-SnO2 quantum dot-anchored g-C3N4 nanosheets. Sep. Purif. Technol. 2020, 240, 116652. [Google Scholar] [CrossRef]
- Chen, Y.W.; Jiang, Y.F.; Chen, B.Y.; Ye, F.L.; Duan, H.Q.; Cui, H.Y. Facile fabrication of N-doped carbon quantum dots modified SnO2 composites for improved visible light photocatalytic activity. Vacuum 2021, 191, 110371. [Google Scholar] [CrossRef]
- Mohanta, D.; Ahmaruzzaman, M. A novel Au-SnO2-rGO ternary nanoheterojunction catalyst for UV-LED induced photocatalytic degradation of clothianidin: Identification of reactive intermediates, degradation pathway and in-depth mechanistic insight. J. Hazard. Mater. 2020, 397, 122685. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Wang, C.; Shu, S.; Liu, J.; Liu, J.; Li, Y.; Huang, L.; Huang, L. Facile synthesis CQDs/SnO2-x/BiOI heterojunction photocatalyst to effectively degrade pollutants and antibacterial under LED light. J. Photochem. Photobiol. B Biol. 2022, 236, 112566. [Google Scholar] [CrossRef] [PubMed]
Synthesis Approach | Sn Precursor | Processing Temperature | Reaction Time | Ref |
---|---|---|---|---|
Hydrothermal | SnCl4·5H2O | 150 °C | 6 h | [37] |
Hydrothermal | SnCl4·5H2O | 180 °C | 2 h | [34] |
Hydrothermal | SnCl2 | 140 °C | 4 h | [25] |
Hydrothermal | SnCl4·5H2O | 160 °C | 8 h | [44] |
Hydrothermal | SnCl2·2H2O | 160 °C | 6 h | [45] |
Hydrothermal | Na2SnO3·3H2O | 180 °C | 24 h | [46] |
Microwave | SnCl2·2H2O | 180 °C | 30 min | [32] |
Microwave | SnCl4·5H2O | 120 °C | 15 min | [33] |
Microwave | SnCl2·2H2O | 110 °C | 6 h | [26] |
Microwave | SnCl4·5H2O | 160 °C | 20 min | [47] |
Wet chemical | SnCl4·5H2O | 100 °C | 18 h | [39] |
Wet chemical | SnCl2·2H2O | RT | 6 h | [22] |
Reflux | SnCl2·2H2O | 65 °C | 3 h | [42] |
Hummers | SnCl2·2H2O | 180 °C | 24 h | [35] |
Solution processing | SnCl2·2H2O | RT | 48 h | [27] |
Solution combustion | SnCl4·5H2O | 450 °C | - | [48] |
Self-assembly | SnCl2·2H2O | RT | 24 h | [11] |
One pot Biosynthesis | SnCl2·2H2O | 60 °C | 12 h | [43] |
In situ | SnCl4·5H2O | 100 °C | 18 h | [49] |
Photocatalyst | Bandgap | Pollutant | Dosage | Light Source | Efficiency | Stability | Ref |
---|---|---|---|---|---|---|---|
Au/SnO2 QDs | 2.71 eV | RhB | 15 mg/50 mL | Visible light | 98.7% in 200 min | - | [39] |
Oxy-SnO2 QDs | 4.2 eV | Octane | - | UV–visible | 91.9% in 48 h | 90% after 4 cycles | [11] |
Nb-SnO2 QDs | 2.95 eV | Polyethylene | - | Visible light | 29% in 6 h | - | [51] |
Ni-doped SnO2 QDs | 3.69 eV | RhB | - | Solar light | 91.5% in 28 min | - | [44] |
Ag doped SnO2 QDs | 3.09 eV | MB | 10 mg/10 mL | Visible light | 93.7% in 120 min | 7 cycles | [33] |
NiFe2O4/SnO2 | 1.754 eV | RhB | 20 mg/50 mL | Visible light | 98% in 105 min | 93% after 3 cycles | [56] |
Nb-SnO2 QDs | 4.74 eV | MO | 30 mg/L | Visible light | 99.7% in 180 min | 3 cycles | [45] |
Bio-SnO2 QDs | 3.66 eV | RhB | 0.25 g/L | UV light | 65% in 180 min | - | [43] |
SnO2 QDs/Ag3PO4 | - | Carbamazepine | - | Visible light | 86.5% in 120 min | 66.6% in 3 cycles | [58] |
Bi-doped SnO2 | 3.75 eV | RhB | 25 mg | Sunlight | 98.28% in 100 min | 85.79% after 5 cycles | [46] |
Ag-SnO2 QDs | 2.54 eV | RhB | 75 mg/100 mL | Direct sunlight | 98% in 180 min | 4 cycles | [49] |
Mn-doped SnO2 QDs | 1.74 eV | MO | 50 mg/100 mL | Visible light | 92% in 240 min | - | [48] |
SnO2 QDs | 4.5 eV | Eosin Y | 10 mg/200 mL | Direct sunlight | 98% in 60 min | - | [59] |
Cr-doped SnO2 QDs | 4.35 eV | MO | 100mg/100mL | UV light | 98.9% in 100 min | - | [60] |
Bio-SnO2 QDs | 4.17 eV | Acid yellow 23 | 20 mg | UV light | 98% in 24 min | 5 cycles | [61] |
SnO2-CNF | 3.0 eV | Bisphenol A | 50 mg /100 mL | UV light | 98% in 60 min | 84% after 3 cycles | [62] |
Cu-doped SnO2 QDs | 2.4 eV | MO | 100 mg/100 mL | Visible light | 99% in 180 min | - | [63] |
Photocatalyst. | Synthesis | Pollutant | Dosage | Light Source | Efficiency | Stability | Ref |
---|---|---|---|---|---|---|---|
CdS/SnO2 | Sonochemical | RhB | - | Visible light | 99% in 60 min | 95% after 3 cycles | [40] |
GO/SnO2 | Sonochemical | MB | 0.5 mg/mL 250 ppm | White light | ~94% in 30 min | - | [67] |
SnO2/SiO2 | Wet Chemical | MB | 50 mg/80mL of 10 ppm | - | ~100% in 5 min | 4 cycles | [74] |
SnO2/g-C3N4 | Solvothermal | MO | - | Sunlight | 94% in 180 min | 91% after 5 cycles | [41] |
TiO2/SnO2 | Hydrothermal | MO | 100 mg/100 mL of 10 ppm | UV-visible light | 99.5% in 15 min | - | [75] |
SnO2/GO | Sol–gel | RhB | - | Visible light | 86% in 360 min | - | [76] |
Ni-SnO2/SnS2 | Wet chemical | MO | 10 mg /50 mL of 10 ppm | solar light | 92.7% in 80 min | 88% after 3 cycles | [77] |
g-C3N4/SnO2 | Hydrothermal | NO | 200mg/15 mL of 100 ppm | Visible light | 44.17% in 30 min | 30% after 5 cycles | [78] |
SnO2/g-C3N4 | Sonochemical | NO | 400mg/15 mL of 600 ppm | Visible light | 32% in 30 min | ~20% after 3 cycles | [69] |
SnO2-GO | Solvothermal | MB | 30 mg /20 mL of 10 ppm | Visible light | 89.43% in 90 min | - | [79] |
Photocatalyst | Synthesis | Pollutant | Dosage | Light Source | Efficiency | Stability | Ref |
---|---|---|---|---|---|---|---|
g-C3N4/Au-SnO2 | Sonochemical | RhB | 15 mg/50 mL | Visible light | 99.15% in 40 min | 93.45% after 4 cycles | [82] |
Au-SnO2-rGO | Hydrothermal | clothianidin | - | 97% in 120 min | 93% after 4 cycles | [84] | |
CQDs/SnO2−x/BiOI | Sonochemical | MO | - | LED light | 91.8% in 75 min | - | [85] |
SnO2/AgVO3/g-C3N4 | Hydrothermal | RhB | 5 mg/100 mL of 5 ppm | Visible light | 84% in 50 min | ~82% after 5 cycles | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bathula, B.; Gurugubelli, T.R.; Yoo, J.; Yoo, K. Recent Progress in the Use of SnO2 Quantum Dots: From Synthesis to Photocatalytic Applications. Catalysts 2023, 13, 765. https://doi.org/10.3390/catal13040765
Bathula B, Gurugubelli TR, Yoo J, Yoo K. Recent Progress in the Use of SnO2 Quantum Dots: From Synthesis to Photocatalytic Applications. Catalysts. 2023; 13(4):765. https://doi.org/10.3390/catal13040765
Chicago/Turabian StyleBathula, Babu, Thirumala Rao Gurugubelli, Jihyung Yoo, and Kisoo Yoo. 2023. "Recent Progress in the Use of SnO2 Quantum Dots: From Synthesis to Photocatalytic Applications" Catalysts 13, no. 4: 765. https://doi.org/10.3390/catal13040765
APA StyleBathula, B., Gurugubelli, T. R., Yoo, J., & Yoo, K. (2023). Recent Progress in the Use of SnO2 Quantum Dots: From Synthesis to Photocatalytic Applications. Catalysts, 13(4), 765. https://doi.org/10.3390/catal13040765