Production of Hydrogen from Lignocellulosic Biomass: A Review of Technologies
Abstract
:1. Introduction
2. Biomass
3. Hydrogen Production from Biomass
3.1. Hydrogen Production from Catalytic Biomass Gasification
Hydrogen Production from Non-Catalyzed Biomass
Biomass | Reactor | Gasification Agent | Reaction Conditions | Catalyst | H2 | Ref. |
---|---|---|---|---|---|---|
Pine sawdust | RLF | Water steam | T = 800–950 °C. t = 6.4–4.5 s. | . | [41] | |
Rice husk | FBR–bubbly | Air | T = 950 °C | 45.9% vol with temperature rise to 950 °C | [64] | |
Banana peel | FBR quartz | Water steam | S/C: 21.7; T = 1023 K | — | 3.42 | [73,74] |
Rice husk | FBR | Steam plus silica sand | T = 600 °C; P = atmospheric t = 24 h; S/B = 0.4. | samples; () | 17.5–20.5 | [21] |
Oil palm | SCWG reactor batch | Water steam | T = 380 °C; P = 22.1 Mpa | , and | 35.4 | [39] |
Oil palm | SCWG reactor discontinuous | Water steam | T = 400 °C P = 25 Mpa t = 30 min | Zn doped with nanometric | 118.1 | [39] |
Corn straw | RLF | Water steam with oxygen | T = 800–950 °C, t = 10 min | Biochar with (, , y ). | 197.8 | [54] |
A mixture of banana peel, Japanese cedar, and rice husk | RLF | Argon carrier gas | T = 650–850 °C, t = 2 h, v = 50 cm3/min | 66.8% when the temperature rises to 850 °C. | [12] | |
Palm kernel shells | ADG | Water steam | T = 800 °C, 5–10 Kpa | NiO/MD | + CO = 80.4% | [19] |
Wood sawdust | FBR | Steam and N2 | T = 700 °C v = 35 °C/min. | 38.21 | [75] | |
Cotton stall, rice husk | -FPBO -RLF two stages | Water steam | T = 600–700 °C v = 0.1 g/min | CaO | 11.55 | [76] |
Sugar cane bagasse | RDS | T = 500–800 °C | Nickel nanocatalysts supported on carbon nanotubes | 21.8 | [53] | |
Banana pseudostem | Reactor SCWG | Water steam win N2 | T = 300–600 °C t = 60 min, P = 22 and 25 Mpa | with metal (Ni/Fe/Ru) | 11.1 mmol mL g−1 | [40] |
Wheat straw | RDS | Water steam | T = 300, 400, 500 °C, P = 23–25 Mpa, t = 15, 30 and 45 min | Nickel catalysts | 5.78 | [77] |
Oil palm | Reactor WGS | Steam | T = 800 °C atmospheric pressure | 59.25% by volume to 800 °C, CGE (cold gas efficiency) maximum of 84%. | [78] | |
Sorghum | RLF | Steam | T = 773 K v = 11,8 K/min. t = 90 min. P = 9.6–29.6 Mpa | 11.9 | [79] | |
Pinewood | FBR | Water steam | T = 650–850 °C | Dolomite, olivine, and magnesite | 15.8% | [65] |
Cane bagasse | RDS | Water steam | P = 25 Mpa, T = 800 °C | 75.6 | [80] | |
Nutshell | Batch microreactor | Water steam | T = 600 °C t = 30 min P = 220 bar | y | 4.63 | [81] |
Palm shell | FBR | Water steam | T = 900 °C P = 5 Mpa t = 16.3 min | 31.5 | [28] | |
Rice husk | Reactor WGS | Water steam | T = 700 °C P = 1 atm | 6.58 | [76] | |
Pine sawdust | RLF | Water steam | T = 730 °C P = 1.5 Mpa t = 6 h | NiO/Dolomite | 22.95 mmol g−1 | [82] |
Wood | Reactor: Ryield and Rgibbs | CO2, water steam | T = 750 °C P = 1 atm t = 6 h | CaO/C | 85.55 | [83] |
Banana peel | RLF | N2–air | T = 320 °C t = 25 min | - | 32.71 mmol g−1 | [73] |
Rice straw | FBR | Steam | T = 650 °C P = 1 atm t = 5–7 h | 24.63 | [84] |
3.2. Hydrogen Production from Pyrolysis of Biomass
Biomass | Reactor | Gasification Agent | Reaction Conditions | Catalyst | Results | Ref. |
---|---|---|---|---|---|---|
Baggase | Double-bed microreactor | Ar- | T = 850 °C P = 1 atm t = 30 min | Ni and Fe nanocatalysts | Yield = 35.32 | [53] |
Pine Tree | RLF | Air | T = 550 °C t = 17 min | Zeolites-quartz sand | Yield = 18% in weight | [85] |
Wood chips | RLF | Water steam | T = 700 °C | 109.848 | [89] | |
Sewage sludge | Quartz RLF | Water steam | T = 600 °C v = 100 mL/min t = 20 min | Yield = 42.59% 12.07 mmol | [84] | |
Sawdust | RLF | Water steam | T = 650 °C P = 101.325 KP v = 30 mL/min t = 20 | Yield = 18.29% 20.40 | [90] | |
Guangxi black skin bagasse | Quartz FPBO | Argon atmosphere | T = 250 °C P = 0.28 MPa v = 40 mL/min t = 5 min | 19.065 | [91] | |
Pine and fir wood | FPBO of two steps | - | T = 500 °C P = 0.28 MPa v = 0.2 L/min t = 5 min | Yield = 48.12% 9.34 mmol | [92] | |
Rice husk | FPBO continue flow | N2 | T = 700 °C | Yield = 47.9% | [93] |
3.3. Hydrogen Production by Liquefaction
Biomass | Reactor | Reaction Conditions T (°C)/P (Mpa)/t (min) | Catalyst | Ref. | |
---|---|---|---|---|---|
Coconut shell | Tubular batch | 600 °C/ 23–25 Mpa | K2CO3 | 4.8 | [77] |
Fruit pulp | Batch | 600 °C/ 25 Mpa | RU/activated charcoal | 54.8 | [100] |
Microalgae | Batch | 385 °C/ 26 Mpa | ---- | 4 | [101] |
Chlorella Vulgaris | Non-stirred batch | 350 °C/35 Mpa/ 30 min | ---- | 30 | [102] |
Chlorella Vulgaris | Batch | 350 °C/ Atmosphere /0–60 min | ---- | 38–72 | [103] |
Scenedesmus obliquus | Batch | 240–320 °C/ 5 Mpa/ 60 min | 5.55 | [104] | |
Household waste | Batch | 240–320 °C/5 Mpa/ 60 min | 3.9 | [105] |
4. Technical and Economic Evaluations
5. Main Remarks and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhang, Y.; Li, L.; Xu, P.; Liu, B.; Shuai, Y.; Li, B. Hydrogen production through biomass gasification in supercritical water: A review from exergy aspect. Int. J. Hydrog. Energy 2019, 44, 15727–15736. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I. Comparative assessment of renewable energy-based hydrogen production methods. Renew. Sustain. Energy Rev. 2020, 135, 110192. [Google Scholar] [CrossRef]
- Kumar, A.; Reddy, S.N. Subcritical and supercritical water in-situ gasification of metal (Ni/Ru/Fe) impregnated banana pseudo-stem for hydrogen rich fuel gas mixture. Int. J. Hydrog. Energy 2019, 45, 18348–18362. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, M.; Wang, J.; Lei, Y.; Wu, Y.; Liu, Q.; Zhao, Y.; Zhang, Y. Synthesis of Silicotungstic Acid/Ni-Zr-O Composite Nanoparticle by Using Bimetallic Ni-Zr MOF for Fatty Acid Esterification. Catalysts 2022, 13, 40. [Google Scholar] [CrossRef]
- Zhang, Q.; Lei, Y.; Li, L.; Lei, J.; Hu, M.; Deng, T.; Zhang, Y.; Ma, P. Construction of the novel PMA@Bi-MOF catalyst for effective fatty acid esterification. Sustain. Chem. Pharm. 2023, 33, 101038. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Huang, Z.; Liu, T.; Li, H. Photothermal technique-enabled ambient production of microalgae biodiesel: Mechanism and life cycle assessment. Bioresour. Technol. 2023, 369, 128390. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, B.; Tian, Y.; Yang, X.; Yu, R.; Wang, J.; Deng, T.; Zhang, Y. Fabrication of silicotungstic acid immobilized on Ce-based MOF and embedded in Zr-based MOF matrix for green fatty acid esterification. Green Process. Synth. 2022, 11, 184–194. [Google Scholar] [CrossRef]
- Castillo, A.B.; Cortes, D.J.D.; Sorino, C.F.; Soriño, C.K.P.; El-Naas, M.H.; Ahmed, T. Bioethanol Production from Waste and Nonsalable Date Palm (Phoenix dactylifera L.) Fruits: Potentials and Challenges. Sustainability 2023, 15, 2937. [Google Scholar] [CrossRef]
- Batog, J.; Frankowski, J.; Wawro, A.; Łacka, A. Bioethanol Production from Biomass of Selected Sorghum Varieties Cultivated as Main and Second Crop. Energies 2020, 13, 6291. [Google Scholar] [CrossRef]
- Tsolcha, O.N.; Patrinou, V.; Economou, C.N.; Dourou, M.; Aggelis, G.; Tekerlekopoulou, A.G. Tekerlekopoulou, Utilization of Biomass Derived from Cyanobacteria-Based Agro-Industrial Wastewater Treatment and Raisin Residue Extract for Bioethanol Production. Water 2021, 13, 486. [Google Scholar] [CrossRef]
- Iqbal, Z.; Siddiqua, A.; Anwar, Z.; Munir, M. Valorization of Delonix regia Pods for Bioethanol Production. Fermentation 2023, 9, 289. [Google Scholar] [CrossRef]
- Pal, D.B.; Singh, A.; Bhatnagar, A. A review on biomass based hydrogen production technologies. Int. J. Hydrog. Energy 2022, 47, 1461–1480. [Google Scholar] [CrossRef]
- Jin, K.; Ji, D.; Xie, Q.; Nie, Y.; Yu, F.; Ji, J. Hydrogen production from steam gasification of tableted biomass in molten eutectic carbonates. Int. J. Hydrog. Energy 2019, 44, 22919–22925. [Google Scholar] [CrossRef]
- Pocha, C.K.R.; Chia, W.Y.; Silvanir; Kurniawan, T.A.; Khoo, K.S.; Chew, K.W. Thermochemical conversion of different biomass feedstocks into hydrogen for power plant electricity generation. Fuel 2023, 340, 127472. [Google Scholar] [CrossRef]
- Andersson, J.; Grönkvist, S. Large-scale storage of hydrogen. Int. J. Hydrog. Energy 2019, 44, 11901–11919. [Google Scholar] [CrossRef]
- Chai, W.S.; Bao, Y.; Jin, P.; Tang, G.; Zhou, L. A review on ammonia, ammonia-hydrogen and ammonia-methane fuels. Renew. Sustain. Energy Rev. 2021, 147, 111254. [Google Scholar] [CrossRef]
- Taipabu, M.I.; Viswanathan, K.; Wu, W.; Hattu, N.; Atabani, A. A critical review of the hydrogen production from biomass-based feedstocks: Challenge, solution, and future prospect. Process. Saf. Environ. Prot. 2022, 164, 384–407. [Google Scholar] [CrossRef]
- Huang, B.-S.; Chen, H.-Y.; Chuang, K.-H.; Yang, R.-X.; Wey, M.-Y. Hydrogen production by biomass gasification in a fluidized-bed reactor promoted by an Fe/CaO catalyst. Int. J. Hydrog. Energy 2012, 37, 6511–6518. [Google Scholar] [CrossRef]
- Barco-Burgos, J.; Carles-Bruno, J.; Eicker, U.; Saldana-Robles, A.; Alcántar-Camarena, V. Hydrogen-rich syngas production from palm kernel shells (PKS) biomass on a downdraft allothermal gasifier using steam as a gasifying agent. Energy Convers. Manag. 2021, 245, 114592. [Google Scholar] [CrossRef]
- Akhlaghi, N.; Najafpour-Darzi, G. A comprehensive review on biological hydrogen production. Int. J. Hydrog. Energy 2020, 45, 22492–22512. [Google Scholar] [CrossRef]
- Doranehgard, M.H.; Samadyar, H.; Mesbah, M.; Haratipour, P.; Samiezade, S. High-purity hydrogen production with in situ CO2 capture based on biomass gasification. Fuel 2017, 202, 29–35. [Google Scholar] [CrossRef]
- Ozbas, E.E.; Aksu, D.; Ongen, A.; Aydin, M.A.; Ozcan, H.K. Hydrogen production via biomass gasification, and modeling by supervised machine learning algorithms. Int. J. Hydrog. Energy 2019, 44, 17260–17268. [Google Scholar] [CrossRef]
- Domingues, J.; Pelletier, C.; Brunelle, T. Cost of ligno-cellulosic biomass production for bioenergy: A review in 45 countries. Biomass Bioenergy 2022, 165, 106583. [Google Scholar] [CrossRef]
- Kizha, A.R.; Han, H.-S. Processing and sorting forest residues: Cost, productivity and managerial impacts. Biomass Bioenergy 2016, 93, 97–106. [Google Scholar] [CrossRef]
- Shayan, E.; Zare, V.; Mirzaee, I. Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents. Energy Convers. Manag. 2018, 159, 30–41. [Google Scholar] [CrossRef]
- Noussan, M.; Raimondi, P.P.; Scita, R.; Hafner, M. The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective. Sustainability 2020, 13, 298. [Google Scholar] [CrossRef]
- Anniwaer, A.; Chaihad, N.; Zhang, M.; Wang, C.; Yu, T.; Kasai, Y.; Abudula, A.; Guan, G. Hydrogen-rich gas production from steam co-gasification of banana peel with agricultural residues and woody biomass. Waste Manag. 2021, 125, 204–214. [Google Scholar] [CrossRef]
- Salam, M.A.; Ahmed, K.; Akter, N.; Hossain, T.; Abdullah, B. A review of hydrogen production via biomass gasification and its prospect in Bangladesh. Int. J. Hydrog. Energy 2018, 43, 14944–14973. [Google Scholar] [CrossRef]
- Singh, A.D.; Gajera, B.; Sarma, A. Appraising the availability of biomass residues in India and their bioenergy potential. Waste Manag. 2022, 152, 38–47. [Google Scholar] [CrossRef]
- Rezania, S.; Oryani, B.; Cho, J.; Talaiekhozani, A.; Sabbagh, F.; Hashemi, B.; Rupani, P.F.; Mohammadi, A.A. Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy 2020, 199, 117457. [Google Scholar] [CrossRef]
- Eswari, A.P.; Ravi, Y.K.; Kavitha, S.; Banu, J.R. Recent insight into anaerobic digestion of lignocellulosic biomass for cost effective bioenergy generation. E-Prime Adv. Electr. Eng. Electron. Energy 2023, 3, 100119. [Google Scholar] [CrossRef]
- Ma, S.; Wang, H.; Li, J.; Fu, Y.; Zhu, W. Methane production performances of different compositions in lignocellulosic biomass through anaerobic digestion. Energy 2019, 189, 116190. [Google Scholar] [CrossRef]
- Tursi, A. A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Res. J. 2019, 6, 962–979. [Google Scholar] [CrossRef]
- Sivabalan, K.; Hassan, S.; Ya, H.; Pasupuleti, J. A review on the characteristic of biomass and classification of bioenergy through direct combustion and gasification as an alternative power supply. J. Phys. Conf. Ser. 2021, 1831, 012033. [Google Scholar] [CrossRef]
- Wang, F.; Ouyang, D.; Zhou, Z.; Page, S.J.; Liu, D.; Zhao, X. Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J. Energy Chem. 2021, 57, 247–280. [Google Scholar] [CrossRef]
- Ullah, K.; Sharma, V.K.; Dhingra, S.; Braccio, G.; Ahmad, M.; Sofia, S. Assessing the lignocellulosic biomass resources potential in developing countries: A critical review. Renew. Sustain. Energy Rev. 2015, 51, 682–698. [Google Scholar] [CrossRef]
- Marafon, A.C.; Amaral, A.F.C.; de Lemos, E.E.P. Characterization of bamboo species and other biomasses with potential for thermal energy generation. Pesqui. Agropecuária Trop. 2019, 49, e55282. [Google Scholar] [CrossRef]
- Hamzah, N.; Tokimatsu, K.; Yoshikawa, K. Solid Fuel from Oil Palm Biomass Residues and Municipal Solid Waste by Hydrothermal Treatment for Electrical Power Generation in Malaysia: A Review. Sustainability 2019, 11, 1060. [Google Scholar] [CrossRef]
- Mastuli, M.; Kamarulzaman, N.; Kasim, M.; Sivasangar, S.; Saiman, M.; Taufiq-Yap, Y. Catalytic gasification of oil palm frond biomass in supercritical water using MgO supported Ni, Cu and Zn oxides as catalysts for hydrogen production. Int. J. Hydrog. Energy 2017, 42, 11215–11228. [Google Scholar] [CrossRef]
- Gao, N.; Li, A.; Quan, C. A novel reforming method for hydrogen production from biomass steam gasification. Bioresour. Technol. 2009, 100, 4271–4277. [Google Scholar] [CrossRef]
- Awulu, J.; Omale, P.; Ameh, J. Comparative analysis of calorific values of selected agricultural wastes. Niger. J. Technol. 2018, 37, 1141. [Google Scholar] [CrossRef]
- Xu, C.; Chen, S.; Soomro, A.; Sun, Z.; Xiang, W. Hydrogen rich syngas production from biomass gasification using synthesized Fe/CaO active catalysts. J. Energy Inst. 2018, 91, 805–816. [Google Scholar] [CrossRef]
- Inayat, A.; Khan, Z.; Aslam, M.; Shahbaz, M.; Ahmad, M.M.; Mutalib, M.A.; Yusup, S. Integrated adsorption steam gasification for enhanced hydrogen production from palm waste at bench scale plant. Int. J. Hydrog. Energy 2021, 46, 30581–30591. [Google Scholar] [CrossRef]
- Korotkova, T.; Ksandopulo, S.; Donenko, A.; Bushumov, S.; Danilchenko, A. Physical Properties and Chemical Composition of the Rice Husk and Dust. Orient. J. Chem. 2016, 32, 3213–3219. [Google Scholar] [CrossRef]
- Nam, N.H.; Linh, V.N.; Dung, L.D.; Ha, V.T.T. Physico-chemical characterization of forest and agricultural residues for energy conversion processes. Vietnam J. Chem. 2020, 58, 735–741. [Google Scholar] [CrossRef]
- Kabenge, I.; Omulo, G.; Banadda, N.; Seay, J.; Zziwa, A.; Kiggundu, N. Characterization of Banana Peels Wastes as Potential Slow Pyrolysis Feedstock. J. Sustain. Dev. 2018, 11, 14. [Google Scholar] [CrossRef]
- Kumar, M.; Oyedun, A.O.; Kumar, A. A Comparative Analysis of Hydrogen Production from the Thermochemical Conversion of Algal Biomass. Int. J. Hydrog. Energy 2019, 44, 10384–10397. [Google Scholar] [CrossRef]
- Haldar, D.; Sen, D.; Gayen, K. Enzymatic hydrolysis of banana stems (Musa acuminata): Optimization of process parameters and inhibition characterization. Int. J. Green Energy 2018, 15, 406–413. [Google Scholar] [CrossRef]
- Ortiz-Ulloa, J.A.; Abril-González, M.F.; Pelaez-Samaniego, M.R.; Zalamea-Piedra, T.S. Biomass yield and carbon abatement potential of banana crops (Musa spp.) in Ecuador. Environ. Sci. Pollut. Res. 2021, 28, 18741–18753. [Google Scholar] [CrossRef]
- Bobet, O.; Nassio, S.; Seynou, M.; Remy, B.; Zerbo, L.; Sanou, I.; Sawadogo, M.; Millogo, Y.; Gilles, E. Characterization of Peanut Shells for Their Valorization in Earth Brick. J. Miner. Mater. Charact. Eng. 2020, 08, 301–315. [Google Scholar] [CrossRef]
- Jiang, X.; Cheng, W.; Liu, J.; Xu, H.; Zhang, D.; Zheng, Y.; Cai, H. Effect of Moisture Content during Preparation on the Physicochemical Properties of Pellets Made from Different Biomass Materials. BioResources 2020, 15, 557–573. Available online: https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_15_1_557_Jiang_Moisture_Content_Biomass_Pellets (accessed on 6 October 2022). [CrossRef]
- Esa, K.; Minna, K.; Ilkka, H. Production of Synthesis Gas from Biomass Residues by Staged Fixed-bed Gasification—Results from Pilot Test Campaigns. Chem. Eng. Trans. 2021, 86, 7–12. [Google Scholar] [CrossRef]
- Rashidi, M.; Tavasoli, A. Hydrogen rich gas production via supercritical water gasification of sugarcane bagasse using unpromoted and copper promoted Ni/CNT nanocatalysts. J. Supercrit. Fluids 2015, 98, 111–118. [Google Scholar] [CrossRef]
- Ning, S.; Jia, S.; Ying, H.; Sun, Y.; Xu, W.; Yin, H. Hydrogen-rich syngas produced by catalytic steam gasification of corncob char. Biomass Bioenergy 2018, 117, 131–136. [Google Scholar] [CrossRef]
- Choi, H.I.; Lee, J.S.; Choi, J.W.; Shin, Y.S.; Sung, Y.J.; Hong, M.E.; Kwak, H.S.; Kim, C.Y.; Sim, S.J. Performance and potential appraisal of various microalgae as direct combustion fuel. Bioresour. Technol. 2019, 273, 341–349. [Google Scholar] [CrossRef] [PubMed]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Pasztor, J. Bioenergy and the Environment; Routledge: Oxfordshire, UK, 2019. [Google Scholar]
- Pandey, B.; Prajapati, Y.K.; Sheth, P.N. Recent progress in thermochemical techniques to produce hydrogen gas from biomass: A state of the art review. Int. J. Hydrog. Energy 2019, 44, 25384–25415. [Google Scholar] [CrossRef]
- Uddin, N.; Daud, W.W.; Abbas, H.F. Potential hydrogen and non-condensable gases production from biomass pyrolysis: Insights into the process variables. Renew. Sustain. Energy Rev. 2013, 27, 204–224. [Google Scholar] [CrossRef]
- Xu, J.; Lin, W. Integrated hydrogen liquefaction processes with LNG production by two-stage helium reverse Brayton cycles taking industrial by-products as feedstock gas. Energy 2021, 227, 120443. [Google Scholar] [CrossRef]
- Cardella, U.; Decker, L.; Sundberg, J.; Klein, H. Process optimization for large-scale hydrogen liquefaction. Int. J. Hydrog. Energy 2017, 42, 12339–12354. [Google Scholar] [CrossRef]
- Sivaramakrishnan, R.; Shanmugam, S.; Sekar, M.; Mathimani, T.; Incharoensakdi, A.; Kim, S.-H.; Parthiban, A.; Geo, V.E.; Brindhadevi, K.; Pugazhendhi, A. Insights on biological hydrogen production routes and potential microorganisms for high hydrogen yield. Fuel 2021, 291, 120136. [Google Scholar] [CrossRef]
- Agyekum, E.B.; Nutakor, C.; Agwa, A.M.; Kamel, S. A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation. Membranes 2022, 12, 173. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, H.; Wang, J.; Wu, B. Catalytic gasification characteristics of rice husk with calcined dolomite. Energy 2018, 165, 1173–1177. [Google Scholar] [CrossRef]
- Lan, W.; Chen, G.; Zhu, X.; Wang, X.; Wang, X.; Xu, B. Research on the characteristics of biomass gasification in a fluidized bed. J. Energy Inst. 2019, 92, 613–620. [Google Scholar] [CrossRef]
- Mastuli, M.S.; Kamarulzaman, N.; Kasim, M.F.; Mahat, A.M.; Matsumura, Y.; Taufiq-Yap, Y.H. Catalytic supercritical water gasification of oil palm frond biomass using nanosized MgO doped Zn catalysts. J. Supercrit. Fluids 2019, 154, 104610. [Google Scholar] [CrossRef]
- Khan, M.M.; Xu, S.; Wang, C. Catalytic gasification of coal in a decoupled dual loop gasification system over alkali-feldspar. J. Energy Inst. 2021, 98, 77–84. [Google Scholar] [CrossRef]
- Rauch, R.; Hrbek, J.; Hofbauer, H. Biomass gasification for synthesis gas production and applications of the syngas: Biomass gasification for synthesis gas production. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 343–362. [Google Scholar] [CrossRef]
- Kertthong, T.; Schmid, M.; Scheffknecht, G. Non-catalytic partial oxidation of methane in biomass-derived syngas with high steam and hydrogen content optimal for subsequent synthesis process. J. Energy Inst. 2022, 105, 251–261. [Google Scholar] [CrossRef]
- Voloshchuk, Y.; Richter, A. Reduced order modeling and large-scale validation for non-catalytic partial oxidation of natural gas. Chem. Eng. Sci. 2022, 255, 117620. [Google Scholar] [CrossRef]
- Agarwal, M.; Tardio, J.; Mohan, S.V. Biohydrogen production from kitchen based vegetable waste: Effect of pyrolysis temperature and time on catalysed and non-catalysed operation. Bioresour. Technol. 2013, 130, 502–509. [Google Scholar] [CrossRef]
- Ioannidou, O.; Zabaniotou, A.; Antonakou, E.; Papazisi, K.; Lappas, A.; Athanassiou, C. Investigating the potential for energy, fuel, materials and chemicals production from corn residues (cobs and stalks) by non-catalytic and catalytic pyrolysis in two reactor configurations. Renew. Sustain. Energy Rev. 2009, 13, 750–762. [Google Scholar] [CrossRef]
- He, J.; Yang, Z.; Xiong, S.; Guo, M.; Yan, Y.; Ran, J.; Zhang, L. Experimental and thermodynamic study of banana peel non-catalytic gasification characteristics. Waste Manag. 2020, 113, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Babatabar, M.A.; Manouchehri, M.; Abbasi, H.; Tavasoli, A. Supercritical water Co-gasification of biomass and plastic wastes for hydrogen-rich gas production using Ni-Cu/AC-CaO catalyst. J. Energy Inst. 2023, 108, 101251. [Google Scholar] [CrossRef]
- Xue, X.; Wu, L.; Wei, X.; Liang, J.; Sun, Y. Product Modification in Catalytic Fast Pyrolysis of Corn Stalk: The Decoupled Effect of Acidity and Porosity within a Core–Shell Micro-/Mesoporous Zeolite. ACS Sustain. Chem. Eng. 2020, 8, 7445–7453. [Google Scholar] [CrossRef]
- Wei, L.; Yang, H.; Li, B.; Wei, X.; Chen, L.; Shao, J.; Chen, H. Absorption-enhanced steam gasification of biomass for hydrogen production: Effect of calcium oxide addition on steam gasification of pyrolytic volatiles. Int. J. Hydrog. Energy 2014, 39, 15416–15423. [Google Scholar] [CrossRef]
- Nanda, S.; Reddy, S.N.; Dalai, A.K.; Kozinski, J.A. Subcritical and supercritical water gasification of lignocellulosic biomass impregnated with nickel nanocatalyst for hydrogen production. Int. J. Hydrog. Energy 2016, 41, 4907–4921. [Google Scholar] [CrossRef]
- Yong, Y.S.; Rasid, R.A. Process simulation of hydrogen production through biomass gasification: Introduction of torrefaction pre-treatment. Int. J. Hydrog. Energy 2021, 47, 42040–42050. [Google Scholar] [CrossRef]
- Faki, E.; Üzden, Ş.T.; Seçer, A.; Hasanoğlu, A. Hydrogen production from low temperature supercritical water Co-Gasification of low rank lignites with biomass. Int. J. Hydrog. Energy 2022, 47, 7682–7692. [Google Scholar] [CrossRef]
- Sheikhdavoodi, M.J.; Almassi, M.; Ebrahimi-Nik, M.; Kruse, A.; Bahrami, H. Gasification of sugarcane bagasse in supercritical water; evaluation of alkali catalysts for maximum hydrogen production. J. Energy Inst. 2015, 88, 450–458. [Google Scholar] [CrossRef]
- Safari, F.; Javani, N.; Yumurtaci, Z. Hydrogen production via supercritical water gasification of almond shell over algal and agricultural hydrochars as catalysts. Int. J. Hydrog. Energy 2018, 43, 1071–1080. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Yang, Z.; He, Z. An experiment study of biomass steam gasification over NiO/Dolomite for hydrogen-rich gas production. Int. J. Hydrog. Energy 2017, 42, 76–85. [Google Scholar] [CrossRef]
- Detchusananard, T.; Im-Orb, K.; Ponpesh, P.; Arpornwichanop, A. Biomass gasification integrated with CO2 capture processes for high-purity hydrogen production: Process performance and energy analysis. Energy Convers. Manag. 2018, 171, 1560–1572. [Google Scholar] [CrossRef]
- Li, B.; Yang, H.; Wei, L.; Shao, J.; Wang, X.; Chen, H. Hydrogen production from agricultural biomass wastes gasification in a fluidized bed with calcium oxide enhancing. Int. J. Hydrog. Energy 2017, 42, 4832–4839. [Google Scholar] [CrossRef]
- Vuppaladadiyam, A.K.; Vuppaladadiyam, S.S.V.; Awasthi, A.; Sahoo, A.; Rehman, S.; Pant, K.K.; Murugavelh, S.; Huang, Q.; Anthony, E.; Fennel, P.; et al. Biomass pyrolysis: A review on recent advancements and green hydrogen production. Bioresour. Technol. 2022, 364, 128087. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Chen, W.; Xia, M.; Chen, Y.; Chen, H.; Zeng, K.; Yang, H. Biomass pyrolysis mechanism for carbon-based high-value products. Proc. Combust. Inst. 2022, S1540748922004722. [Google Scholar] [CrossRef]
- Campuzano, F.; Brown, R.C.; Martínez, J.D. Auger reactors for pyrolysis of biomass and wastes. Renew. Sustain. Energy Rev. 2019, 102, 372–409. [Google Scholar] [CrossRef]
- Serban, M.; Lewis, M.A.; Marshall, C.L.; Doctor, R.D. Hydrogen Production by Direct Contact Pyrolysis of Natural Gas. Energy Fuels 2003, 17, 705–713. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, L.; Zhang, T.; Wang, Q. Hydrogen-rich syngas production from biomass pyrolysis and catalytic reforming using biochar-based catalysts. Fuel 2022, 313, 123006. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, B.; Liu, S.; Zhu, D.; Huang, F.; Yang, H.; Guan, H.; Song, A.; Xu, D.; Sun, L.; et al. Catalytic pyrolysis of biomass with Ni/Fe-CaO-based catalysts for hydrogen-rich gas: DFT and experimental study. Energy Convers. Manag. 2022, 254, 115246. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, K.; Mao, C.; Huang, J.; Xu, Q.; Liao, L.; Wang, R.; Chen, S.; Li, P.; Zhang, C. Microwave assisted catalytic pyrolysis of bagasse to produce hydrogen. Int. J. Hydrog. Energy 2022, 47, 35626–35634. [Google Scholar] [CrossRef]
- Yang, H.; Cui, Y.; Han, T.; Sandström, L.; Jönsson, P.; Yang, W. High-purity syngas production by cascaded catalytic reforming of biomass pyrolysis vapors. Appl. Energy 2022, 322, 119501. [Google Scholar] [CrossRef]
- Park, C.; Lee, N.; Kim, J.; Lee, J. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions. Environ. Pollut. 2021, 270, 116045. [Google Scholar] [CrossRef] [PubMed]
- Tabat, M.E.; Omoarukhe, F.O.; Güleç, F.; Adeniyi, D.E.; Mukherjee, A.; Okoye, P.U.; Ogbaga, C.C.; Epelle, E.I.; Akande, O.; Okolie, J.A. Process design, exergy, and economic assessment of a conceptual mobile autothermal methane pyrolysis unit for onsite hydrogen production. Energy Convers. Manag. 2023, 278, 116707. [Google Scholar] [CrossRef]
- Pang, Y.X.; Foo, D.C.; Yan, Y.; Sharmin, N.; Lester, E.; Wu, T.; Pang, C.H. Analysis of environmental impacts and energy derivation potential of biomass pyrolysis via Piper diagram. J. Anal. Appl. Pyrolysis 2021, 154, 104995. [Google Scholar] [CrossRef]
- Zoppi, G.; Pipitone, G.; Pirone, R.; Bensaid, S. Aqueous phase reforming process for the valorization of wastewater streams: Application to different industrial scenarios. Catal. Today 2022, 387, 224–236. [Google Scholar] [CrossRef]
- Tito, E.; Zoppi, G.; Pipitone, G.; Miliotti, E.; Di Fraia, A.; Rizzo, A.M.; Pirone, R.; Chiaramonti, D.; Bensaid, S. Conceptual design and techno-economic assessment of coupled hydrothermal liquefaction and aqueous phase reforming of lignocellulosic residues. J. Environ. Chem. Eng. 2023, 11, 109076. [Google Scholar] [CrossRef]
- Megía, P.J.; Vizcaíno, A.J.; Calles, J.A.; Carrero, A. Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy Fuels 2021, 35, 16403–16415. [Google Scholar] [CrossRef]
- Shahbaz, M.; Al-Ansari, T.; Aslam, M.; Khan, Z.; Inayat, A.; Athar, M.; Naqvi, S.R.; Ahmed, M.A.; McKay, G. A state of the art review on biomass processing and conversion technologies to produce hydrogen and its recovery via membrane separation. Int. J. Hydrog. Energy 2020, 45, 15166–15195. [Google Scholar] [CrossRef]
- Elif, D.; Nezihe, A. Hydrogen production by supercritical water gasification of fruit pulp in the presence of Ru/C. Int. J. Hydrog. Energy 2016, 41, 8073–8083. [Google Scholar] [CrossRef]
- Tiong, L.; Komiyama, M.; Uemura, Y.; Nguyen, T.T. Catalytic supercritical water gasification of microalgae: Comparison of Chlorella vulgaris and Scenedesmus quadricauda. J. Supercrit. Fluids 2016, 107, 408–413. [Google Scholar] [CrossRef]
- Cherad, R.; Onwudili, J.; Biller, P.; Williams, P.; Ross, A. Hydrogen production from the catalytic supercritical water gasification of process water generated from hydrothermal liquefaction of microalgae. Fuel 2016, 166, 24–28. [Google Scholar] [CrossRef]
- Swetha, A.; ShriVigneshwar, S.; Gopinath, K.P.; Sivaramakrishnan, R.; Shanmuganathan, R.; Arun, J. Review on hydrothermal liquefaction aqueous phase as a valuable resource for biofuels, bio-hydrogen and valuable bio-chemicals recovery. Chemosphere 2021, 283, 131248. [Google Scholar] [CrossRef] [PubMed]
- Arun, J.; Gopinath, K.P.; SundarRajan, P.; Malolan, R.; Adithya, S.; Jayaraman, R.S.; Ajay, P.S. Hydrothermal liquefaction of Scenedesmus obliquus using a novel catalyst derived from clam shells: Solid residue as catalyst for hydrogen production. Bioresour. Technol. 2020, 310, 123443. [Google Scholar] [CrossRef]
- Rajagopal, J.; Gopinath, K.P.; Neha, R.; Aakriti, K.; Jayaraman, R.S.; Arun, J.; Pugazhendhi, A. Processing of household waste via hydrothermal gasification and hydrothermal liquefaction for bio-oil and bio-hydrogen production: Comparison with RSM studies. J. Environ. Chem. Eng. 2022, 10, 107218. [Google Scholar] [CrossRef]
- Bae, J.-E.; Wilailak, S.; Yang, J.-H.; Yun, D.-Y.; Zahid, U.; Lee, C.-J. Multi-objective optimization of hydrogen liquefaction process integrated with liquefied natural gas system. Energy Convers. Manag. 2021, 231, 113835. [Google Scholar] [CrossRef]
- Geng, J.; Sun, H. Optimization and analysis of a hydrogen liquefaction process: Energy, exergy, economic, and uncertainty quantification analysis. Energy 2023, 262, 125410. [Google Scholar] [CrossRef]
- Cormos, C.-C. Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis. Energy 2023, 270, 126926. [Google Scholar] [CrossRef]
- Santika, W.G.; Anisuzzaman, M.; Bahri, P.A.; Shafiullah, G.M.; Rupf, G.V.; Urmee, T. From goals to joules: A quantitative approach of interlinkages between energy and the Sustainable Development Goals. Energy Res. Soc. Sci. 2019, 50, 201–214. [Google Scholar] [CrossRef]
- Ang, T.-Z.; Salem, M.; Kamarol, M.; Das, H.S.; Nazari, M.A.; Prabaharan, N. A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strategy Rev. 2022, 43, 100939. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Zhou, J.L.; Li, X.; Afsari, M.; Altaee, A. Techno-economic and environmental impact assessment of hydrogen production processes using bio-waste as renewable energy resource. Renew. Sustain. Energy Rev. 2022, 156, 111991. [Google Scholar] [CrossRef]
- Connelly, E.; Penev, M.; Milbrandt, A.; Roberts, B.; Gilroy, N.; Melaina, M. Resource Assessment for Hydrogen Production. 2020. Available online: https://www.h2knowledgecentre.com/content/researchpaper1728 (accessed on 20 October 2022).
- Lepage, T.; Kammoun, M.; Schmetz, Q.; Richel, A. Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass Bioenergy 2021, 144, 105920. [Google Scholar] [CrossRef]
- Klein-Marcuschamer, D.; Blanch, H.W. Renewable fuels from biomass: Technical hurdles and economic assessment of biological routes. AIChE J. 2015, 61, 2689–2701. [Google Scholar] [CrossRef]
- Soltani, M.M.; Ahmadi, P.; Ashjaee, M. Techno-economic optimization of a biomass gasification energy system with Supercritical CO2 cycle for hydrogen fuel and electricity production. Fuel 2023, 333, 126264. [Google Scholar] [CrossRef]
- Yu, D.; Hu, J.; Wang, W.; Gu, B. Comprehensive techno-economic investigation of biomass gasification and nanomaterial based SOFC/SOEC hydrogen production system. Fuel 2023, 333, 126442. [Google Scholar] [CrossRef]
Biomass | Elemental Analysis | High Calorific Power (Kcal/kg) | % Ash | % Humidity | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
% C | % H | % N | % S | % O | |||||
Woods and woody biomass | |||||||||
Bamboo | 39 ± 3 | 6.1 ± 0.2 | 0.6 ± 0.3 | 0.018 ± 0.006 | 54 ± 3 | 4359–4568 | 1.4–3.0 | 44.51 | [37,38] |
Oil palm frond biomass | 41.9 | 7.2 | - | 0.6 | 49.8 | - | 4.3 | 67 | [39,40] |
Sawdust agricultural waste materials | 44.75 | 6.31 | 1.68 | 0.05 | 46.87 | 3155.30–4411.48 | 1.03 | 59.38 | [41,42,43] |
Palm empty fruit bunch | 40.8 | 4.1 | - | 0.52 | 52.8 | 4633.6 | 1.6 | 75.60 | [44] |
Herbaceous biomass | |||||||||
Rice husk and dust | 39.8–41.1 | 5.7 ± 6.1 | 37.4 ± 36.6 | - | 0.5–0.6 | 4301.10–4573.50 | 16.21 | 9.53 | [45,46] |
Banana peels | 35.65 ± 0.21 | 6.19 ± 0.07 | 1.94 ± 0.16 | 0.020 ± 0.0955 | 45.94 ± 0.17 | 4533.3 | 13.44 | 89.09 | [27,47] |
Banana pseudo-stem | 42 | 5.62 | 1.08 | - | 51.30 | 3702.11 | 1.4–3.0 | 91.3 ± 0.5 | [48,49,50] |
Palm kernel shells | 45–55 | 5.70 | - | 0.05–0.20 | 30–45 | 3854.97 | 2–5 | 44–55 | [19] |
Olive pits | 44.81 | 6.40 | - | - | 47.93 | - | 2 | 12 | [22] |
Peanut shells | 47.52 | 5.67 | 1.59 | 0.13 | 34.94 | 3907.52 | 11.5 | 10.1 | [51,52] |
Sunflower husk granules | 52.1 | 5.8 | 0.7 | 0.14 | 37.2 | 4394.76 | 2.8 | 5.68 | [52] |
Bagasse | 58.10 | 6.54 | S/V | 0.19 | 34.57 | 2388.46–2627.3 | 7.91 | 10.21 | [53] |
Corn | 85.35 | 1.69 | S/V | S/V | 12.12 | 7237.03 | 1.92 | 10.01 | [54] |
Aquatic Biomass | |||||||||
Chlorella vulgaris | 52.8 | 7.24 | 4.81 | 0.35 | 28.2 | 5181.64 | 5.93 ± 0.81 | 6.8 ± 1.11 | [55] |
Phaeodactylum tricornutum | 51.1 | 6.80 | 2.75 | 0.207 | 27 | 4945.03 | - | - | [55] |
Synechococcus elongatus | 48.8 | 6.88 | 10.1 | 0.069 | 25.2 | 4600.86 | - | - | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jara-Cobos, L.; Abril-González, M.; Pinos-Vélez, V. Production of Hydrogen from Lignocellulosic Biomass: A Review of Technologies. Catalysts 2023, 13, 766. https://doi.org/10.3390/catal13040766
Jara-Cobos L, Abril-González M, Pinos-Vélez V. Production of Hydrogen from Lignocellulosic Biomass: A Review of Technologies. Catalysts. 2023; 13(4):766. https://doi.org/10.3390/catal13040766
Chicago/Turabian StyleJara-Cobos, Lourdes, Mónica Abril-González, and Verónica Pinos-Vélez. 2023. "Production of Hydrogen from Lignocellulosic Biomass: A Review of Technologies" Catalysts 13, no. 4: 766. https://doi.org/10.3390/catal13040766
APA StyleJara-Cobos, L., Abril-González, M., & Pinos-Vélez, V. (2023). Production of Hydrogen from Lignocellulosic Biomass: A Review of Technologies. Catalysts, 13(4), 766. https://doi.org/10.3390/catal13040766