Influence of Nanoscale Intimacy in Bi-Functional Catalysts for CO2-Assisted Dehydrogenation of C5-Paraffins
Abstract
:1. Introduction
2. Results and Discussion
2.1. Texture and Structural Properties of 1Pt-0.6Sn@SiO2 Catalyst
2.2. Effect of Proximity between Ceox and Pt/Sn Species on Intermetallic NP Formation
2.3. C5 Oxidative Dehydrogenation with CO2: Effect of Nanoscale Intimacy between Ce and PtSn Catalysts
3. Materials and Methods
3.1. Materials
3.2. Catalyst Preparation
3.2.1. Preparation of Pt-Sn Supported on SiO2 (1Pt-0.6Sn@SiO2)
3.2.2. Preparation of CeO2@SiO2 Catalyst
3.2.3. Preparation of Pt-Sn/CeO2@SiO2 Catalyst (Co-Impregnated)
3.3. Characterization
3.4. Catalytic Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gambo, Y.; Adamu, S.; Tanimu, G.; Abdullahi, I.M.; Lucky, R.A.; Ba-Shammakh, M.S.; Hossain, M.M. CO2-mediated oxidative dehydrogenation of light alkanes to olefins: Advances and perspectives in catalyst design and process improvement. Appl. Catal. A Gen. 2021, 623, 118273. [Google Scholar] [CrossRef]
- Numan, M.; Eom, E.; Li, A.; Mazur, M.; Cha, H.W.; Ham, H.C.; Jo, C.; Park, S.E. Oxidative dehydrogenation of ethane with CO2 as a soft oxidant over a PtCe bimetallic catalyst. ACS Catal. 2021, 11, 9221–9232. [Google Scholar] [CrossRef]
- Amghizar, I.; Vandewalle, L.A.; van Geem, K.M.; Marin, G.B. New Trends in Olefin Production. Engineering 2017, 3, 171–178. [Google Scholar] [CrossRef]
- Najari, S.; Saeidi, S.; Concepcion, P.; Dionysiou, D.D.; Bhargava, S.K.; Lee, A.F.; Wilson, K. Oxidative dehydrogenation of ethane: Catalytic and mechanistic aspects and future trends. Chem. Soc. Rev. 2021, 50, 4564–4605. [Google Scholar] [CrossRef] [PubMed]
- Numan, M.; Kim, T.; Jo, C.; Park, S.E. Ethane Dehydrogenation with CO2 as a soft oxidant over a Cr-TUD-1 catalyst. J. CO2 Util. 2020, 39, 101184. [Google Scholar] [CrossRef]
- Theofanidis, S.A.; Loizidis, C.; Heracleous, E.; Lemonidou, A.A. CO2-oxidative ethane dehydrogenation over highly efficient carbon-resistant Fe-catalysts. J. Catal. 2020, 388, 52–65. [Google Scholar] [CrossRef]
- Zacharopoulou, V.; Lemonidou, A.A. Olefins from biomass intermediates: A review. Catalysts 2017, 8, 2. [Google Scholar] [CrossRef]
- Valenzuela, R.X.; Muñoz Asperilla, J.M.; Corberán, V.C. Isoprene and C5 olefins production by oxidative dehydrogenation of isopentane. Ind. Eng. Chem.Res. 2008, 47, 8037–8042. [Google Scholar] [CrossRef]
- Ezinkwo, G.O.; Tretjakov, V.F.; Talyshinky, R.M.; Ilolov, A.M.; Mutombo, T.A. Overview of the Catalytic Production of Isoprene from different raw materials; Prospects of Isoprene production from bio-ethanol. Catal. Sustain. Energy 2013, 1, 100–111. [Google Scholar] [CrossRef]
- Huang, R.; Liang, C.H.; Su, D.S.; Zong, B.; Rong, J. The difference between borate and phosphate modified carbon nanotubes in isopentane oxidative dehydrogenation. Catal. Today 2015, 249, 161–166. [Google Scholar] [CrossRef]
- Ryoo, R.; Kim, J.; Jo, C.; Han, S.W.; Kim, J.C.; Park, H.; Han, J.; Shin, H.S.; Shin, J.W. Rare-earth–platinum intermetallic NPs NPs in mesoporous zeolite for catalysis. Nature 2020, 585, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Motagamwala, A.H.; Almallahi, R.; Wortman, J.; Igenegbai, V.O.; Linic, S. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science 2021, 373, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, G.Q.; Ren, X.; Liu, Z.W. CeO2-promoted PtSn/SiO2 as a high-performance catalyst for the oxidative dehydrogenation of propane with carbon dioxide. Nanomaterials 2022, 12, 417. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.Q.; Ren, X.; Kondratenko, V.A.; Zhang, H.B.; Kondratenko, E.V.; Liu, Z.W. Promotional nature of Sn on Pt/CeO2 for the oxidative dehydrogenation of propane with carbon dioxide. Nano Res. 2023, 16, 6237–6250. [Google Scholar] [CrossRef]
- Wang, X.; Cui, J.; Zhang, N.; Song, J.; Fan, X.; Zhao, Z.; Kong, L.; Xiao, X.; Xie, Z. Propane Dehydrogenation over PtSn/Al2O3 Catalysts: Influence of Urea to Al(NO3)3·9H2O Ratio. Catalysts 2022, 12, 157. [Google Scholar] [CrossRef]
- Fang, S.; Zhang, K.; Wang, C.; Ma, L.; Zhang, Q.; Liu, Q.; Chen, L.; Chen, L.; Zhang, Q.; Tian, Z. The properties and catalytic performance of PtSn/Mg(x-Ga)AlO catalysts for ethane dehydrogenation. RSC Adv. 2017, 7, 22836–22844. [Google Scholar] [CrossRef]
- Pham, H.N.; Sattler, J.J.; Weckhuysen, B.M.; Datye, A.K. Role of Sn in the regeneration of Pt/γ-Al2O3 light alkane dehydrogenation catalysts. ACS Catal. 2016, 6, 2257–2264. [Google Scholar] [CrossRef]
- Xiong, H.; Lin, S.; Goetze, J.; Pletcher, P.; Guo, H.; Kovarik, L.; Artyushkova, K.; Weckhuysen, B.M.; Datye, A.K. Thermally stable and regenerable platinum–tin clusters for propane dehydrogenation prepared by atom trapping on ceria. Angew. Chem. Int. Ed. 2017, 129, 9114–9119. [Google Scholar] [CrossRef]
- Coman, S.N.; Parvulescu, V.I.; De Bruyn, M.; De Vos, D.E.; Jacobs, P.A. Reduction of Prostaglandin Unsaturated Ketones to Secondary Allylic Alcohols by Hydrogen Transfer over Mesoporous-Supported PtSn Catalysts. J. Catal. 2002, 206, 218–229. [Google Scholar] [CrossRef]
- Ono, L.K.; Croy, J.R.; Heinrich, H.; Roldan Cuenya, B. Oxygen chemisorption, formation, and thermal stability of Pt oxides on Pt NPs supported on SiO2/Si (001): Size effects. J. Phys. Chem. C 2011, 115, 16856–16866. [Google Scholar] [CrossRef]
- Peng, H.; Dong, T.; Zhang, L.; Wang, C.; Liu, W.; Bao, J.; Wang, X.; Zhang, N.; Wang, Z.; Wu, P.; et al. Active and stable Pt-Ceria nanowires@ silica shell catalyst: Design, formation mechanism and total oxidation of CO and toluene. Appl. Catal. B Environ. 2019, 256, 117807. [Google Scholar] [CrossRef]
- Elgayyar, T.; Atwi, R.; Tuel, A.; Meunier, F.C. Contributions and limitations of IR spectroscopy of CO adsorption to the characterization of bimetallic and nanointermetallic NPs catalysts. Catal. Today 2021, 373, 59–68. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, J.; Wang, S.; Zhao, Y.; Ma, X. A well fabricated PtSn/SiO2 catalyst with enhanced synergy between Pt and Sn for acetic acid hydrogenation to ethanol. RSC Adv. 2016, 6, 51005–51013. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, H.; Ma, H.; Ying, W.; Fang, D. The effect of preparation method on the performance of PtSn/AlO catalysts for acetic acid hydrogenation. Pol. J. Chem. Technol. 2015, 17, 11–17. [Google Scholar] [CrossRef]
- Bahmanpour, A.M.; Héroguel, F.; Kılıç, M.; Baranowski, C.J.; Artiglia, L.; Röthlisberger, U.; Luterbacher, J.S.; Kröcher, O. Cu–Al spinel as a highly active and stable catalyst for the reverse water gas shift reaction. ACS Catal. 2019, 9, 6243–6251. [Google Scholar] [CrossRef]
- Bahmanpour, A.M.; Le Monnier, B.P.; Du, Y.P.; Héroguel, F.; Luterbacher, J.S.; Kröcher, O. Increasing the activity of the Cu/CuAl2O4/Al2O3 catalyst for the RWGS through preserving the Cu2+ ions. Chem. Commun. 2021, 57, 1153–1156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Numan, M.; Lee, G.; Eom, E.; Shin, J.W.; Choi, D.-H.; Jo, C. Influence of Nanoscale Intimacy in Bi-Functional Catalysts for CO2-Assisted Dehydrogenation of C5-Paraffins. Catalysts 2023, 13, 933. https://doi.org/10.3390/catal13060933
Numan M, Lee G, Eom E, Shin JW, Choi D-H, Jo C. Influence of Nanoscale Intimacy in Bi-Functional Catalysts for CO2-Assisted Dehydrogenation of C5-Paraffins. Catalysts. 2023; 13(6):933. https://doi.org/10.3390/catal13060933
Chicago/Turabian StyleNuman, Muhammad, Gayoung Lee, Eunji Eom, Jae Won Shin, Dae-Heung Choi, and Changbum Jo. 2023. "Influence of Nanoscale Intimacy in Bi-Functional Catalysts for CO2-Assisted Dehydrogenation of C5-Paraffins" Catalysts 13, no. 6: 933. https://doi.org/10.3390/catal13060933
APA StyleNuman, M., Lee, G., Eom, E., Shin, J. W., Choi, D. -H., & Jo, C. (2023). Influence of Nanoscale Intimacy in Bi-Functional Catalysts for CO2-Assisted Dehydrogenation of C5-Paraffins. Catalysts, 13(6), 933. https://doi.org/10.3390/catal13060933