Effect of Ce Content on the Chemical Looping Oxidative Dehydrogenation of Propane to Propylene over a VOx-CeO2/γ-Al2O3 Oxygen Carrier
Abstract
:1. Introduction
2. Oxygen Carrier Characterization
2.1. XRD Characterization Results
2.2. Analysis of Oxygen Carrier Morphology
2.3. Pore-Structure Analysis of the Oxygen Carriers
2.4. Thermal Stabilities of the Oxygen Carriers
2.5. Reduction Properties of the Oxygen Carriers
2.6. XPS Elemental Valence Analysis of the Oxygen Carriers
3. CL-ODHP Performance of the Oxygen Carrier
3.1. In Situ DRIFT Investigation of the 10V-3Ce/Al Oxygen Carrier
3.2. Effect of the Oxygen Carrier on Propane Conversion and Propylene Selectivity
3.3. CL-ODHP Cycling of the 10V/Al and 10V-3Ce/Al Oxygen Carriers
4. Mechanism of CL-ODHP
5. Experiment
5.1. Preparation of the Oxygen Carriers
5.2. Oxygen-Carrier Performance Tests
5.3. Oxygen Carrier Characterization
6. Conclusions
- Introducing CeO2 increases the Olatt capacity of VOx/γ-Al2O3 oxygen carriers and prolongs their catalytic oxidation activity. A certain amount of CeO2 is uniformly dispersed on the surface of VOx/γ-Al2O3 oxygen carriers, inhibiting the migration of Olatt species to electrophilic oxygen species, thus improving propylene selectivity.
- Among the prepared samples, 10V-3Ce/Al exhibits the highest specific surface area, the highest oxygen capacity, and the lowest reducibility. The 10V-3Ce/Al oxygen carrier also delivers the highest oxidative dehydrogenation performance.
- In the VOx/γ-Al2O3 oxygen carrier with the CeO2 additive (10V-3Ce/Al), the propylene selectivity improves to 83.42% (from 62.59% in 10V/Al) and the COx selectivity reduces to 6.88% (from 22.76% in 10V/Al).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Chang, X.; Sun, G.; Zhang, T.; Xu, Y.; Wang, Y.; Pei, C.; Gong, J. Propane dehydrogenation: Oxygen carrier development, new chemistry, and emerging technologies. Chem. Soc. Rev. 2021, 50, 3315–3354. [Google Scholar] [CrossRef]
- Monai, M.; Gambino, M.; Wannakao, S.; Weckhuysen, B.M. Propane to olefins tandem catalysis: A selective route towards light olefins production. Chem. Soc. Rev. 2021, 50, 11503–11529. [Google Scholar] [CrossRef]
- Dai, Y.; Gao, X.; Wang, Q.; Wan, X.; Zhou, C.; Yang, Y. Recent progress in heterogeneous metal and metal oxide oxygen carriers for direct dehydrogenation of ethane and propane. Chem. Soc. Rev. 2021, 50, 5590–5630. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.P.; Yang, D.; Wang, Z.; Yuan, Z.H. State-of-the-art oxygen carriers for direct dehydrogenation of propane to propylene. Chin. J. Catal. 2019, 40, 1233–1254. [Google Scholar] [CrossRef]
- Jiang, X.; Sharma, L.; Fung, V.; Park, S.; Jones, C.; Sumpter, B.; Baltrusaitis, J.; Wu, L. Oxidative dehydrogenation of propane to propylene with soft oxidants via heterogeneous catalysis. ACS Catal. 2021, 11, 2182–2234. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Wu, P.; Xun, S.; Jiang, W.; Zhang, M.; Zhu, W.; Li, H. O2 activation and oxidative dehydrogenation of propane on hexagonal boron nitride: Mechanism revisited. J. Phys. Chem. C 2019, 123, 2256–2266. [Google Scholar] [CrossRef]
- Chen, S.; Pei, C.; Chang, X.; Zhao, Z.; Mu, R.; Xu, Y.; Gong, J. Coverage-Dependent Behaviors of Vanadium Oxides for Chemical Looping Oxidative Dehydrogenation. Angew. Chem. Int. Ed. 2020, 59, 22072–22079. [Google Scholar] [CrossRef]
- Chen, S.; Zeng, L.; Mu, R.; Xiong, C.; Zhao, Z.; Zhao, C.; Pei, C.; Peng, L.; Luo, J.; Fan, L.; et al. Modulating Lattice Oxygen in Dual-Functional Mo-V-O Mixed Oxides for Chemical Looping Oxidative Dehydrogenation. J. Am. Chem. Soc. 2019, 141, 18653–18657. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, F. Mixed oxides as multi-functional reaction media for chemical looping catalysis. Chem. Commun. 2022, 59, 10–28. [Google Scholar] [CrossRef]
- Wu, T.W.; Yu, Q.B.; Roghair, I.; Wang, K.; Annaland, M.S. Chemical looping oxidative dehydrogenation of propane: A comparative study of Ga-based, Mo-based, V-based oxygen carriers. Chem. Eng. Process. 2020, 157, 1076–1085. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, X.; Purdy, S.C.; He, Y.; Huang, Z.; You, R.; Wei, Z.; Meyer, H.M.; Yang, J.; Pan, Y.; et al. Multiple promotional effects of vanadium oxide on boron nitride for oxidative dehydrogenation of propane. JACS Au 2022, 2, 1096–1104. [Google Scholar] [CrossRef]
- Wang, J.; Wan, C.; Cheng, D.; Chen, F.; Zhang, X. Unveiling the morphology dependence of ceria nanocrystals for boosting low-temperature cyclohexane oxidative dehydrogenation. Appl. Surf. Sci. 2021, 565, 15060–15071. [Google Scholar] [CrossRef]
- Prathap, C.; Ramana, K.V.V.; Venkata, R.M.; Nagaiah, P.; David, R.B. Promotional role of ceria in CeO2/MgAl2O4 spinel oxygen carriers in CO2 assisted selective oxidative dehydrogenation of ethylbenzene to styrene. J. Ind. Eng. Chem. 2019, 79, 97–105. [Google Scholar]
- Wang, H.; Tsilomelekis, G. Catalytic performance and stability of Fe-doped CeO2 in propane oxidative dehydrogenation using carbon dioxide as an oxidant. Catal. Sci. Technol. 2020, 10, 4362–4372. [Google Scholar] [CrossRef]
- Shang, X.; Wang, X.; Nie, W.; Guo, X.; Zou, X.; Ding, W.; Lu, X. Facile strategy for synthesis of mesoporous crystalline γ-alumina by partially hydrolyzing aluminum nitrate solution. J. Mater. Chem. 2012, 22, 23806–23814. [Google Scholar] [CrossRef]
- Khan, M.Y.; Adamu, S.; Lucky, R.A.; Hossain, M.M. Oxidative dehydrogenation of n-butane to C4 olefins using lattice oxygen of VOx/Ce-meso-Al2O3 under gas-phase oxygenfree conditions. Energy Fuels 2020, 34, 7410–7421. [Google Scholar] [CrossRef]
- Liu, J.; Hao, M.; Chen, C.; Du, K.; Zhou, Q.; Zou, S.; Fan, J. Chlorinating CeO2 at surface oxygen vacancies to promote their selectivity in oxidative dehydrogenation of propane to propene. Appl. Surf. Sci. 2020, 528, 147025. [Google Scholar] [CrossRef]
- Kazerooni, H.; Towfighi Darian, J.; Mortazavi, Y.; Asadi, R. Titania-supported vanadium oxide synthesis by atomic layer deposition and its application for low-temperature oxidative dehydrogenation of propane. Catal. Lett. 2020, 150, 2807–2822. [Google Scholar] [CrossRef]
- Fu, S.; Fang, Q.; Li, A.; Li, Z.; Han, J.; Dang, X.; Han, W. Accurate characterization of full pore size distribution of tight sandstones by low-temperature nitrogen gas adsorption and high-pressure mercury intrusion combination method. Energy Sci. Eng. 2020, 9, 80–100. [Google Scholar] [CrossRef]
- Zuo, C.; Wu, M.; Guo, Q. The effect of the Ce content on the oxidative dehydrogenation of propane over CrO-CeO2/γ-Al2O3 oxygen carriers. Chin. J. Chem. Eng. 2020, 28, 3035–3043. [Google Scholar] [CrossRef]
- Nasution, P.S.; Jung, J.W.; Oh, K.; Koh, H.L. Coke combustion kinetics of spent Pt-Sn/Al2O3 oxygen carriers in propane dehydrogenation. Korean J. Chem. Eng. 2020, 37, 1490–1497. [Google Scholar] [CrossRef]
- Xie, S.; Wang, Z.; Tan, W.; Zhu, Y.; Collier, S.; Ma, L.; Ehrlich, S.N.; Xu, P.; Yan, Y.; Xu, T.; et al. Highly Active and Stable Palladium Oxygen carriers on Novel Ceria-Alumina Supports for Efficient Oxidation of Carbon Monoxide and Hydrocarbons. Environ. Sci. Technol. 2021, 55, 7624–7633. [Google Scholar] [CrossRef]
- Khan, M.Y.; Al-Ghamdi, S.; Razzak, S.A.; Hossain, M.M. Fluidized bed oxidative dehydrogenation of ethane to ethylene over VOx/Ce-γAl2O3 catalysts: Reduction kinetics and catalyst activity. Mol. Catal. 2017, 443, 78–91. [Google Scholar] [CrossRef]
- Hu, P.; Lang, W.Z.; Yan, X.; Chen, F.X.; Guo, Y.J. Vanadium-doped porous silica materials with high catalytic activity and stability for propane dehydrogenation reaction. Appl. Catal. A-Gen. 2018, 553, 65–73. [Google Scholar] [CrossRef]
- Gu, J.; Zang, Y.; Gao, F. Study on preparation of vanadium oxide modified heteroatom B-Beta molecular sieve oxygen carrier and its catalytic performance on propane dehydrogenation. J. Light Ind. 2020, 35, 35–46. [Google Scholar]
- Schumacher, L.; Hess, C. The active role of the support in propane ODH over VOx/CeO2 oxygen carriers studied using multiple operando spectroscopies. J. Catal. 2021, 398, 29–43. [Google Scholar] [CrossRef]
- Maslakov, K.I.; Teterin, Y.A.; Popel, A.J.; Teterin, A.Y.; Ivanov, K.E.; Kalmykov, S.N.; Petrov, V.G.; Farnan, I. XPS study of ion irradiated and unirradiated CeO2 bulk and thin film samples. Appl. Surf. Sci. 2018, 448, 154–162. [Google Scholar] [CrossRef]
- Kovacevic, M.; Agarwal, S.; Mojet, B.L.; Lefferts, L. The effects of morphology of cerium oxide oxygen carriers for dehydrogenation of ethylbenzene to styrene. Appl. Catal. A Gen. 2015, 505, 354–364. [Google Scholar] [CrossRef]
- Shan, Y.; Zhao, W.; Zhao, S.; Wang, X.; Sun, H.; Yu, W.; Ding, J.; Feng, X.; Chen, D. Effects of alumina phases on the structure and performance of VOx/Al2O3 oxygen carriers in non-oxidative propane dehydrogenation. Mol. Catal. 2021, 504, 11466–11475. [Google Scholar]
- Wang, Y.; Chen, S.; Sun, J.; Xie, Y.; Zhao, Z.; Gong, J. Roles of V-O sites for non-oxidative propane dehydrogenation over supported vanadium oxides. Sci. China Mater. 2022, 603, 1062–1070. [Google Scholar] [CrossRef]
- Kaichev, V.V.; Chesalov, Y.A.; Saraev, A.A.; Tsapina, A.M. A Mechanistic study of dehydrogenation of propane over vanadia-titania oxygen carriers. J. Phys. Chem. C 2019, 123, 19668–19680. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Z.; Gong, X. Activity and selectivity of propane oxidative dehydrogenation over VO3/CeO2 (111) catalysts: A density functional theory study. Chin. J. Catal. 2018, 39, 1520–1526. [Google Scholar] [CrossRef]
- Zeeshan, M.; Chang, Q.Y.; Zhang, J.; Hu, P.; Sui, Z.; Chen, D.; Zhu, Y. Effects of oxygen vacancy and Pt doping on the catalytic performance of CeO2 in propane dehydrogenation: A first-principles study. Chin. J. Chen. 2021, 39, 2391–2402. [Google Scholar] [CrossRef]
- Zuo, C.; Wu, M.; Guo, Q. CeO2-CrOy-γ-Al2O3 redox oxygen carrier for the oxidative dehydrogenation of propane to propylene. Can. J. Chem. Eng. 2020, 99, 235–250. [Google Scholar] [CrossRef]
Samples | SBET (m2/g) | Vp (cm3/g) | Dp (nm) |
---|---|---|---|
γ-Al2O3 | 206.87 | 0.25 | 3.25 |
10V-Al | 119.95 | 0.18 | 4.64 |
10V-1Ce/Al | 124.91 | 0.19 | 4.95 |
10V-3Ce/Al | 131.10 | 0.21 | 5.38 |
10V-5Ce/Al | 104.29 | 0.16 | 4.30 |
10V-7Ce/Al | 90.13 | 0.11 | 3.75 |
Oxygen Carrier | Olatt/(OOH + Olatt + Oelec) | Oelec/(OOH + Olatt + Oelec) |
---|---|---|
10V/Al | 31.45% | 27.78% |
10V-1Ce/Al | 37.63% | 22.01% |
10V-3Ce/Al | 45.38% | 19.03% |
10V-5Ce/Al | 35.61% | 23.51% |
10V-7Ce/Al | 33.77% | 26.08% |
The Valence State of Element V | V5+ | V4+ | V3+ |
---|---|---|---|
Before reaction | 41.92% | 58.08% | 0 |
After Reaction | 21.04% | 37.76% | 41.20 |
The Valence State of Element Ce | Ce4+ | Ce3+ |
---|---|---|
Before reaction | 63.27% | 36.73% |
After reaction | 54.96% | 45.04% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiang, F.; Guo, T.; Nie, M.; Liu, Y.; Wu, M.; Guo, Q. Effect of Ce Content on the Chemical Looping Oxidative Dehydrogenation of Propane to Propylene over a VOx-CeO2/γ-Al2O3 Oxygen Carrier. Catalysts 2023, 13, 797. https://doi.org/10.3390/catal13050797
Qiang F, Guo T, Nie M, Liu Y, Wu M, Guo Q. Effect of Ce Content on the Chemical Looping Oxidative Dehydrogenation of Propane to Propylene over a VOx-CeO2/γ-Al2O3 Oxygen Carrier. Catalysts. 2023; 13(5):797. https://doi.org/10.3390/catal13050797
Chicago/Turabian StyleQiang, Fangyuan, Tuo Guo, Mengdong Nie, Yongzhuo Liu, Man Wu, and Qingjie Guo. 2023. "Effect of Ce Content on the Chemical Looping Oxidative Dehydrogenation of Propane to Propylene over a VOx-CeO2/γ-Al2O3 Oxygen Carrier" Catalysts 13, no. 5: 797. https://doi.org/10.3390/catal13050797
APA StyleQiang, F., Guo, T., Nie, M., Liu, Y., Wu, M., & Guo, Q. (2023). Effect of Ce Content on the Chemical Looping Oxidative Dehydrogenation of Propane to Propylene over a VOx-CeO2/γ-Al2O3 Oxygen Carrier. Catalysts, 13(5), 797. https://doi.org/10.3390/catal13050797