Au Nanoparticles Supported on Mn- or/and La-Doped CeO2 Nanorods for One-Step Oxidative Esterification of Methacrolein and Methanol to Methyl Methacrylate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalysts Characterization
2.2. Catalytic Performance
3. Materials and Methods
3.1. Synthesis of Mn- or/and La-Doped CeO2 Nanorods and Supporting Au Catalysts
3.2. Catalysts Characterization
3.3. Catalysts Evaluation
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagai, K. New developments in the production of methyl methacrylate. Appl. Catal. A Gen. 2001, 221, 367–377. [Google Scholar] [CrossRef]
- Yamamatsu, S.; Yamaguchi, T.; Yokota, K.; Nagano, O.; Chono, M.; Aoshima, A. Development of catalyst technology for producing methyl methacrylate (MMA) by direct methyl esterification. Catal. Surv. Asia 2010, 14, 124–131. [Google Scholar] [CrossRef]
- Mahboub, M.J.D.; Dubois, J.L.; Cavani, F.; Rostamizadeh, M.; Patience, G.S. Catalysis for the synthesis of methacrylic acid and methyl methacrylate. Chem. Soc. Rev. 2018, 47, 7703–7738. [Google Scholar]
- Yoshida, Y.; Mikami, Y.; Oh-Kita, M. Process for Producing Carboxylic Acid Esters and Catalyst. EP 0972759, 19 March 1998. [Google Scholar]
- Diao, Y.Y.; Yan, R.Y.; Zhang, S.J.; Yang, P.; Li, Z.X.; Wang, L.; Dong, H.F. Effects of Pb and Mg doping in Al2O3-supported Pd catalyst on direct oxidative esterification of aldehydes with alcohols to esters. J. Mol. Catal. A Chem. 2009, 303, 35–42. [Google Scholar] [CrossRef]
- Jiang, L.; Diao, Y.Y.; Han, J.X.; Yan, R.Y.; Zhang, X.P.; Zhang, S.J. MgO-SBA-15 supported Pd-Pb catalysts for oxidative esterification of methacrolein with methanol to methyl methacrylate. Chin. J. Chem. Eng. 2014, 22, 1098–1104. [Google Scholar] [CrossRef]
- Wang, B.H.; Sun, W.J.; Zhu, J.; Ran, W.L.; Chen, S. Pd-Pb/SDB bimetallic catalysts for the direct oxidative esterification of methacrolein to methyl methacrylate. Ind. Eng. Chem. Res. 2012, 51, 15004–15010. [Google Scholar] [CrossRef]
- Wang, B.H.; Li, H.; Zhu, J.; Sun, W.J.; Chen, S. Preparation and characterization of mono-/multi-metallic hydrophobic catalysts for the oxidative esterification of methacrolein to methyl methacrylate. J. Mol. Catal. A Chem. 2013, 379, 322–326. [Google Scholar] [CrossRef]
- Wang, B.H.; Ran, W.L.; Sun, W.J.; Wang, K. Direct Oxidative Esterification of Aldehyde with Alcohol to Ester over Pd/Styrene-Divinyl Benzene Copolymer Catalyst. Ind. Eng. Chem. Res. 2012, 51, 3932–3938. [Google Scholar] [CrossRef]
- Suzuki, K.; Yamaguchi, T.; Matsushita, K.; Iitsuka, C.; Miura, J.; Akaogi, T.; Ishida, H. Aerobic Oxidative Esterification of Aldehydes with Alcohols by Gold-Nickel Oxide Nanoparticle Catalysts with a Core-Shell Structure. ACS Catal. 2013, 3, 1845–1849. [Google Scholar] [CrossRef]
- Costa, V.V.; Estrada, M.; Demidova, Y.; Prosvirin, I.; Kriventsov, V.; Cotta, R.F.; Fuentes, S.; Simakov, A.; Gusevskaya, E.V. Gold Nanoparticles Supported on Magnesium Oxide as Catalysts for the Aerobic Oxidation of Alcohols under Alkali-Free Conditions. J. Catal. 2012, 292, 148–156. [Google Scholar] [CrossRef]
- Wan, X.; Deng, W.; Zhang, Q.; Wang, Y. Magnesia-Supported Gold Nanoparticles as Efficient Catalysts for Oxidative Esterification of Aldehydes or Alcohols with Methanol to Methyl Esters. Catal. Today 2014, 233, 147–154. [Google Scholar] [CrossRef]
- Gao, J.; Fan, G.L.; Yang, L.; Cao, X.Z.; Zhang, P.; Li, F. Oxidative esterification of methacrolein to methyl methacrylate over gold nanoparticles on hydroxyapatite. ChemCatChem 2017, 9, 1230–1241. [Google Scholar] [CrossRef]
- Li, J.; Li, H.Y.; Liu, Z.Y.; Akri, M.; Tan, Y.; Kang, L.L.; Chi, J.; Qiao, B.T.; Ding, Y.J. Synergic effect between gold and vanadate substituted hydroxyapatite support for synthesis of methyl methacrylate by one-step oxidative esterification. Chem. Eng. J. 2022, 431, 133207–133219. [Google Scholar] [CrossRef]
- Paul, B.; Khatun, R.; Sharma, S.K.; Adak, S.; Singh, G.; Das, D.; Siddiqui, N.; Bhandari, S.; Joshi, V.; Sasaki, T.; et al. Fabrication of Au nanoparticles supported on one-dimensional (1D) La2O3 nanorods for selective Esterification of Methacrolein to Methyl Methacrylate with Molecular Oxygen. ACS Sustinable Chem. Eng. 2019, 7, 3982–3994. [Google Scholar] [CrossRef]
- Li, Y.C.; Wang, L.; Yan, R.Y.; Han, J.X.; Zhang, S.J. Promoting effects of MgO, (NH4)2SO4 or MoO3 modification in oxidative esterification of methacrolein over Au/Ce0.6Zr0.4O2-based catalysts. Catal. Sci. Technol. 2016, 6, 5453–5463. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Y.C.; Zuo, C.C.; Yin, D.F.; Wang, L.; Zheng, Y.X.; Huang, H.F.; Fu, Z.J.; Wang, M. Ionic-Liquid-Modified Porous Au/CeMnOx Nanorods for Methyl Methacrylate (MMA) Synthesis via Direct Oxidative Esterification. ChemNanoMat 2019, 5, 1361–1366. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Y.C.; Zheng, Y.X.; Wang, M.; Zuo, C.C.; Huang, H.F.; Yin, D.F.; Fu, Z.J.; Tan, J.; Zhou, Z.C. Nano-Au/MCeOx Catalysts for the Direct Oxidative Esterification of Methylacrolein to Methyl Esters. Ind. Eng. Chem. Res. 2019, 58, 19397–19405. [Google Scholar] [CrossRef]
- Li, Y.C.; Tian, Y.X.; Ge, T.T.; Fu, Z.J.; Jiao, T.T.; Wang, M.; Huang, H.F.; Zuo, C.C. Direct oxidation esterification of methacrolein with methanol: Oxygen vacancy promotion of Zr-doped Au/CeO2 nanorods. Can. J. Chem. Eng. 2020, 3, 767–774. [Google Scholar] [CrossRef]
- Lim, S.; Kwon, S.; Kim, N.; Na, K. A Multifunctional Au/CeO2-Mg(OH)2 Catalyst for One-Pot Aerobic Oxidative Esterification of Aldehydes with Alcohols to Alkyl Esters. Nanomaterials 2021, 11, 1536. [Google Scholar] [CrossRef]
- Lei, T.Q.; Guo, H.Y.; Miao, C.X.; Hua, W.M.; Yue, Y.H.; Gao, Z. Mn-doped CeO2 Nanorod Supported Au Catalysts for Dehydrogenation of Ethane with CO2. Catalysts 2019, 9, 119. [Google Scholar] [CrossRef]
- Venkataswamy, P.; Jampaiah, D.; Mukherjee, D.; Aniz, C.U.; Reddy, B.M. Mn-doped ceria solid solutions for CO oxidation at lower temperatures. Catal. Lett. 2016, 146, 2105–2118. [Google Scholar] [CrossRef]
- Qi, G.S.; Yang, R.T.; Chang, R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal. B 2004, 51, 93–106. [Google Scholar] [CrossRef]
- Gandhi, H.S.; Graham, G.W.; McCabe, E.W. Automotive exhaust catalysis. J. Catal. 2003, 216, 433–442. [Google Scholar] [CrossRef]
- Kašpar, J.; Fornasiero, P.; Grazini, M. Use of CeO2-based oxides in the three-way catalysis. Catal. Today. 1999, 50, 285–298. [Google Scholar] [CrossRef]
- Bueno-López, A.; Krishna, K.; Makkee, M.; Moulijn, J.A. Enhanced soot oxidation by lattice oxygen via La3+-doped CeO2. J. Catal. 2005, 230, 237–248. [Google Scholar] [CrossRef]
- Xiao, Z.R.; Ji, S.; Li, Y.T.; Hou, F.; Zhang, H.C.; Zhang, X.W.; Wang, L.; Li, G.Z. Tuning oxygen vacancies on mesoporous ceria nanorods by metal doping: Controllable magnetic property. Appl. Surf. Sci. 2018, 455, 1037–1044. [Google Scholar] [CrossRef]
- Manzoli, M.; Menegazzo, F.; Signoretto, M.; Cruciani, G.; Pinna, F. Effects of synthetic parameters on the catalytic performance of Au/CeO2 for furfural oxidative esterification. J. Catal. 2015, 330, 465–473. [Google Scholar] [CrossRef]
- Xu, B.J.; Liu, X.Y.; Haubrich, J.; Friend, C.M. Vapour-phase gold-surface-mediated coupling of aldehydes with methanol. Nat. Chem. 2010, 2, 61–65. [Google Scholar] [CrossRef]
- Katta, L.; Sudarsanam, P.; Mallesham, B.; Reddy, B.M. Preparation of silica supported ceria-lanthana solid solutions useful for synthesis of 4-methylpent-1-ene and dehydroacetic acid. Catal. Sci. Technol. 2012, 2, 995–1004. [Google Scholar] [CrossRef]
- Burroughs, A.; Hamnett, A.; Orchard, A.F.; Thornton, G. Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium. J. Chem. Soc. Dalton. Trans. 1976, 17, 1686–1698. [Google Scholar] [CrossRef]
- Guo, M.; Lu, J.Q.; Wu, Y.N.; Wang, Y.J.; Luo, M. UV and Visible Raman Studies of Oxygen Vacancies in Rare-Earth-Doped Ceria. Langmuir 2011, 27, 3872–3877. [Google Scholar] [CrossRef]
- Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts. Science 2003, 301, 935–938. [Google Scholar] [CrossRef]
- Salvatore, S.; Simona, M.; Carmelo, C.; Cristina, S.; Alessandro, P. Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Appl. Catal. B-Environ. 2003, 40, 43–49. [Google Scholar]
- Jia, L.S.; Gao, J.; Fang, W.P. Carbon dioxide hydrogenation to methanol over the pre-reduced LaCr0.5Cu0.5O3 catalyst. Catal. Commun. 2009, 10, 2000–2003. [Google Scholar] [CrossRef]
- Azzouz, A.; Nistor, D.; Miron, D.; Ursu, A.V.; Sajin, T.; Monette, F.; Niquette, P.; Hausler, R. Assessment of acid–base strength distribution of ion-exchanged montmorillonites through NH3 and CO2-TPD measurements. Thermochim. Acta 2006, 449, 27–34. [Google Scholar] [CrossRef]
Catalysts | Surface Area m2/g | Pore Volume cm3/g | Average Pore Size nm | Au Content a wt(%) | Crystallite Size of Support b nm |
---|---|---|---|---|---|
Au/R-C | 90 | 0.50 | 23 | 1.44 | 24.2 |
Au/CM | 103 | 0.49 | 19 | 1.47 | 21.9 |
Au/CL | 103 | 0.45 | 17 | 1.49 | 21.4 |
Au/CML | 96 | 0.39 | 15 | 1.44 | 23.8 |
Catalysts | Au/R-C | Au/CM | Au/CL | Au/CML | |
---|---|---|---|---|---|
Au species | Au 4f5/2 (ev) | 87.20 | 87.23 | 87.29 | 87.33 |
Au 4f7/2 (ev) | 83.50 | 83.53 | 83.62 | 83.65 | |
Ce species | Ce3+ (%) | 7.97 | 12.72 | 9.04 | 12.4 |
Ce4+ (%) | 92.03 | 87.28 | 90.96 | 87.6 | |
R(Ce3+:Ce4+) (%) | 8.66 | 14.57 | 9.94 | 14.16 |
Catalysts | Total Basicity (mmol CO2/g) |
---|---|
Au/R-C | 0.692 |
Au/CM | 0.817 |
Au/CL | 0.737 |
Au/CML | 0.989 |
Catalysts | MAL Conversion (%) | Selectivity b (%) | MMA Yield (%) | |
---|---|---|---|---|
MMA | Others | |||
Au/R-C | 71.1 | 91.6 | 8.4 | 65.1 |
Au/CM | 98.6 | 97.5 | 2.5 | 96.1 |
Au/CL | 91.5 | 98.0 | 2.0 | 89.7 |
Au/CML | 92.6 | 98.9 | 1.1 | 91.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H. Au Nanoparticles Supported on Mn- or/and La-Doped CeO2 Nanorods for One-Step Oxidative Esterification of Methacrolein and Methanol to Methyl Methacrylate. Catalysts 2023, 13, 767. https://doi.org/10.3390/catal13040767
Zhang H. Au Nanoparticles Supported on Mn- or/and La-Doped CeO2 Nanorods for One-Step Oxidative Esterification of Methacrolein and Methanol to Methyl Methacrylate. Catalysts. 2023; 13(4):767. https://doi.org/10.3390/catal13040767
Chicago/Turabian StyleZhang, Haojian. 2023. "Au Nanoparticles Supported on Mn- or/and La-Doped CeO2 Nanorods for One-Step Oxidative Esterification of Methacrolein and Methanol to Methyl Methacrylate" Catalysts 13, no. 4: 767. https://doi.org/10.3390/catal13040767
APA StyleZhang, H. (2023). Au Nanoparticles Supported on Mn- or/and La-Doped CeO2 Nanorods for One-Step Oxidative Esterification of Methacrolein and Methanol to Methyl Methacrylate. Catalysts, 13(4), 767. https://doi.org/10.3390/catal13040767