Al2O3 Nanorod with Rich Pentacoordinate Al3+ Sites Stabilizing Co2+ for Propane Dehydrogenation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Performances of Co/Al2O3 Catalysts
2.2. Bulk and Surface Characterization
2.3. Reducing Ability and Acidity of the Catalysts
2.4. Stability of the Catalyst
2.5. Discussion
3. Methods and Materials
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Catalyst Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sattler, J.J.H.B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chem. Rev. 2014, 114, 10613–10653. [Google Scholar] [CrossRef]
- McFarland, E. Unconventional Chemistry for Unconventional Natural Gas. Science 2012, 338, 340–342. [Google Scholar] [CrossRef] [PubMed]
- Carrero, C.A.; Schloegl, R.; Wachs, I.E.; Schomaecker, R. Critical Literature Review of the Kinetics for the Oxidative Dehydrogenation of Propane over Well-Defined Supported Vanadium Oxide Catalysts. ACS Catal. 2014, 4, 3357–3380. [Google Scholar] [CrossRef]
- Vora, B.V. Development of Dehydrogenation Catalysts and Processes. Top Catal. 2012, 55, 1297–1308. [Google Scholar] [CrossRef]
- Barias, O.A.; Holmen, A.; Blekkan, E.A. Propane Dehydrogenation over Supported Pt and Pt-Sn Catalysts: Catalyst Preparation, Characterization, and Activity Measurements. J. Catal. 1996, 158, 1–12. [Google Scholar] [CrossRef]
- Derossi, S.; Ferraris, G.; Fremiotti, S.; Garrone, E.; Ghiotti, G.; Campa, M.C.; Indovina, V. Propane Dehydrogenation on Chromia/Silica and Chromia/Alumina Catalysts. J. Catal. 1993, 148, 36–46. [Google Scholar] [CrossRef]
- Moselage, M.; Li, J.; Ackermann, L. Cobalt-Catalyzed C-H Activation. ACS Catal. 2016, 6, 498–525. [Google Scholar] [CrossRef]
- Hu, B.; Kim, W.-G.; Sulmonetti, T.P.; Sarazen, M.L.; Tan, S.; So, J.; Liu, Y.; Dixit, R.S.; Nair, S.; Jones, C.W. Mesoporous CoAl2O4 Spinel Catalyst for Non-Oxidative Propane Dehydrogenation. ChemCatChem 2017, 9, 3330–3337. [Google Scholar] [CrossRef]
- Li, X.; Wang, P.; Wang, H.; Li, C. Effects of the state of Co species in Co/Al2O3 catalysts on the catalytic performance of propane dehydrogenation. Appl. Surf. Sci. 2018, 441, 688–693. [Google Scholar] [CrossRef]
- Dewangan, N.; Ashok, J.; Sethia, M.; Das, S.; Pati, S.; Kus, H.; Kawi, S. Cobalt-based catalyst supported on different morphologies of alumina for non-oxidative propane dehydrogenation: Effect of metal support interaction and Lewis acidic sites. ChemCatChem 2019, 11, 4923–4934. [Google Scholar] [CrossRef]
- Dai, Y.; Gu, J.; Tian, S.; Wu, Y.; Chen, J.; Li, F.; Du, Y.; Peng, L.; Ding, W.; Yang, Y. γ-Al2O3 sheet-stabilized isolate Co2+ for catalytic propane dehydrogenation. J. Catal. 2020, 381, 482–492. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, Y.; Shan, H.; Li, C. Studies on the Nature of Active Cobalt Species for the Production of Methane and Propylene in Catalytic Dehydrogenation of Propane. Catal. Lett. 2019, 145, 1413–1419. [Google Scholar] [CrossRef]
- Wang, P.; Xu, Z.; Wang, T.; Yue, Y.; Bao, X.; Zhu, H. Unmodified bulk alumina as an efficient catalyst for propane dehydrogenation. Catal. Sci. Technol. 2020, 10, 3537–3541. [Google Scholar] [CrossRef]
- Xie, Z.; Li, Z.; Tang, P.; Song, Y.; Zhao, Z.; Kong, L.; Fan, X.; Xiao, X. The effect of oxygen vacancies on the coordinatively unsaturated Al-O acid-base pairs for propane dehydrogenation. J. Catal. 2021, 397, 172–182. [Google Scholar] [CrossRef]
- Yang, X.; Li, Q.; Lu, E.; Wang, Z.; Gong, X.; Yu, Z.; Guo, Y.; Wang, L.; Guo, Y.; Zhan, W.; et al. Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nat. Commun. 2019, 10, 1611. [Google Scholar] [CrossRef]
- Duan, H.; You, R.; Xu, S.; Li, Z.; Qian, K.; Cao, T.; Huang, W.; Bao, X. Pentacoordinated Al3+-Stabilized Active Pd Structures on Al2O3-Coated Palladium Catalysts for Methane Combustion. Angew. Chem. Int. Ed. 2019, 58, 12043–12048. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.H.; Hu, J.; Yi, C.-W.; Kim, D.H.; Peden, C.H.F.; Allard, L.F.; Szanyi, J. Coordinatively Unsaturated Al3+ Centers as Binding Sites for Active Catalyst Phases of Platinum on γ-Al2O3. Science 2009, 325, 1670–1673. [Google Scholar] [CrossRef]
- Shi, L.; Deng, G.; Li, W.; Miao, S.; Wang, Q.; Zhang, W.; Lu, A. Al2O3 Nanosheets Rich in Pentacoordinate Al3+ Ions Stabilize Pt-Sn Clusters for Propane Dehydrogenation. Angew. Chem. Int. Ed. 2015, 54, 13994–13998. [Google Scholar] [CrossRef]
- Liu, W.; Yang, S.; Zhang, Q.; He, T.; Luo, Y.; Tao, J.; Wu, D.; Peng, H. Insights into flower-like Al2O3 spheres with rich unsaturated pentacoordinate Al3+ sites stabilizing Ru-CeOx for propane total oxidation. Appl. Catal. B 2021, 292, 120171. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y.; Dai, H.; Gao, X.; Tian, S.; Gu, J.; Yi, X.; Zheng, A.; Yang, Y. Effect of coking and propylene adsorption on enhanced stability for Co2+-catalyzed propane dehydrogenation. J. Catal. 2021, 395, 105–116. [Google Scholar] [CrossRef]
- Luo, S.; He, S.; Li, X.; Li, J.; Bi, W.; Sun, C. Combustion kinetics of the coke on deactivated dehydrogenation catalysts. Fuel Process. Technol. 2015, 129, 156–161. [Google Scholar] [CrossRef]
- Jeon, N.; Seo, O.; Oh, J.; Park, J.; Chung, I.; Kim, J.; Sakata, O.; Tayal, A.; Yun, Y. Non-oxidative propane dehydrogenation over alumina-supported Co-V oxide catalysts. Appl. Catal. A 2021, 614, 118036. [Google Scholar] [CrossRef]
- Wang, G.; Jiang, Y.; Zhang, S.; Zhu, X.; Shan, H. Insight into the Active Co Phase of Co/Al2O3 Catalyst for Ethane Dehydrogenation. Catal. Lett. 2022, 152, 2971–2979. [Google Scholar] [CrossRef]
- Zayat, M.; Levy, D. Blue CoAl2O4 Particles Prepared by the Sol-Gel and Citrate-Gel Methods. Chem. Mater. 2000, 12, 2763–2769. [Google Scholar] [CrossRef]
- Hadjiev, V.G.; Iliev, M.N.; Vergilov, I.V. The Raman spectra of Co3O4. J. Phys. C 1988, 21, L199–L201. [Google Scholar] [CrossRef]
- Rivas-Murias, B.; Salgueiriño, V. Thermodynamic CoO-Co3O4 crossover using Raman spectroscopy in magnetic octahedron-shaped nanocrystals. J. Raman Spectrosc. 2017, 48, 837–841. [Google Scholar] [CrossRef]
- Alvarez-Docio, C.M.; Reinosa, J.J.; Del Campo, A.; Fernandez, J.F. Investigation of thermal stability of 2D and 3D CoAl2O4 particles in core-shell nanostructures by Raman spectroscopy. J. Alloy. Compd. 2019, 779, 244–254. [Google Scholar] [CrossRef]
- Chen, F.R.; Davis, J.G.; Fripiat, J.J. Aluminum Coordination and Lewis Acidity in Transition Aluminas. J. Catal. 1992, 133, 263–278. [Google Scholar] [CrossRef]
- Fitzgerald, J.J.; Piedra, G.; Dec, S.F.; Seger, M.; Maciel, G.E. Dehydration Studies of a High-Surface-Area Alumina (Pseudo-boehmite) Using Solid-State 1H and 27Al NMR. J. Am. Chem. Soc. 1997, 119, 7832–7842. [Google Scholar] [CrossRef]
- Kwak, J.H.; Hu, J.Z.; Kim, D.H.; Szanyi, J.; Peden, C.H.F. Penta-coordinated Al3+ ions as preferential nucleation sites for BaO on γ-Al2O3: An ultra-high-magnetic field 27Al MAS NMR study. J. Catal. 2007, 251, 189–194. [Google Scholar] [CrossRef]
Catalyst | Ypropene, % [a] | kd, h−1 [b] | Carbon Deposition, wt% [c] |
---|---|---|---|
Co/Al2O3-NS | 32.4 | 0.34 | 9.16 |
Co/Al2O3-NR | 38.6 | 0.15 | 7.54 |
Catalyst | Surface Concentration | Co2+/Co3+ Molar Ratio | Binding Energy of Co2+ (eV) | Binding Energy of Co3+ (eV) | |
---|---|---|---|---|---|
Co, mol % | Co, wt% | ||||
Co/Al2O3-NS | 1.89 | 5.90 | 3.03 | 779.5 | 778.1 |
Co/Al2O3-NR | 3.29 | 11.31 | 3.56 | 779.4 | 778.2 |
Catalysts | Al3+ Coordination/% | ||
---|---|---|---|
Tetrahedral Al | Pentacoordinate Al | Octahedral Al | |
Al2O3-NS | 31.5 | - | 68.4 |
Al2O3-NR | 17.2 | 18.5 | 64.3 |
Co/Al2O3-NS | 33.8 | - | 66.1 |
Co/Al2O3-NR | 29.4 | - | 70.6 |
Catalysts | Acid Sites/% | ||
---|---|---|---|
Strong Acid Sites | Medium Strong Acid Sites | Weak Acid Sites | |
Al2O3-NS | 74.8 | - | 25.2 |
Al2O3-NR | 83.4 | - | 16.6 |
Co/Al2O3-NS | 79.2 | 12.4 | 8.4 |
Co/Al2O3-NR | 64.5 | 22.4 | 13.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Wang, Z.; Tong, Y.; Sun, J.; Ke, M.; Song, W. Al2O3 Nanorod with Rich Pentacoordinate Al3+ Sites Stabilizing Co2+ for Propane Dehydrogenation. Catalysts 2023, 13, 807. https://doi.org/10.3390/catal13050807
Zhao Z, Wang Z, Tong Y, Sun J, Ke M, Song W. Al2O3 Nanorod with Rich Pentacoordinate Al3+ Sites Stabilizing Co2+ for Propane Dehydrogenation. Catalysts. 2023; 13(5):807. https://doi.org/10.3390/catal13050807
Chicago/Turabian StyleZhao, Zhiping, Zhixia Wang, Yanbing Tong, Jinru Sun, Ming Ke, and Weiyu Song. 2023. "Al2O3 Nanorod with Rich Pentacoordinate Al3+ Sites Stabilizing Co2+ for Propane Dehydrogenation" Catalysts 13, no. 5: 807. https://doi.org/10.3390/catal13050807
APA StyleZhao, Z., Wang, Z., Tong, Y., Sun, J., Ke, M., & Song, W. (2023). Al2O3 Nanorod with Rich Pentacoordinate Al3+ Sites Stabilizing Co2+ for Propane Dehydrogenation. Catalysts, 13(5), 807. https://doi.org/10.3390/catal13050807