Fabrication of Lead-Free Bismuth Based Electroceramic Compositions for High-Energy Storage Density Applications in Electroceramic Capacitors
Abstract
:1. Introduction
2. Results and Discussions
2.1. Phase Examination
2.2. Microstructure Examination
2.3. Dielectric Properties
2.4. P–E Hysteresis Loops and Energy Storage
2.5. Energy Storage Density Analysis
3. Experimental Procedures
3.1. Materials
3.2. Fabrication of [0.80(0.92Bi1/5Na1/5TiO3-0.08BaTiO3)-0.20(Na0.73Bi0.09NbO3−xTa2O5)]
3.3. Characterization Techniques
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, H.; Roser, M.; Rosado, P. Energy. OurWorldInData.org. 2020. Available online: https://ourworldindata.org/co2-emissions?utm_source=tri-city%20news&utm_campaign=tricity%20news%3A%20outbound&utm_medium=referral (accessed on 22 February 2023).
- Vaughan, A. UN Climate Change Summit; Elsevier: Amsterdam, Netherlands, 2019. [Google Scholar]
- Ibn-Mohammed, T.; Randall, C.; Mustapha, K.; Guo, J.; Walker, J.; Berbano, S.; Koh, S.; Wang, D.; Sinclair, D.; Reaney, I. Decarbonising ceramic manufacturing: A techno-economic analysis of energy efficient sintering technologies in the functional materials sector. J. Eur. Ceram. Soc. 2019, 39, 5213–5235. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef] [PubMed]
- Kalair, A.; Abas, N.; Saleem, M.S.; Kalair, A.R.; Khan, N. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 2021, 3, e135. [Google Scholar] [CrossRef]
- García-Olivares, A.; Solé, J.; Osychenko, O. Transportation in a 100% renewable energy system. Energy Convers. Manag. 2018, 158, 266–285. [Google Scholar] [CrossRef]
- Wu, H.; Zhuo, F.; Qiao, H.; Venkataraman, L.K.; Zheng, M.; Wang, S.; Huang, H.; Li, B.; Mao, X.; Zhang, Q. Polymer-/ceramic-based dielectric composites for energy storage and conversion. Energy Environ. Mater. 2022, 5, 486–514. [Google Scholar] [CrossRef]
- Zaman, S.; Chen, S. A perspective on inaccurate measurements in oxygen reduction and carbon dioxide reduction reactions. J. Catal. 2023, 1, 872. [Google Scholar] [CrossRef]
- Wang, D.; Wang, G.; Murakami, S.; Fan, Z.; Feteira, A.; Zhou, D.; Sun, S.; Zhao, Q.; Reaney, I.M. BiFeO3-BaTiO3: A new generation of lead-free electroceramics. J. Adv. Dielect. 2018, 8, 1830004. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, L.; Zhao, J.; Liu, J.; Tang, L.; Chen, X.; Li, H.; Su, Z.; Zhang, Y.; Zhai, J. Constructing novel binary Bi0.5Na0.5TiO3-based composite ceramics for excellent energy storage performances via defect engineering. Chem. Eng. J. 2022, 439, 135762. [Google Scholar] [CrossRef]
- Abbas, Q.; Mirzaeian, M.; Hunt, M.R.; Hall, P.; Raza, R. Current state and future prospects for electrochemical energy storage and conversion systems. Energies 2020, 13, 5847. [Google Scholar] [CrossRef]
- Wang, G.; Lu, Z.; Li, Y.; Li, L.; Ji, H.; Feteira, A.; Zhou, D.; Wang, D.; Zhang, S.; Reaney, I.M. Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives. Chem. Rev. 2021, 121, 6124–6172. [Google Scholar] [CrossRef]
- Fan, B.; Liu, F.; Yang, G.; Li, H.; Zhang, G.; Jiang, S.; Wang, Q. Dielectric materials for high-temperature capacitors. Iet Nanodielectr. 2018, 1, 32–40. [Google Scholar] [CrossRef]
- Tan, D.Q. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv. Funct. Mater. 2020, 30, 1808567. [Google Scholar] [CrossRef]
- Yan, F.; Huang, K.; Jiang, T.; Zhou, X.; Shi, Y.; Ge, G.; Shen, B.; Zhai, J. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Storage Mater. 2020, 30, 392–400. [Google Scholar] [CrossRef]
- Zaman, S.; Huang, L.; Douka, A.I.; Yang, H.; You, B.; Xia, B.Y. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives. Angew. Chem. Int. Ed. 2021, 60, 17832–17852. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Tang, B.; Si, F.; Yang, C.; Li, H.; Zhang, S. Novel Ca doped Sr0.7Bi0.2TiO3 lead-free relaxor ferroelectrics with high energy density and efficiency. J. Eur. Ceram. Soc. 2020, 40, 1938–1946. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Liu, X.Q.; Zhu, X.L.; Chen, X.M. CaTiO3 linear dielectric ceramics with greatly enhanced dielectric strength and energy storage density. J. Am. Ceram. 2018, 101, 1999–2008. [Google Scholar] [CrossRef]
- Peddigari, M.; Palneedi, H.; Hwang, G.-T.; Ryu, J. Linear and nonlinear dielectric ceramics for high-power energy storage capacitor applications. J. Korean Ceram. 2019, 56, 1–23. [Google Scholar] [CrossRef]
- Curecheriu, L.P.; Mitoseriu, L.; Ianculescu, A. Nonlinear dielectric properties of Ba1− xSrxTiO3 ceramics. J. Alloy Compd. 2009, 482, 1–4. [Google Scholar] [CrossRef]
- Wang, W.; Pu, Y.; Guo, X.; Shi, R.; Shi, Y.; Yang, M.; Li, J.; Peng, X.; Li, Y. Enhanced energy storage density and high efficiency of lead-free Ca1-xSrxTi1-yZryO3 linear dielectric ceramics. J. Eur. Ceram. Soc. 2019, 39, 5236–5242. [Google Scholar] [CrossRef]
- Zaman, S.; Wang, M.; Liu, H.; Sun, F.; Yu, Y.; Shui, J. Carbon-based catalyst supports for oxygen reduction in proton-exchange membrane fuel cells. Trends Chem. 2022, 4, 886–906. [Google Scholar] [CrossRef]
- Jayakrishnan, A.; Silva, J.P.B.; Kamakshi, K.; Dastan, D.; Annapureddy, V.; Pereira, M.; Sekhar, K. Are lead-free relaxor ferroelectric materials the most promising candidates for energy storage capacitors? Prog. Mater. Sci. 2022, 2, 101046. [Google Scholar] [CrossRef]
- Ali, H.; Zaman, S.; Majeed, I.; Kanodarwala, F.K.; Nadeem, M.A.; Stride, J.A. Porous Carbon/rGO Composite: An Ideal Support Material of Highly Efficient Palladium Electrocatalysts for the Formic Acid Oxidation Reaction. ChemElectroChem 2017, 4, 3126–3133. [Google Scholar] [CrossRef]
- Wei, J.; Yang, T.; Wang, H. Excellent energy storage and charge-discharge performances in PbHfO3 antiferroelectric ceramics. J. Eur. Ceram. Soc. 2019, 39, 624–630. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, T.; Zhang, L.; Liu, Z.; Guo, K.; Lu, J.; Xie, B. High energy-storage performance of lead-free Ba0.4Sr0.6TiO3–Sr0.7Bi0.2TiO3 relaxor-ferroelectric ceramics with ultrafine grain size. Ceramics 2022, 48, 2068–2074. [Google Scholar] [CrossRef]
- Fan, P.; Zhang, S.-T.; Xu, J.; Zang, J.; Samart, C.; Zhang, T.; Tan, H.; Salamon, D.; Zhang, H.; Liu, G. Relaxor/antiferroelectric composites: A solution to achieve high energy storage performance in lead-free dielectric ceramics. J. Mater. Chem. C 2020, 8, 5681–5691. [Google Scholar] [CrossRef]
- Zaman, S.; Tian, X.; Su, Y.-Q.; Cai, W.; Yan, Y.; Qi, R. Direct integration of ultralow-platinum alloy into nanocarbon architectures for efficient oxygen reduction in fuel cells. Sci. Bull. 2021, 66, 2207–2216. [Google Scholar] [CrossRef]
- Gao, F.; Dong, X.; Mao, C.; Liu, W.; Zhang, H.; Yang, L.; Cao, F.; Wang, G. Energy-storage properties of 0.89 Bi0. 5Na0. 5TiO3–0.06 BaTiO3–0.05 K0. 5Na0. 5NbO3 lead-free anti-ferroelectric ceramics. J. Am. Ceram. 2011, 94, 4382–4386. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Z.; Jiang, W.; Zhang, S.; Zhu, J.; Wang, L. Engineering Water Molecules Activation Center on Multisite Electrocatalysts for Enhanced CO2 Methanation. J. Am. Chem. Soc. 2022, 144, 12807–12815. [Google Scholar] [CrossRef]
- Praharaj, S.; Rout, D. Electrical conductivity and modulus study of 0.76 Na0.5Bi0.5TiO3-0.2SrTiO3-0.04BaTiO3 ceramic: A near morphotropic phase boundary composition. J. Phys. Chem. Solids 2019, 127, 52–59. [Google Scholar] [CrossRef]
- Swain, S.; Kar, S.K.; Kumar, P. Dielectric, optical, piezoelectric and ferroelectric studies of NBT–BT ceramics near MPB. Ceramics 2015, 41, 10710–10717. [Google Scholar] [CrossRef]
- Makarovic, M.; Bencan, A.; Walker, J.; Malic, B.; Rojac, T. Processing, piezoelectric and ferroelectric properties of (x) BiFeO3-(1-x) SrTiO3 ceramics. J. Eur. Ceram. Soc. 2019, 39, 3693–3702. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Ma, Y.; Ma, L.; Dong, G.; Fan, H. Enhanced energy-storage performance and dielectric characterization of 0.94 Bi0. 5Na0. 5TiO3–0.06 BaTiO3 modified by CaZrO3. J. Alloy. Compd. 2016, 663, 701–707. [Google Scholar] [CrossRef]
- Wang, B.; Luo, L.; Jiang, X.; Li, W.; Chen, H. Energy-storage properties of (1−x) Bi0. 47Na0. 47Ba0. 06TiO3–xKNbO3 lead-free ceramics. J. Alloy. Compd. 2014, 585, 14–18. [Google Scholar] [CrossRef]
- Zhu, X.; Shi, P.; Gao, Y.; Kang, R.; Zhao, J.; Xiao, A.; Qiao, W.; Zhao, J.; Wang, Z.; Lou, X. Enhanced energy storage performance of 0.88 (0.65 Bi0. 5Na0. 5TiO3-0.35 SrTiO3)-0.12 Bi (Mg0. 5Hf0. 5) O3 lead-free relaxor ceramic by composition design strategy. Chem. Eng. J. 2022, 437, 135462. [Google Scholar] [CrossRef]
- Zhang, L.; Pu, Y. Influence of BaZrO3 additive on the energy-storage properties of 0.775 Na0. 5Bi0. 5TiO3-0.225 BaSnO3 relaxor ferroelectrics. J. Alloy Compd. 2019, 775, 342–347. [Google Scholar] [CrossRef]
- Zaman, S.; Douka, A.I.; Noureen, L.; Tian, X.; Ajmal, Z.; Wang, H. Oxygen reduction performance measurements: Discrepancies against benchmarks. Battery Energy 2023, 1, 20220060. [Google Scholar] [CrossRef]
- Khan, A.; Gul, N.S.; Luo, M.; Wu, J.; Khan, S.Z.; Manan, A.; Wang, X.-J.; Khan, T.M. Fabrication of a lead-free ternary ceramic system for high energy storage applications in dielectric capacitors. Front. Chem. 2022, 10, 2762. [Google Scholar] [CrossRef]
- Zhang, L.; Pu, Y.; Chen, M.; Wei, T.; Keipper, W.; Shi, R.; Guo, X.; Li, R.; Peng, X. High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics. J. Eur. Ceram. Soc. 2020, 40, 71–77. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, F.; Peng, Z.; Chao, X.; Yang, Z. Sodium bismuth titanate-based perovskite ceramics with high energy storage efficiency and discharge performance. J. Mater. 2022, 8, 1077–1085. [Google Scholar] [CrossRef]
- Zaman, S.; Su, Y.Q.; Dong, C.L.; Qi, R.; Huang, L.; Qin, Y. Scalable molten salt synthesis of platinum alloys planted in metal-nitrogen-graphene for efficient oxygen reduction. Angew. Chem. Int. Ed. 2022, 61, 202115835. [Google Scholar] [CrossRef]
- Kumari, N.; Monga, S.; Arif, M.; Sharma, N.; Sanger, A.; Singh, A.; Vilarinho, P.M.; Gupta, V.; Sreenivas, K.; Katiyar, R.S. Multifunctional behavior of acceptor-cation substitution at higher doping concentration in PZT ceramics. Ceram. Int. 2019, 45, 12716–12726. [Google Scholar] [CrossRef]
- Ni, F.; Luo, L.; Pan, X.; Li, W.; Zhu, J.-Q. Effects of A-site vacancy on the electrical properties in lead-free non-stoichiometric ceramics Bi0. 5+ x (Na0. 82K0. 18) 0.5− 3xTiO3 and Bi0. 5+ y (Na0. 82K0. 18) 0.5 TiO3. J. Alloy. Compd. 2012, 541, 150–156. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, D.; Huang, X.; Rao, Y.; Yang, Y.; Gan, G.; Lai, Y.; Xu, F.; Li, J.; Liao, Y. Crystal structure and enhanced microwave dielectric properties of Ta5+ substituted Li3Mg2NbO6 ceramics. J. Am. Ceram. Soc. 2020, 103, 214–223. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, H.; Zhang, L.; Xie, J.; Hao, H.; Cao, M.; Yao, Z.; Lanagan, M.T. Structure and electrical properties of lead-free Bi 0.5 Na 0.5 TiO3-based ceramics for energy-storage applications. RSC Adv. 2016, 6, 59280–59291. [Google Scholar] [CrossRef]
- Sung, Y.; Kim, J.; Cho, J.; Song, T.; Kim, M.; Chong, H.; Park, T.; Do, D.; Kim, S. Effects of Na nonstoichiometry in (Bi 0.5 Na 0.5+ x) TiO 3 ceramics. Appl. Phys. Lett. 2010, 96, 022901. [Google Scholar] [CrossRef]
- Xu, Q.; Li, T.; Hao, H.; Zhang, S.; Wang, Z.; Cao, M.; Yao, Z.; Liu, H. Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Eur. Ceram. Soc. 2015, 35, 545–553. [Google Scholar] [CrossRef]
- Xu, Q.; Lanagan, M.T.; Huang, X.; Xie, J.; Zhang, L.; Hao, H.; Liu, H. Dielectric behavior and impedance spectroscopy in lead-free BNT–BT–NBN perovskite ceramics for energy storage. Ceram. Int. 2016, 42, 9728–9736. [Google Scholar] [CrossRef]
- Li, F.; Liu, Y.; Lyu, Y.; Qi, Y.; Yu, Z.; Lu, C. Huge Strain and Energy Storage Density of A-site La3+ Donor Doped (Bi0.5Na0.5)0.94Ba0.06TiO3 Ceramics. Ceram. Int. 2017, 43, 106–110. [Google Scholar] [CrossRef]
- High energy storage properties and dielectric behavior of (Bi0.5 Na0.5) 0.94 Ba0.06Ti1−x(Al0.5Nb0.5)xO3 lead-free ferroelectric ceramics. Ceram. Int. 2016, 42, 2221–2226. [CrossRef]
- Li, Q.; Yao, Z.; Ning, L.; Gao, S.; Hu, B.; Dong, G.; Fan, H. Enhanced energy-storage properties of (1-x)(0.7Bi0.5Na0.5TiO3-0.3Bi0.2Sr0.7TiO3)-xNaNbO3 lead-free ceramics. Ceram. Int. 2018, 44, 2782–2788. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, Y.; Shen, M.; Qian, H.; Li, F.; Lyu, Y. Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics. Ceram. Int. 2017, 43, 7653–7659. [Google Scholar] [CrossRef]
- Gao, F.; Dong, X.; Mao, C.; Cao, F.; Wang, G. c/a Ratio-Dependent Energy-Storage Density in (0.9−x)Bi0.5Na0.5TiO3–xBaTiO3–0.1K0.5Na0.5NbO3 Ceramics. J. Am. Ceram. Soc. 2011, 94, 4162–4164. [Google Scholar] [CrossRef]
- Lu, X.; Xu, J.; Yang, L.; Zhou, C.; Zhao, Y.; Yuan, C.; Li, Q.; Chen, G.; Wang, H. Energy storage properties of (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics modified by La and Zr co-doping. J. Mater. 2016, 42, 87–93. [Google Scholar] [CrossRef]
- Manan, A.; Khan, S.; Ullah, A.A.; Ahmad, A.S.; Iqbal, Y.; Qazi, I.; Ullah, A.; Yao, Z.; Liu, H.; Hao, H.; et al. Improved energy storage characteristic of Yb doped 0.98(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-0.02BiAlO3 ceramics. Mater. Res. Bull. 2021, 137, 111175. [Google Scholar] [CrossRef]
Materials | Dielectric Breakdown Field (kV/cm) | Wrec (J/cm3) | Ref. |
---|---|---|---|
0.95[0.94BNT-0.06BT]-0.05LT | 107 | 1.65 | [49] |
0.95[BNT-0.06BT]-0.05AN | 72 | 0.71 | [50] |
0.99(0.7NBT-0.3Bi0.2Sr0.7TiO3)-0.01NN | 88 | 1.04 | [51] |
0.94(0.75BNT-0.25BKT)-0.06BA | 106 | 1.15 | [52] |
0.89BNT-0.06BT-0.05KNN | 55 | 0.60 | [53] |
0.837BNT-0.063BT-0.1KNN | 52 | 0.45 | [54] |
0.94[0.93NBT-0.07BT]-0.04LZ | 99 | 1.19 | [55] |
Bi0.4806−xYb0.05Na0.4606Ba0.0588Ti0.98Al0.02O3 | 96 | 0.70 | [56] |
0.80(0.92Bi0.5Na0.5TiO3-0.08BaTiO3)-0.20 Na0.73Bi0.09Nb0.95Ta0.05O3 | 175 | 1.57 | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Khan, T.M.; Wu, J.; Bilal, H.; Khan, S.Z.; Manan, A.; Wang, X.; Gul, N.S. Fabrication of Lead-Free Bismuth Based Electroceramic Compositions for High-Energy Storage Density Applications in Electroceramic Capacitors. Catalysts 2023, 13, 779. https://doi.org/10.3390/catal13040779
Khan A, Khan TM, Wu J, Bilal H, Khan SZ, Manan A, Wang X, Gul NS. Fabrication of Lead-Free Bismuth Based Electroceramic Compositions for High-Energy Storage Density Applications in Electroceramic Capacitors. Catalysts. 2023; 13(4):779. https://doi.org/10.3390/catal13040779
Chicago/Turabian StyleKhan, Azam, Taj Malook Khan, Jianbo Wu, Hazrat Bilal, Shahan Zeb Khan, Abdul Manan, Xiujian Wang, and Noor Shad Gul. 2023. "Fabrication of Lead-Free Bismuth Based Electroceramic Compositions for High-Energy Storage Density Applications in Electroceramic Capacitors" Catalysts 13, no. 4: 779. https://doi.org/10.3390/catal13040779
APA StyleKhan, A., Khan, T. M., Wu, J., Bilal, H., Khan, S. Z., Manan, A., Wang, X., & Gul, N. S. (2023). Fabrication of Lead-Free Bismuth Based Electroceramic Compositions for High-Energy Storage Density Applications in Electroceramic Capacitors. Catalysts, 13(4), 779. https://doi.org/10.3390/catal13040779