Hydrogenation of CO2 to Valuable C2-C5 Hydrocarbons on Mn-Promoted High-Surface-Area Iron Catalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Calcined Catalysts
2.1.1. Elemental and X-ray Diffraction (XRD) Characterization
2.1.2. Textural Properties
2.1.3. UV–vis Diffuse Reflectance Spectroscopy (DRS UV-vis)
2.1.4. Temperature-Programmed Reduction (TPR)
2.2. Characterization of Fresh Reduced Catalysts
2.2.1. X-ray Photoelectron Spectroscopy (XPS)
2.2.2. FTIR of Adsorbed Pyridine (FTIR-Py)
2.3. Catalytic Activity in the CO2 Hydrogenation
Catalyst | T (°C) | P (MPa) | CO2 Conv. (%) | CO Selectivity (%) | Yield a C2-C4 (%) | Ref. |
---|---|---|---|---|---|---|
MnFe-0.05 | 340 | 2 | 44.1 | 68.0 | 30.0 | This work |
FeMnNa | 340 | 2 | 35.0 | 18.1 | 11.1 | [34] |
10Mn-Na/Fe | 320 | 3 | 37.7 | 12.9 | 12.9 | [35] |
2.5%Mn-NaCuFeO2 | 320 | 2 | 36.6 | 34.0 | 13.1 | [36] |
5Mn-Na/Fe | 320 | 3 | 38.6 | 11.7 | 11.7 | [37] |
10Mn-Fe3O4 | 350 | 2 | 44.7 | 9.4 | 21.6 | [38] |
0.09Mn/Fe3O4-NaAc | 320 | 0.5 | 27.6 | 24.7 | 9.3 | [30] |
5NaFe | 320 | 3 | 38.4 | 9.1 | 31.9 | [37] |
Fe-Mn-K | 300 | 1 | 38.2 | 5.6 | 8.7 | [39] |
K/LaFeMnO3 | 320 | 2 | 25.3 | 85.0 | 0.6 | [54] |
2.4. Characterization of Spent Catalysts
2.4.1. Textural Properties
2.4.2. Thermogravimetric Analysis (TGA-DTA)
2.4.3. DRIFTS Analysis
2.4.4. Surface Analysis by XPS
2.5. Catalyst Structure–Activity Correlations
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Catalytic Activity
4. Conclusions
- The best activity and selectivity results were obtained for the MnFe catalyst promoted with a very low amount of Mn, which presents the best textural properties among the catalysts studied (SBET of 211 m2·g−1 and a pore diameter of 15.8 nm).
- Mn promotion of the bulk iron catalysts led to the main formation of C2-C4 hydrocarbons, while CO and methane formation was minimized. A lineal correlation between yield of desired C2-C5 products and specific surface area of the catalysts was found.
- The stability of the MnFe-0.05 catalyst in CO2 hydrogenation was greatly improved with respect to the bare Fe2O3 catalyst due to (i), the decrease in Bronsted acidity and the consequent limitation of hard coke formation and (ii), the formation of the Hägg carbide phase during on-stream reaction.
- The catalyst synthesis method employed in this work offers a new solution for the fabrication of high-area bulk iron catalysts for the CO2 hydrogenation reaction.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeffry, L.; Ong, M.Y.; Nomanbhay, S.; Mofijur, M.; Mubashir, M.; Show, P.L. Greenhouse gases utilization: A review. Fuel 2021, 301, 121017. [Google Scholar] [CrossRef]
- Li, N.; Mo, L.; Unluer, C. Emerging CO2 utilization technologies for construction materials: A review. J. CO2 Util. 2022, 65, 102237. [Google Scholar] [CrossRef]
- Min, J.; Yan, G.; Abed, A.M.; Elattar, S.; Khadimallah, M.A.; Jan, A.; Ali, H.E. The effect of carbon dioxide emissions on the building energy efficiency. Fuel 2022, 326, 124842. [Google Scholar] [CrossRef]
- Fu, L.; Ren, Z.; Si, W.; Ma, Q.; Huang, W.; Liao, K.; Huang, Z.; Wang, Y.; Li, J.; Xu, P. Research progress on CO2 capture and utilization technology. J. CO2 Util. 2022, 66, 102260. [Google Scholar] [CrossRef]
- Kim, C.; Yoo, C.-J.; Oh, H.-S.; Min, B.K.; Lee, U. Review of carbon dioxide utilization technologies and their potential for industrial application. J. CO2 Util. 2022, 65, 102235. [Google Scholar] [CrossRef]
- Chauvy, R.; Meunier, N.; Thomas, D.; De Weireld, G. Selecting emerging CO2 utilization products for short- to mid-term deployment. Appl. Energy 2019, 236, 662–680. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Cao, Y.; Zhang, C.; He, P.; Li, H. Recent advances on the reduction of CO2 to important C2+ oxygenated chemicals and fuels. Chin. J. Chem. Eng. 2018, 26, 2266–2279. [Google Scholar] [CrossRef]
- Mota, N.; Ordoñez, E.M.; Pawelec, B.; Fierro, J.L.G.; Navarro, R.M. Direct synthesis of dimethyl ether from CO2: Recent advances in bifunctional/hybrid catalytic systems. Catalysts 2021, 11, 411. [Google Scholar] [CrossRef]
- Ronda-Lloret, M.; Rothenberg, G.; Raveendran Shiju, N. A Critical Look at Direct catalytic hydrogenation of carbon dioxide to olefins. Chem. Sus. Chem. 2019, 12, 3896–3914. [Google Scholar] [CrossRef]
- Numpilai, T.; Cheng, C.K.; Limtrakul, J.; Witoon, J.T. Recent advances in light olefins production from catalytic hydrogenation of carbon dioxide. Process Saf. Environ. Prot. 2021, 151, 401–427. [Google Scholar] [CrossRef]
- Pawelec, B.; Guil-López, R.; Mota, N.; Fierro, J.L.G.; Navarro Yerga, R.M. Catalysts for the conversion of CO2 to low molecular weight olefins—A review. Materials 2021, 14, 6952. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.M.; Fierro, J.L.G. Fundamentals of Syngas Production and Fischer-Tropsch Synthesis. In “Biofuels from Fischer-Tropsch Synthesis” (Energy Science, Engineering and Technology); Ojeda, M., Rojas, S., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2010; Chapter 1; pp. 1–32. ISBN 978-1-61668-366-5. [Google Scholar]
- Rodemerck, U.; Holeňa, M.; Wagner, E.; Smejkal, Q.; Barkschat, A.; Baerns, M. Catalyst development for CO2 hydrogenation to fuels. ChemCatChem 2013, 5, 1948–1955. [Google Scholar] [CrossRef]
- Baea, J.-S.; Hong, S.Y.; Park, J.C.; Rhim, G.B.; Youn, M.H.; Jeong, H.; Kang, S.W.; Yang, J.-I.; Jung, H.; Chun, D.H. Eco-friendly prepared iron-based catalysts for Fischer-Tropsch synthesis. Appl. Catal. B Environ. 2019, 244, 576–582. [Google Scholar] [CrossRef]
- Liu, J.; Song, Y.; Guo, X.; Song, C.; Guo, X. Recent advances in application of iron-based catalysts for CO hydrogenation to value-added hydrocarbons. Chin. J. Catal. 2022, 43, 731–754. [Google Scholar] [CrossRef]
- Al-Dossary, M.; Ismail, A.A.; Fierro, J.L.G.; Bouzid, H.; Al-Sayari, S.A. Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction. Appl. Catal. B Environ. 2015, 165, 651–660. [Google Scholar] [CrossRef]
- Pérez-Alonso, F.J.; Ojeda, M.; Herranz, T.; Rojas, S.; González-Carballo, J.M.; Terreros, P.; Fierro, J.L.G. Carbon dioxide hydrogenation over Fe-Ce catalysts. Catal. Commun. 2008, 9, 1945–1948. [Google Scholar] [CrossRef]
- Wu, X.; Qian, W.; Ma, H.; Zhang, H.; Liu, D.; Sun, Q.; Ying, W. Li-decorated Fe-Mn nanocatalyst for high-temperature Fischer–Tropsch synthesis of light olefins. Fuel 2019, 257, 116101. [Google Scholar] [CrossRef]
- Herranz, T.; Rojas, S.; Pérez-Alonso, F.J.; Ojeda, M.; Terreros, P.; Fierro, J.L.G. Hydrogenation of carbon oxides over promoted Fe-Mn catalysts prepared by the microemulsion methodology. Appl. Catal. A Gen. 2006, 311, 66–75. [Google Scholar] [CrossRef]
- Albrecht, M.; Rodemerck, U.; Schneider, M.; Bröring, M.; Baabe, D.; Kondratenko, E.V. Unexpectedly efficient CO2 hydrogenation to higher hydrocarbons over non-doped Fe2O3. Appl. Catal. B Environ. 2017, 204, 119–126. [Google Scholar] [CrossRef]
- Lohitharn, N.; Goodwin, J.G., Jr.; Lotero, E. Fe-based Fischer–Tropsch synthesis catalysts containing carbide-forming transition metal promoters. J. Catal. 2008, 255, 104–113. [Google Scholar] [CrossRef]
- Leith, I.R.; Howden, M.G. Temperature-programmed reduction of mixed iron-manganese oxide catalysts in hydrogen and carbon monoxide. Appl. Catal. 1988, 37, 75–92. [Google Scholar] [CrossRef]
- Hutchings, G.J.; Boeyens, J.C.A. Effect of iron manganese oxide solid solutions on selectivity for lower hydrocarbons from carbon monoxide hydrogenation. J. Catal. 1986, 100, 507–511. [Google Scholar] [CrossRef]
- Millán Ordóñez, E.; Mota, N.; Guil-López, R.; Fierro, J.L.G.; Navarro Yerga, R.M. Direct synthesis of dimethyl ether on bifunctional catalysts based on Cu–ZnO(Al) and supported H3PW12O40: Effect of physical mixing on bifunctional interactions and activity. Ind. Eng. Chem. Res. 2021, 60, 18853–18869. [Google Scholar] [CrossRef]
- Wang, X.S.; Russell, C.K.; Tang, J.; Eddings, E.G.; Zhang, Y.; Fan, M. Effect of copper on highly effective Fe-Mn based catalysts during production of light olefins via Fischer-Tropsch process with low CO2 emission. Appl. Catal. B Environ. 2020, 278, 119302. [Google Scholar] [CrossRef]
- Koo, H.M.; Ahn, C.-I.; Lee, D.H.; Roh, H.-S.; Shin, C.-H.; Kye, H.; Ba, J.W. Roles of Al2O3 promoter for an enhanced structural stability of ordered mesoporous Co3O4 catalyst during CO hydrogenation to hydrocarbons. Fuel 2018, 225, 460–471. [Google Scholar] [CrossRef]
- Liu, B.; Ouyang, B.; Zhang, Y.; Lv, K.; Li, Q.; Ding, Y.; Li, J. Effects of mesoporous structure and Pt promoter on the activity of Co-based catalysts in low-temperature CO2 hydrogenation for higher alcohol synthesis. J. Catal. 2018, 366, 91–97. [Google Scholar] [CrossRef]
- Cho, J.M.; Lee, S.R.; Sun, J.; Tsubaki, N.; Jang, E.J.; Bae, J.W. Highly Ordered Mesoporous Fe2O3–ZrO2 Bimetal Oxides for an Enhanced CO Hydrogenation Activity to Hydrocarbons with Their Structural Stability. ACS Catal. 2017, 7, 5955–5964. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, H.; Xing, Y.; Xu, S.; Xie, H.; Xiong, K. CO2 hydrogenation to methane over mesoporous Co/SiO2 catalysts: Effect of structure. J. CO2 Util. 2018, 26, 221–229. [Google Scholar] [CrossRef]
- Liu, B.; Geng, S.; Zheng, J.; Jia, X.; Jiang, F.; Liu, X. Unraveling the new roles of Na and Mn promoter in CO2 hydrogenation over Fe2O3-based catalysts for enhanced selectivity to light α-olefins. ChemCatChem 2018, 10, 4718–4732. [Google Scholar] [CrossRef]
- Visconti, C.G.; Martinelli, M.; Falbo, L.; Infantes-Molina, A.; Lietti, L.; Forzatti, P.; Iaquaniello, G.; Palo, E.; Picutti, B.; Brignoli, F. CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst. Appl. Catal. B-Environ. 2017, 200, 530–542. [Google Scholar] [CrossRef]
- Tao, Z.; Yang, Y.; Zhang, C.; Li, T.; Ding, M.; Xiang, H.; Li, Y. Study of manganese promoter on a precipitated iron-based catalyst for Fischer-Tropsch synthesis. J. Nat. Gas Chem. 2007, 16, 278–285. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, L.; Gao, W.; Chen, F.; Wu, X.; Wang, K.; He, Y.; Zhang, P.; Yang, G.; Tsubaki, N. Multi-promoters regulated iron catalyst with well-matching reverse water-gas shift and chain propagation for boosting CO2 hydrogenation. J. CO2 Util. 2021, 52, 101700. [Google Scholar] [CrossRef]
- Sadakane, M.; Horiuchi, T.; Kato, N.; Takahashi, C.; Ueda, W. Facile Preparation of Three-Dimensionally Ordered Macroporous Alumina, Iron Oxide, Chromium Oxide, Manganese Oxide, and Their Mixed-Metal Oxides with High Porosity. Chem. Mater. 2007, 19, 5779–5785. [Google Scholar] [CrossRef]
- Mercadal, J.J.; Mayoral, A.; Fierro, J.L.G.; García-Bordejé, E.; Mellán-Cabrera, I. Improved O2-assisted styrene synthesis by double-function purification of SWCNT catalyst. Chem. Eng. J. 2023, 455, 140723. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, G.; Tang, X.; Yin, H.; Kang, J.; Zhang, Q.; Wang, Y. Zn and Na promoted Fe catalysts for sustainable production of high-valued olefins by CO2 hydrogenation. Fuel 2022, 309, 122105. [Google Scholar] [CrossRef]
- Mallick, P.; Dash, B.N. X-ray Diffraction and UV-Visible Characterizations of α-Fe2O3 Nanoparticles Annealed at Different Temperature. J. Nanosci. Nanotechnol. 2013, 3, 130–134. [Google Scholar] [CrossRef]
- Vazquez-Garrido, I.; Lopez-Benítez, A.; Guevara-Lara, A.; Berhault, G. Synthesis of NiMo catalysts supported on Mn-Al2O3 for obtaining green diesel from waste soybean oil. Catal. Today 2021, 365, 327–340. [Google Scholar] [CrossRef]
- De la Rosa-Priego, F.A.; Gutierrez-López, E.D.; Zepeda, T.A.; Acosta-Alejandro, M.; Venezia, A.M.; Fuentes-Moyado, S.; Pawelec, B.; Díaz de León, J.N. Enhanced CO2 Hydrogenation to C2+ hydrocarbons over mesoporous x%Fe2O3–Al2O3. Catal. Ind. Eng. Chem. Res. 2021, 60, 18660–18671. [Google Scholar] [CrossRef]
- Mungse, P.B.; Saravanan, G.; Nishibori, M.; Subrt, J.; Labhsetwar, N.K. Solvent-free, improved synthesis of pure bixbyite phase of iron and manganese mixed oxides as low-cost, potential oxygen carrier for chemical looping with oxygen uncoupling. Pure Appl. Chem. 2017, 89, 511–521. [Google Scholar] [CrossRef]
- Kouotou, P.M.; El Kasmi, A.; Wu, L.-N.; Waqas, M.; Tian, Z.-Y. Particle size-band gap energy-catalytic properties relationship of PSE-CVD-derived Fe3O4 thin films. J. Taiwan Inst. Chem. Eng. 2018, 93, 427–435. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Hou, F.; Yang, Y.; Dong, H.; Liu, N.; Wang, Y.; Cui, L. Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100. Appl. Surf. Sci. 2017, 411, 27–33. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Peng, L.; Zhang, H.; Jiang, Z.; Xiong, K.; Yang, Q.; Chen, J.; Yang, N. On the CuO-Mn2O3 oxide-pair in CuMnOx multi-oxide complexes: Structural and catalytic studies. Appl. Surf. Sci. 2022, 575, 151733. [Google Scholar] [CrossRef]
- Arrigo, R.; Schuster, M.E. On the high structural heterogeneity of Fe-impregnated graphitic-carbon catalysts from Fe nitrate precursor. Catalysts 2019, 9, 303. [Google Scholar] [CrossRef]
- Chen, C.; Ren, H.; Zhou, J.; Luo, Y.; Zhan, Y.; Au, C.; Lin, X.; Jiang, L. Cu/Fe3O4 catalyst for water gas shift reaction: Insight into the effect of Fe2+ and Fe3+ distribution in Fe3O4. Int. J. Hydrogen Energy 2020, 45, 8456–8465. [Google Scholar] [CrossRef]
- Hastuti, E.; Subhan, A.; Amonpattaratkit, P.; Zainuri, M.; Suasmoro, S. The effects of Fe-doping on MnO2: Phase transitions, defect structures and its influence on electrical properties. RSC Adv. 2021, 11, 7808–7823. [Google Scholar] [CrossRef]
- Ponce, S.; Peña, M.A.; Fierro, J.L.G. Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites. Appl. Catal. B Environ. 2000, 24, 193–205. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, J.-X.; Yang, C.; Yao, S.; Su, H.-Y.; Gao, Z.; Dong, M.; Wang, J.; Rykov, A.I.; Wang, J.; et al. Synthesis of iron-carbide nanoparticles: Identification of the active phase and mechanism of Fe-based Fischer-Tropsch synthesis. CCS Chem. 2020, 2, 20200055. [Google Scholar] [CrossRef]
- Zepeda, T.A.; Infantes-Molina, A.; Díaz de León, J.N.; Fuentes, S.; Alonso-Núñez, G.; Torres-Otañez, G.; Pawelec, B. Hydrodesulfurization enhancement of heavy and light S-hydrocarbons on NiMo/HMS catalysts modified with Al and P. Appl. Catal. A Gen. 2014, 484, 105–121. [Google Scholar] [CrossRef]
- Zaman, S.F.; Ojelade, O.A.; Alhumade, H.; Mazumder, J.; Mohamed, H.O.; Castaño, P. Elucidating the promoting role of Ca on PdZn/CeO2 catalyst for CO2 valorization to methanol. Fuel 2023, 343, 127927. [Google Scholar] [CrossRef]
- Yang, Q.; Skrypnik, A.; Matvienko, A.; Lund, H.; Holena, M.; Kondratenko, E.V. Revealing property-performance relationships for efficient CO2 hydrogenation to higher hydrocarbons over Fe-based catalysts: Statistical analysis of literature data and its experimental validation. Appl. Catal. B Environ. 2021, 282, 119554. [Google Scholar] [CrossRef]
- Dokania, A.; Chowdhury, A.D.; Ramirez, A.; Telalovic, S.; Abou-Hamad, E.; Gevers, L.; Ruiz-Martinez, J.; Gascon, J. Acidity modification of ZSM-5 for enhanced production of light olefins from CO2. J. Catal. 2020, 381, 347–354. [Google Scholar] [CrossRef]
- Fedorov, A.; Linke, D. Data analysis of CO2 hydrogenation catalysts for hydrocarbon production. J. CO2 Util. 2022, 61, 102034. [Google Scholar] [CrossRef]
- Ma, L.-h.; Gao, X.-h.; Zhang, J.-l.; Ma, J.-j.; Hu, X.-d.; Guo, Q.-j. Effects of metal doping on the catalytic performance of LaFe-based perovskites for CO2 hydrogenation to light olefins. J. Fuel Chem. Technol. 2023, 51, 101–110. [Google Scholar] [CrossRef]
- Zhang, Q.; Kang, J.; Wang, Y. Development of Novel Catalysts for Fischer–Tropsch Synthesis: Tuning the Product Selectivity. ChemCatChem 2010, 2, 1030–1058. [Google Scholar] [CrossRef]
- Lu, P.; Huang, Q.; Bourtsalas, A.C.; Chi, Y.; Yan, J. Effect of operating conditions on the coke formation and nickel catalyst performance during cracking of tar. Waste Biomass Valorization 2019, 10, 155–165. [Google Scholar] [CrossRef]
- Díaz, M.; Epelde, E.; Valecillos, J.; Izaddoust, S.; Aguayo, A.T.; Bilbao, J. Coke deactivation and regeneration of HZSM-5 zeolite catalysts in the oligomerization of 1-butene. Appl. Catal. B Environ. 2021, 291, 120076. [Google Scholar] [CrossRef]
- Cepus, V.; Borth, M.; Seitz, M. IR Spectroscopic Characterization of Lignite as a Tool to Predict the Product Range of Catalytic Decomposition. Int. J. Clean Coal Energy 2016, 5, 13–22. [Google Scholar] [CrossRef]
- Jin, C.; Wang, B.; Zhou, Y.; Yang, F.; Guo, P.; Liu, Z.; Shen, W. Restructuring of the gold-carbide interface for low-temperature water-gas shift. Chem. Commun. 2022, 58, 7313–7316. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Saif, M.; Li, M.; Song, G.; Zihao, W.; Chen, C.; Liu, D. Elucidating the synergistic fabrication of dual embedded (χ-Fe5C2 + θ-Fe3C) carbide nanocomposites in Na-FeCa@AC/HZSM-5 integrated catalyst for syngas conversion to aromatics. Fuel 2022, 324, 124390. [Google Scholar] [CrossRef]
- NIST X-ray Photoelectron Spectroscopy Database. Available online: http://srdata.nist.gov/xps/ (accessed on 17 March 2023).
- Tu, W.; Sun, C.; Zhang, Z.; Liu, W.; Malhi, H.S.; Ma, W.; Zhu, M.; Han, Y.-F. Chemical and structural properties of Na decorated Fe5C2-ZnO catalysts during hydrogenation of CO2 to linear α-olefins. Appl. Catal. B Environ. 2021, 298, 120567. [Google Scholar] [CrossRef]
- Otum, K.O.; Yao, Y.; Liu, X.; Hildebrandt, D. Synthesis, structure, and performance of carbide phases in Fischer-Tropsch synthesis: A critical review. Fuel 2021, 296, 120689. [Google Scholar] [CrossRef]
- Ding, J.; Huang, L.; Gong, W.B.; Fan, M.H.; Zhong, Q.; Russell, A.G.; Gu, H.; Zhang, H.J.; Zhang, Y.L.; Ye, R.P. CO2 hydrogenation to light olefins with high-performance Fe0.30Co0.15Zr0.45K0.10O1.63. J. Catal. 2019, 377, 224–232. [Google Scholar] [CrossRef]
- Xu, Y.; Zhai, P.; Deng, Y.; Xie, J.; Liu, X.; Wang, S.; Ma, D. Highly selective olefin production from CO2 hydrogenation on iron catalysts: A subtle synergy between manganese and sodium additives. Angew. Chem. Int. Ed. 2020, 59, 21736–21744. [Google Scholar] [CrossRef] [PubMed]
- Bukur, D.B.; Mukesh, D.; Patel, S.A. Promoter effects on precipitated iron catalysts for Fischer-Tropsch synthesis. Ind. Eng. Chem. Res. 1990, 29, 194–204. [Google Scholar] [CrossRef]
- Han, Y.; Fang, C.; Ji, X.; Wei, J.; Ge, Q.; Sun, J. Interfacing with carbonaceous potassium promoters boosts catalytic CO2 hydrogenation of iron. ACS Catal. 2020, 10, 12098–12108. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Cao, C.; Zhang, C.; Zhang, Z.; Liu, X.; Yang, Z.; Zhu, M.; Meng, B.; Xu, J.; Han, Y.-F. The study of structure-performance relationship of iron catalyst during a full life cycle for CO2 hydrogenation. J. Catal. 2019, 378, 51–62. [Google Scholar] [CrossRef]
Labelling | Theoretical Mn/Fe Atomic | Experimental (ICP-AES) | ||
---|---|---|---|---|
Mn/Fe Ratio | MnO2 (wt.%) | Fe2O3 (wt.%) | ||
Fe | - | - | - | 100 |
MnFe-0.05 | 0.05 | 0.06 | 6.1 | 93.9 |
MnFe-0.15 | 0.15 | 0.16 | 14.8 | 85.2 |
MnFe-0.35 | 0.30 | 0.31 | 25.2 | 74.8 |
MnFe-0.50 | 0.50 | 0.52 | 36.1 | 63.9 |
Catalysts | SBET (m2/g) | Vp (cm3/g) | dpore (nm) | Fe2O3 Crystallite Size(nm) | Eg (eV) d | H2 Consumption c (mmol·gcat−1) | |
---|---|---|---|---|---|---|---|
Theoretical | Experimental | ||||||
Fe | 65 | 0.4 | 22.5 | 23.6 | 1.86 | 1.17 | 0.50 |
MnFe-0.05 | 211 | 1.3 | 15.8 | 9.4 | 1.88 | 1.54 | 1.26 |
MnFe-0.15 | 152 | 1.1 | 15.2 | 8.2 | 1.63 | 1.50 | 1.13 |
MnFe-0.35 | 90 | 0.7 | 13.9 | 5.5 | 1.71 | 1.46 | 0.94 |
MnFe-0.50 | 82 | 0.6 | 14.8 | 13.4 | 1.74 | 1.41 | 0.68 |
Catalysts | Fe 2p3/2 | Mn 2p3/2 | O 1s | C 1s | Mn/Fe at | O/(Fe+Mn) at |
---|---|---|---|---|---|---|
Fe | 709.2 (40%) 710.6 (60%) | - | 529.7 (75%) 531.6 (25%) | 284.5 | - | 2.28 |
MnFe-0.05 | 709.3 (61%) 710.6 (39%) | 640.6 (57%) 642.7 (43%) | 529.8 (71%) 531.7 (29%) | 284.5 | 0.056 | 1.81 |
MnFe-0.15 | 709.1 (55%) 710.6 (45%) | 640.7 (60%) 642.7 (40%) | 529.8 (65%) 531.8 (35%) | 284.5 | 0.196 | 1.96 |
MnFe-0.35 | 709.1 (51%) 710.6 (49%) | 640.8 (63%) 642.7 (37%) | 529.8 (58%) 531.7 (42%) | 284.5 | 0.405 | 2.08 |
MnFe-0.50 | 709.2 (45%) 710.6 (55%) | 640.7 (65%) 642.7 (35%) | 529.8 (43%) 531.7 (57%) | 284.5 | 0.662 | 2.23 |
Catalyst | SBET (m2/g) | SBET Loss c (%) | Vpore (cm3/g) | Vpore Loss d (%) | dp (nm) |
---|---|---|---|---|---|
Fe | 45 (65) | 30.8 | 0.3 (0.4) | 25 | 19.3 (22.5) |
MnFe-0.05 | 193 (211) | 8.5 | 1.3 (1.3) | 0 | 14.8 (15.8) |
MnFe-0.35 | 75 (90) | 16.7 | 0.7 (0.7) | 0 | 12.4 (13.9) |
Catalyst | Mn 2p3/2 | Fe 2p3/2 | C 1s | Species | C(Carbide)/Fe at |
---|---|---|---|---|---|
Fe reduced | - | 709.2 (40%) 710.6 (60%) | 284.5 | Fe2+; C−C/C/C−H | - |
Fe spent | - | 707.7 (11%) | 283.2 (13%) | χ-Fe5C2 | 0.19 |
709.2 (54%) | 284.5 (61%) | Fe2+; C−C/C/C−H | - | ||
710.6 (35%) | 281.1 (26%) | Fe3+; graphitic C | |||
MnFe-0.05 reduced | 640.6 (57%) 642.7 (43%) | 709.3 (61%) 710.6 (39%) | 284.5 | Fe2+; C−C/C/C−H | - |
MnFe-0.05 spent | 639.0(10%) | 707.7 (31%) | 283.2 (32%) | χ-Fe5C2 | 0.38 |
640.7 (47%) | 709.2 (51%) | 284.5 (55%) | Fe2+; C−C/C/C−H | - | |
642.7 (43%) | 710.6 (18%) | 281.1 (13%) | Fe3+; graphitic C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zepeda, T.A.; Aguirre, S.; Galindo-Ortega, Y.I.; Solís-Garcia, A.; Navarro Yerga, R.M.; Pawelec, B.; Fierro-Gonzalez, J.C.; Fuentes, S. Hydrogenation of CO2 to Valuable C2-C5 Hydrocarbons on Mn-Promoted High-Surface-Area Iron Catalysts. Catalysts 2023, 13, 954. https://doi.org/10.3390/catal13060954
Zepeda TA, Aguirre S, Galindo-Ortega YI, Solís-Garcia A, Navarro Yerga RM, Pawelec B, Fierro-Gonzalez JC, Fuentes S. Hydrogenation of CO2 to Valuable C2-C5 Hydrocarbons on Mn-Promoted High-Surface-Area Iron Catalysts. Catalysts. 2023; 13(6):954. https://doi.org/10.3390/catal13060954
Chicago/Turabian StyleZepeda, Trino A., Sandra Aguirre, Yunuen I. Galindo-Ortega, Alfredo Solís-Garcia, Rufino M. Navarro Yerga, Barbara Pawelec, Juan C. Fierro-Gonzalez, and Sergio Fuentes. 2023. "Hydrogenation of CO2 to Valuable C2-C5 Hydrocarbons on Mn-Promoted High-Surface-Area Iron Catalysts" Catalysts 13, no. 6: 954. https://doi.org/10.3390/catal13060954
APA StyleZepeda, T. A., Aguirre, S., Galindo-Ortega, Y. I., Solís-Garcia, A., Navarro Yerga, R. M., Pawelec, B., Fierro-Gonzalez, J. C., & Fuentes, S. (2023). Hydrogenation of CO2 to Valuable C2-C5 Hydrocarbons on Mn-Promoted High-Surface-Area Iron Catalysts. Catalysts, 13(6), 954. https://doi.org/10.3390/catal13060954