Boosting Higher Selectivity for Thymol Hydrogenation Reaction over Ni/Ce Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure, Composition and Acidity
2.2. Evaluation of Catalysts
3. Experimental
3.1. Materials
3.2. Preparation of NiO/CeO2 Catalyst
3.3. Catalyst Evaluation
3.4. Catalyst Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dylong, D.; Hausoul, P.J.; Palkovits, R.; Eisenacher, M. Synthesis of menthol: Industrial synthesis routes and recent development. Flavour Fragr. J. 2002, 37, 195–209. [Google Scholar] [CrossRef]
- Noyori, R. Asymmetric catalysis: Science and opportunities (Nobel lecture 2001). Adv. Synth. Catal. 2003, 345, 15–32. [Google Scholar] [CrossRef]
- Gerhard, D.; Gerd, M.P.; Bayer, A.G. Process for Preparing D,L Menthol from D-Menthol. U.S. Patent US5756864, 26 May 1998. [Google Scholar]
- Biedermann, W.; Koeller, H.; Wedemeyer, K.; Bayer, A.G. Method of Production Thymol. German Patent DE2528303, 16 February 1978. [Google Scholar]
- Wimmer, P.; Buysch, H.J.; Puppe, L.; Bayer, A.G. Production Technology of Thymol. German Patent Application DE3824284, 18 January 1990. [Google Scholar]
- Besson, M.; Bullivant, L.; Nicollaus, N.; Gallezot, P. Stereoselective thymol hydrogenation, I: Kinetics of thymol hydrogenation on charcoal-supported platinum catalysts. J. Catal. 1993, 140, 30–40. [Google Scholar] [CrossRef]
- Barney, A.L.; Hass, H.B. Racemic menthol. New synthesis from thymol. Ind. Eng. Chem. 1944, 36, 85–87. [Google Scholar] [CrossRef]
- Brode, W.R.; Van Dolah, R.W. Synthesis of racemic menthol. Ind. Eng. Chem. 1947, 39, 1157–1160. [Google Scholar] [CrossRef]
- Allakhverdiev, A.I.; Kulkova, N.V.; Murzin, D.Y. Liquid-phase stereoselective thymol hydrogenation over supported nickel catalysts. Catal. Lett. 1994, 29, 57–67. [Google Scholar] [CrossRef]
- Allakhverdiev, A.I.; Kulkova, N.V.; Murzin, D.Y. Kinetics of thymol hydrogenation over a Ni-Cr2O3 catalyst. Ind. Eng. Chem. Res. 1995, 34, 1539–1547. [Google Scholar] [CrossRef]
- Biedermann, W.; Bayer, A.G. Method of Production D,L-Menthol. German Patent DE2314813, 22 June 1978. [Google Scholar]
- Murugesan, K.; Senthamarai, T.; Alshammari, A.S.; Altamimi, R.M.; Kreyenschulte, C.; Pohl, M.M.; Lund, H.; Jagadeesh, R.V.; Beller, M. Cobalt-nanoparticles catalyzed efficient and selective hydrogenation of aromatic hydrocarbons. ACS Catal. 2019, 9, 8581–8591. [Google Scholar] [CrossRef]
- Da Costa, P. Ni-Containing Catalysts. Catalysts 2021, 11, 645. [Google Scholar] [CrossRef]
- Falabella Sousa-Aguiar, E.; Zanon Costa, C.; Peixoto Gimenes Couto, M.A.; De Almeida Azevedo, D.; De Carvalho Filho, J.F.S. Conversion of residual palm oil into green diesel and biokerosene fuels under sub-and supercritical conditions employing aney Nickel as catalyst. Catalysts 2021, 11, 995. [Google Scholar] [CrossRef]
- Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987–6041. [Google Scholar] [CrossRef] [PubMed]
- Paier, J.; Penschke, C.; Sauer, J. Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment. Chem. Rev. 2013, 113, 3949–3985. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Sato, F.; Gotoh, H.; Yamada, Y. Selective dehydration of alkanediols into unsaturated alcohols over rare earth oxide catalysts. ACS Catal. 2013, 3, 721–734. [Google Scholar] [CrossRef]
- Yan, X.H.; Sun, J.P.; Li, B.; Lu, X.; Sun, M.F. Liquid-phase hydrogenation of chloronitrobenzene to chloroaniline over Ni-Ce-P amorphous alloy catalyst. Chin. J. Catal. 2006, 272, 178–182. [Google Scholar]
- Greluk, M.; Gac, W.; Rotko, M.; Slowik, G.; Turczyniak-Surdacka, S. Co/CeO2 and Ni/CeO2 catalysts for ethanol steam reforming: Effect of the cobalt/nickel dispersion on catalysts properties. J. Catal. 2021, 393, 159–178. [Google Scholar] [CrossRef]
- Abdelbaki, Y.; De Arriba, A.; Issaadi, R.; Sanchez-Tovar, R.; Solsona, B.; Nieto, J.M.L. Optimization of the performance of bulk NiO catalyst in the oxidative dehydrogenation of ethane by tuning the synthesis parameters. Fuel Process. Technol. 2022, 229, 107182. [Google Scholar] [CrossRef]
- Zenou, V.Y.; Bakardjieva, S. Microstructural analysis of undoped and moderately Sc-doped TiO2 anatase nanoparticles using Scherrer equation and Debye function analysis. Mater. Charact. 2018, 144, 287–296. [Google Scholar] [CrossRef]
- Solsona, B.; Concepcion, P.; Hernandez, S.; Demicol, B.; Nieto, J.M.L. Oxidative dehydrogenation of ethane over NiO-CeO2 mixed oxides catalysts. Catal. Today 2012, 180, 51–58. [Google Scholar] [CrossRef]
- Wang, N.; Shen, K.; Huang, L.H.; Yu, X.P.; Qian, W.Z.; Chu, W. Facile Route for synthesizing ordered mesoporous Ni-Ce-Al Oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas. ACS Catal. 2013, 3, 1638–1651. [Google Scholar] [CrossRef]
- Gonzalez-DelaCruz, V.M.; Holgado, J.P.; Pereniguez, R.; Caballero, A. Morphology changes induced by strong metal-support interaction on a Ni-ceria catalytic system. J. Catal. 2008, 257, 307–314. [Google Scholar] [CrossRef]
- Savova, B.; Loridant, S.; Filkova, D.; Millet, J.M.M. Ni-Nb-O catalysts for ethane oxidative dehydrogenation. Appl. Catal. 2010, 390, 148–157. [Google Scholar] [CrossRef]
- Heracleous, E.; Lemonidou, A.A. Ni-Nb-O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I: Characterization and catalytic performance. J. Catal. 2006, 237, 162–174. [Google Scholar] [CrossRef]
- Brussino, P.; Bortolozzi, J.P.; Milt, V.G.; Banus, E.D.; Ulla, M.A. NiCe/γ-Al2O3 coated onto cordierite monoliths applied to oxidative dehydrogenation of ethane (ODE). Catal. Today 2016, 273, 259–265. [Google Scholar] [CrossRef]
- Liu, Y.M.; Wang, L.C.; Chen, M.; Xu, J.; Cao, Y.; He, H.Y.; Fan, K.N. Highly selective Ce-Ni-O catalysts for efficient low temperature oxidative dehydrogenation of propane. Catal. Lett. 2009, 130, 350–354. [Google Scholar] [CrossRef]
- Guo, Y.; Jing, Y.; Xia, Q.; Wang, Y. NbOx-based catalysts for the activation of C-O and C-C bonds in the valorization of waste carbon resources. Acc. Chem. Res. 2022, 55, 1301–1312. [Google Scholar] [CrossRef]
- Xia, Q.N.; Cuan, Q.; Liu, X.H.; Gong, X.Q.; Lu, G.Z.; Wang, Y.Q. Pd/NbOPO4 multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans. Angew. Chem. 2014, 126, 9913–9918. [Google Scholar] [CrossRef]
- Li, X.; Lu, G.; Guo, Y.; Guo, Y.; Wang, Y.; Zhang, Z.; Liu, X.; Wang, Y. A novel solid superbase of Eu2O3/Al2O3 and its catalytic performance for the transesterification of soybean oil to biodiesel. Catal. Commun. 2007, 8, 1969–1972. [Google Scholar] [CrossRef]
- Wang, Z.; Fongarland, P.; Lu, G.; Essayem, N. Reconstructed La, Y, Ce-modified MgAl-hydrotalcite as a solid base catalyst for aldol condensation: Investigation of water tolerance. J. Catal. 2014, 318, 108–118. [Google Scholar] [CrossRef]
- Yun, Y.S.; Berdugo-Diaz, C.E.; Flaherty, D.W. Advances in understanding the selective hydrogenolysis of biomass derivatives. ACS Catal. 2021, 11, 11193–11232. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Z.H.; Yuan, T.Q.; Ren, X.; Rong, Z. Raney Ni as a versatile catalyst for biomass conversion. ACS Catal. 2021, 11, 10508–10536. [Google Scholar] [CrossRef]
- Vasiliades, M.A.; Govender, N.S.; Govender, A.; Crous, R.; Moodley, D.; Botha, T.; Efstathiou, A.M. The effect of H2 pressure on the carbon path of methanation reaction on Co/γ-Al2O3: Transient isotopic and operando methodology studies. ACS Catal. 2022, 12, 15110–15129. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.X.; Dai, H.X.; Deng, J.G. Review and perspectives of enhancement in the catalytic stability for the complete combustion of CO, CH4, and volatile organic compounds. Energy Fuels 2023, 37, 3590–3604. [Google Scholar] [CrossRef]
- Lin, H.X.; Liu, Y.X.; Deng, J.G.; Jing, L.; Dai, H.X. Methane combustion over the porous oxides and supported noble metal catalysts. Catalysts 2023, 13, 427. [Google Scholar] [CrossRef]
Catalysts | SBET (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
NiO | 64.1 | 0.14 | 7.6 |
Ni16/Ce1 | 104.0 | 0.26 | 9.9 |
Ni8/Ce1 | 97.5 | 0.24 | 10.3 |
Ni4/Ce1 | 91.0 | 0.37 | 15.7 |
Ni2/Ce1 | 93.3 | 0.25 | 11.7 |
Ni1/Ce1 | 55.7 | 0.25 | 17.6 |
CeO2 | 50.9 | 0.18 | 14.4 |
Catalysts | NH3 Desorption Peak Area |
---|---|
NiO | 325 |
Ni16/Ce1 | 268 |
Ni8/Ce1 | 243 |
Ni4/Ce1 | 241 |
Ni2/Ce1 | 143 |
Ni1/Ce1 | 142 |
CeO2 | 226 |
Catalysts | Peak Area |
---|---|
NiO | 8.8 |
Ni16/Ce1 | 29.4 |
Ni8/Ce1 | 426.7 |
Ni4/Ce1 | 607.2 |
Ni2/Ce1 | 466.8 |
Ni1/Ce1 | 90.3 |
CeO2 | 71.0 |
Entry | Catalysts | Conversion/% Thymol | Selectivity% Menthol + Isomer | Selectivity% Menthol | Selectivity% Side Product |
---|---|---|---|---|---|
1 | NiO | 92.3 | 90.5 | 47.7 | 9.5 |
2 | Ni16-Ce1 | >99 | 96.8 | 53.4 | 3.2 |
3 | Ni8-Ce1 | >99 | 99.5 | 55.8 | 0.5 |
4 | Ni4-Ce1 | >99 | 99.6 | 56.3 | 0.4 |
5 | Ni2-Ce1 | >99 | 99.5 | 55.8 | 0.5 |
6 | Ni1-Ce1 | 65.0 | 99.6 | 36.2 | 0.4 |
7 | CeO2 | <1 | ~ | ~ | ~ |
Entry | Reaction Temperature (°C) | Conversion/% Thymol | Selectivity% Menthol + Isomer | Selectivity% Menthol | Selectivity% Side Product |
---|---|---|---|---|---|
1 | 150 | 37.6 | 99.9 | 30.0 | 0.1 |
2 | 160 | 41.1 | 99.8 | 37.8 | 0.2 |
3 | 170 | 71.4 | 99.7 | 39.4 | 0.3 |
4 | 180 | 81.3 | 99.7 | 41.7 | 0.3 |
5 | 190 | >99 | 99.6 | 56.3 | 0.4 |
6 | 200 | >99 | 99.4 | 54.2 | 0.6 |
Entry | H2 Pressure (MPa) | Conversion/% Thymol | Selectivity/% Menthol + Isomer | Selectivity/% Menthol | Selectivity/% Side Product |
---|---|---|---|---|---|
1 | 2 | 31.1 | 99.8 | 28.6 | 0.2 |
2 | 3 | 54.8 | 99.6 | 34.9 | 0.4 |
3 | 4 | 64.3 | 99.8 | 37.5 | 0.2 |
4 | 5 | 74.3 | 99.9 | 46.2 | 0.1 |
5 | 6 | >99 | 99.6 | 56.3 | 0.4 |
Entry | Recycle Number | Conversion/% Thymol | Selectivity/% Menthol + Isomer | Selectivity/% Side Product |
---|---|---|---|---|
1 | 89 | 99.6 | 0.4 | |
2 | 1 | 88 | 99.7 | 0.3 |
3 | 2 | 89 | 99.6 | 0.4 |
4 | 3 | 89 | 99.7 | 0.3 |
5 | 4 | 87 | 99.6 | 0.4 |
6 | 5 | 88 | 99.6 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, H.; Wu, Y.; Cui, B.; Zhao, Y.; Zheng, X. Boosting Higher Selectivity for Thymol Hydrogenation Reaction over Ni/Ce Catalyst. Catalysts 2023, 13, 808. https://doi.org/10.3390/catal13050808
Mao H, Wu Y, Cui B, Zhao Y, Zheng X. Boosting Higher Selectivity for Thymol Hydrogenation Reaction over Ni/Ce Catalyst. Catalysts. 2023; 13(5):808. https://doi.org/10.3390/catal13050808
Chicago/Turabian StyleMao, Haifang, Yongqi Wu, Bo Cui, Yun Zhao, and Xiang Zheng. 2023. "Boosting Higher Selectivity for Thymol Hydrogenation Reaction over Ni/Ce Catalyst" Catalysts 13, no. 5: 808. https://doi.org/10.3390/catal13050808
APA StyleMao, H., Wu, Y., Cui, B., Zhao, Y., & Zheng, X. (2023). Boosting Higher Selectivity for Thymol Hydrogenation Reaction over Ni/Ce Catalyst. Catalysts, 13(5), 808. https://doi.org/10.3390/catal13050808