Recent Advances in Transition Metal Phosphide Nanocatalysts for H2 Evolution and CO2 Reduction
Abstract
:1. Introduction
2. TMPs Structure and Its Significance
3. Structural Significance
4. Advances in TMP Fabrication
5. TMP Photocatalysts for HER and CO2RR Applications
6. TMP Electrocatalysts for HER via Water Splitting
7. TMP Electrocatalysts for CO2RR Application
8. Future Perspectives
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, S.A.; Sadiq, I.; Ahmad, T. Oxide based Heterostructured Photocatalysts for CO2 Reduction and Hydrogen Generation. ChemistrySelect 2023, 8, 202203176. [Google Scholar] [CrossRef]
- Moutinho, V.; Madaleno, M.; Inglesi-Lotz, R.; Dogan, E. Factors affecting CO2 emissions in top countries on renewable energies: A LMDI decomposition application. Renew. Sustain. Energy Rev. 2018, 90, 605–622. [Google Scholar] [CrossRef] [Green Version]
- Waheed, R.; Chang, D.; Sarwar, S.; Chen, W. Forest, agriculture, renewable energy, and CO2 emission. J. Clean. Prod. 2018, 172, 4231–4238. [Google Scholar] [CrossRef]
- Leggett, J.A. The United Nations Framework Convention on Climate Change, the Kyoto Protocol, and the Paris Agreement: A Summary; UNFCC: New York, NY, USA, 2020; p. 2. [Google Scholar]
- Chiodi, A.M.; Harrison, D.E. Comment on Qian et al. La Niña and El Niño composites of atmospheric CO2 change. Tellus B Chem. Phys. Meteorol. 2014, 66, 20428. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.A.; Ahmad, T. Treasure trove for efficient hydrogen evolution through water splitting using diverse perovskite photocatalysts. Mater. Today Chem. 2023, 29, 101387. [Google Scholar] [CrossRef]
- Shaheen, S.; Sadiq, I.; Ali, S.A.; Ahmad, T. Bismuth-Based Multi-Component Heterostructured Nanocatalysts for Hydrogen Generation. Catalysts 2023, 13, 295. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Hossain, S.; Nisfindy, O.B.; Azad, A.T.; Dawood, M.; Azad, A.K. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. Manag. 2018, 165, 602–627. [Google Scholar] [CrossRef]
- Naaz, F.; Alshehri, S.M.; Mao, Y.; Ahmad, T. Unraveling the chemoselective catalytic, photocatalytic and electrocatalytic applications of copper supported WO3 nanosheets. Catal. Commun. 2023, 178, 106678. [Google Scholar] [CrossRef]
- Sadiq, I.; Ali, S.A.; Ahmad, T. Graphene-Based Derivatives Heterostructured Catalytic Systems for Sustainable Hydrogen Energy via Overall Water Splitting. Catalysts 2023, 13, 109. [Google Scholar] [CrossRef]
- Singla, S.; Sharma, S.; Basu, S.; Shetti, N.P.; Aminabhavi, T.M. Photocatalytic water splitting hydrogen production via environmental benign carbon-based nanomaterials. Int. J. Hydrogen Energy 2021, 46, 33696–33717. [Google Scholar] [CrossRef]
- Ramadoss, M.; Chen, Y.; Chen, X.; Su, Z.; Karpuraranjith, M.; Yang, D.; Pandit, M.A.; Muralidharan, K. Iron-modulated three-dimensional CoNiP vertical nanoarrays: An exploratory binder-free bifunctional electrocatalyst for efficient overall water splitting. J. Phys. Chem. C 2021, 125, 20972–20979. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Kong, L.; Jiang, P.; Wang, G.; Zhao, N.; Zhang, H.; Tang, B. A general strategy to fabricate NixP as highly efficient cocatalyst via photoreduction deposition for hydrogen evolution. ACS Sustain. Chem. Eng. 2017, 5, 6845–6853. [Google Scholar] [CrossRef]
- Landers, A.T.; Fields, M.; Torelli, D.A.; Xiao, J.; Hellstern, T.R.; Francis, S.A.; Tsai, C.; Kibsgaard, J.; Lewis, N.S.; Chan, K.; et al. The predominance of hydrogen evolution on transition metal sulfides and phosphides under CO2 reduction conditions: An experimental and theoretical study. ACS Energy Lett. 2018, 3, 1450–1457. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sun, Y.; Qin, Y.; Zhang, W.; Wang, L.; Luo, M.; Yang, H.; Guo, S. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 2020, 10, 1903120. [Google Scholar] [CrossRef]
- Stolarczyk, J.K.; Bhattacharyya, S.; Polavarapu, L.; Feldmann, J. Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures. ACS Catal. 2018, 8, 3602–3635. [Google Scholar] [CrossRef]
- Pandit, N.A.; Ahmad, T. Tin Oxide Based Hybrid Nanostructures for Efficient Gas Sensing. Molecules 2022, 27, 7038. [Google Scholar] [CrossRef]
- Vaidya, S.; Ahmad, T.; Agarwal, S.; Ganguli, A.K. Nanocrystalline oxalate/carbonate precursors of Ce and Zr and their decompositions to CeO2 and ZrO2 nanoparticles. J. Am. Ceram. Soc. 2007, 90, 863–869. [Google Scholar] [CrossRef]
- Ahmad, T.; Ganguli, A.K. Structural and dielectric characterization of nanocrystalline (Ba, Pb) ZrO3 developed by reverse micellar synthesis. J. Am. Ceram. Soc. 2006, 89, 3140–3146. [Google Scholar] [CrossRef]
- Ahmad, T.; Shahazad, M.; Ubaidullah, M.; Ahmed, J.; Khan, A.; El-Toni, A.M. Structural characterization and dielectric properties of ceria–titania nanocomposites in low ceria region. Mater. Res. Express 2017, 4, 125016. [Google Scholar] [CrossRef]
- Ganguli, A.K.; Vaidya, S.; Ahmad, T. Synthesis of nanocrystalline materials through reverse micelles: A versatile methodology for synthesis of complex metal oxides. Bull. Mater. Sci. 2008, 31, 415–419. [Google Scholar] [CrossRef]
- Ahmad, T.; Lone, I.H.; Ubaidullah, M. Structural characterization and multiferroic properties of hexagonal nano-sized YMnO3 developed by a low temperature precursor route. RSC Adv. 2015, 5, 58065–58071. [Google Scholar] [CrossRef]
- Fazil, M.; Ahmad, T. Pristine TiO2 and Sr-Doped TiO2 Nanostructures for Enhanced Photocatalytic and Electrocatalytic Water Splitting Applications. Catalysts 2023, 13, 93. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, Y.; Williams, B.L.; Xiao, M.; Wang, S.; Han, D.; Sun, L.; Meng, Y. Catalytic materials for direct synthesis of dimethyl carbonate (DMC) from CO2. J. Clean. Prod. 2021, 279, 123344. [Google Scholar] [CrossRef]
- Chauhan, D.K.; Sharma, N.; Kailasam, K. A critical review on emerging photocatalysts for syngas generation via CO2 reduction under aqueous medium: A sustainable paradigm. Adv. Mater. 2022, 3, 5274–5298. [Google Scholar] [CrossRef]
- Zaza, L.; Rossi, K.; Buonsanti, R. Well-defined copper-based nanocatalysts for selective electrochemical reduction of CO2 to C2 products. ACS Energy Lett. 2022, 7, 1284–1291. [Google Scholar] [CrossRef]
- Kim, D.; Kley, C.S.; Li, Y.; Yang, P. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Natl. Acad. Sci. USA 2017, 114, 10560–10565. [Google Scholar] [CrossRef] [Green Version]
- Tu, W.; Zhou, Y.; Zou, Z. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607–4626. [Google Scholar] [CrossRef]
- Khan, H.; Lone, I.H.; Lofland, S.E.; Ramanujachary, K.V.; Ahmad, T. Exploiting multiferroicity of TbFeO3 nanoparticles for hydrogen generation through photo/electro/photoelectro-catalytic water splitting. Int. J. Hydrogen Energy 2023, 48, 5493–5505. [Google Scholar] [CrossRef]
- Liu, L.; Corma, A. Structural transformations of solid electrocatalysts and photocatalysts. Nat. Rev. Chem. 2021, 5, 256–276. [Google Scholar] [CrossRef]
- Fazil, M.; Alshehri, S.M.; Mao, Y.; Ahmad, T. Hydrothermally Derived Mg-Doped TiO2 Nanostructures for Enhanced H2 Evolution Using Photo-and Electro-Catalytic Water Splitting. Catalysts 2023, 13, 893. [Google Scholar] [CrossRef]
- Moon, S.Y.; Gwag, E.H.; Park, J.Y. Hydrogen Generation on Metal/Mesoporous Oxides: The Effects of Hierarchical Structure, Doping, and Co-catalysts. Energy Technol. 2018, 6, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Mamiyev, Z.; Balayeva, N.O. Metal Sulfide Photocatalysts for Hydrogen Generation: A Review of Recent Advances. Catalysts 2022, 12, 1316. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Tan, Q.; Lu, L.; Wang, Z.; Wu, G. Metal–organic frameworks and their derived materials as electrocatalysts and photocatalysts for CO2 reduction: Progress, challenges, and perspectives. Chem. Eur. J. 2018, 24, 18137–18157. [Google Scholar] [CrossRef]
- Ali, S.A.; Ahmad, T. Chemical strategies in molybdenum-based chalcogenides nanostructures for photocatalysis. Int. J. Hydrogen Energy 2022, 47, 29255–29283. [Google Scholar] [CrossRef]
- Kuang, P.; Sayed, M.; Fan, J.; Cheng, B.; Yu, J. 3D graphene-based H2-production photocatalyst and electrocatalyst. Adv. Energy Mater. 2020, 10, 1903802. [Google Scholar] [CrossRef]
- Mehtab, A.; Alshehri, S.M.; Ahmad, T. Photocatalytic and photoelectrocatalytic water splitting by porous g-C3N4 nanosheets for hydrogen generation. ACS Appl. Nano Mater. 2022, 5, 12656–12665. [Google Scholar] [CrossRef]
- Hameed, R.A. Nanostructured Phosphides as Electrocatalysts for Green Energy Generation. In Noble Metal-Free Electrocatalysts: New Trends in Electrocatalysts for Energy Applications; American Chemical Society: Washington, DC, USA, 2022; pp. 191–235. [Google Scholar]
- Meng, S.; An, P.; Chen, L.; Sun, S.; Xie, Z.; Chen, M.; Jiang, D. Integrating Ru-modulated CoP nanosheets binary co-catalyst with 2D g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution activity. J. Colloid Interface Sci. 2021, 585, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Wang, C.J.; Fu, W.F.; Chen, Y. Metal phosphides as co-catalysts for photocatalytic and photoelectrocatalytic water splitting. ChemSusChem 2017, 10, 4306–4323. [Google Scholar] [CrossRef] [Green Version]
- Theerthagiri, J.; Murthy, A.P.; Lee, S.J.; Karuppasamy, K.; Arumugam, S.R.; Yu, Y.; Hanafiah, M.M.; Kim, H.S.; Mittal, V.; Choi, M.Y. Recent progress on synthetic strategies and applications of transition metal phosphides in energy storage and conversion. Ceram. Int. 2021, 47, 4404–4425. [Google Scholar] [CrossRef]
- Fang, Y.; Flake, J.C. Electrochemical reduction of CO2 at functionalized Au electrodes. J. Am. Chem. Soc. 2017, 139, 3399–3405. [Google Scholar] [CrossRef]
- Antil, B.; Kumar, L.; Das, M.R.; Deka, S. Incorporating NiCoP Cocatalyst into Hollow Rings of ZnCo-Metal–Organic Frameworks to Deliver Pt Cocatalyst like Visible Light Driven Hydrogen Evolution Activity. ACS Appl. Energy Mater. 2022, 5, 11113–11121. [Google Scholar] [CrossRef]
- Koshy, D.M.; Akhade, S.A.; Shugar, A.; Abiose, K.; Shi, J.; Liang, S.; Oakdale, J.S.; Weitzner, S.E.; Varley, J.B.; Duoss, E.B.; et al. Chemical modifications of Ag catalyst surfaces with imidazolium ionomers modulate H2 evolution rates during electrochemical CO2 reduction. J. Am. Chem. Soc. 2021, 143, 14712–14725. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; He, H.; Yang, S.; Jia, G.; Liu, S. CoP imbedded g-C3N4 heterojunctions for highly efficient photo, electro and photoelectrochemical water splitting. J. Colloid Interface Sci. 2021, 599, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Huang, X.; Chen, Z.; Sun, H.; Chen, L. Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater. J. Chem. Eng. 2020, 395, 125118. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, M.; Fujitsuka, M.; Wang, A.; Shi, C.; Majima, T. Phase Effect of NixPy Hybridized with g-C3N4 for Photocatalytic Hydrogen Generation. ACS Appl. Mater. Interfaces 2017, 9, 30583–30590. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, S.; Jiao, D.; Li, F.; Qiu, S.; Wang, Z.; Cai, Q.; Zhao, J.; Sun, C. Two-dimensional Pt2P3 monolayer: A promising bifunctional electrocatalyst with different active sites for hydrogen evolution and CO2 reduction. Chin. Chem. Lett. 2022, 33, 3987–3992. [Google Scholar] [CrossRef]
- Sun, M.; Liu, H.; Qu, J.; Li, J. Earth-rich transition metal phosphide for energy conversion and storage. Adv. Energy Mater. 2016, 6, 1600087. [Google Scholar] [CrossRef]
- Zhao, H.; Yuan, Z.Y. Insights into transition metal phosphate materials for efficient electrocatalysis. ChemCatChem 2020, 12, 3797–3810. [Google Scholar] [CrossRef]
- Jiao, Y.Q.; Yan, H.J.; Tian, C.G.; Fu, H.G. Structure Engineering and Electronic Modulation of Transition Metal Interstitial Compounds for Electrocatalytic Water Splitting. Acc. Chem. Res. 2022, 4, 42–56. [Google Scholar] [CrossRef]
- Huang, C.J.; Xu, H.M.; Shuai, T.Y.; Zhan, Q.N.; Zhang, Z.J.; Li, G.R. A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction. Appl. Catal. B 2022, 325, 122313. [Google Scholar] [CrossRef]
- He, R.; Huang, X.; Feng, L. Recent progress in transition-metal sulfide catalyst regulation for improved oxygen evolution reaction. Energy Fuels 2022, 36, 6675–6694. [Google Scholar] [CrossRef]
- Oyama, S.T.; Gott, T.; Zhao, H.; Lee, Y.K. Transition metal phosphide hydro processing catalysts: A review. J. Catal. Today 2009, 143, 94–107. [Google Scholar] [CrossRef]
- Gong, N.; Deng, C.; Wu, L.; Wan, B.; Wang, Z.; Li, Z.; Gou, H.; Gao, F. Structural diversity and electronic properties of 3d transition metal tetraphosphides, TMP4 (TM= V, Cr, Mn, and Fe). Inorg. Chem. 2018, 57, 9385–9392. [Google Scholar] [CrossRef] [PubMed]
- Lakshmy, S.; Santhosh, S.; Kalarikkal, N.; Rout, C.S.; Chakraborthy, B. A review of electrochemical glucose sensing based on transition metal phosphides. J. Appl. Phys. 2023, 133, 070702. [Google Scholar] [CrossRef]
- Kuo, D.Y.; Nishiwaki, E.; Rivera-Maldonado, R.A.; Cossairt, B.M. The Role of Hydrogen Adsorption Site Diversity in Catalysis on Transition-Metal Phosphide Surfaces. ACS Catal. 2022, 13, 287–295. [Google Scholar] [CrossRef]
- Shi, Y.; Li, M.; Yu, Y.; Zhang, B. Recent advances in nanostructured transition metal phosphides: Synthesis and energy-related applications. Energy Environ. Sci. 2020, 13, 4564–4582. [Google Scholar] [CrossRef]
- Weng, B.; Wei, W.; Wu, H.; Alenizi, A.M.; Zheng, G. Bifunctional CoP and CoN porous nanocatalysts derived from ZIF-67 in situ grown on nanowire photoelectrodes for efficient photoelectrochemical water splitting and CO2 reduction. J. Mater. Chem. A 2016, 4, 15353–15360. [Google Scholar] [CrossRef]
- Lin, L.; Piao, S.; Choi, Y.; Lyu, L.; Hong, H.; Kim, D.; Lee, J.; Zhang, W.; Piao, Y. Nanostructured transition metal nitrides as emerging electrocatalysts for water electrolysis: Status and challenges. EnergyChem 2022, 4, 100072. [Google Scholar] [CrossRef]
- Zhong, Y.; Yin, L.; He, P.; Liu, W.; Wu, Z.; Wang, H. Surface chemistry in cobalt phosphide-stabilized lithium–sulfur batteries. J. Am. Chem. Soc. 2018, 140, 1455–1459. [Google Scholar] [CrossRef]
- Li, H.; Wen, P.; Itanze, D.S.; Hood, Z.D.; Ma, X.; Kim, M.; Adhikari, S.; Lu, C.; Dun, C.; Chi, M.; et al. Colloidal silver diphosphide (AgP2) nanocrystals as low overpotential catalysts for CO2 reduction to tunable syngas. Nat. Commun. 2019, 10, 5724. [Google Scholar] [CrossRef] [Green Version]
- Hu, E.; Feng, Y.; Nai, J.; Zhao, D.; Hu, Y.; Lou, X.W.D. Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci 2018, 11, 872–880. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, B. Engineering transition metal phosphide nanomaterials as highly active electrocatalysts for water splitting. J. Chem. Soc. Dalton Trans. 2017, 46, 16770–16773. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xiong, D.; Amorim, I.; Liu, L. Template-free synthesis of hollow iron phosphide–phosphate composite nanotubes for use as active and stable oxygen evolution electrocatalysts. ACS Appl. Nano Mater. 2018, 1, 617–624. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, M.; Xing, Y.; Wang, S.; Zhang, W.; Lv, F.; Li, Y.; Zhang, Y.; Wang, W.; Guo, S. A Universal Strategy for Intimately Coupled Carbon Nanosheets/MoM Nanocrystals (M= P, S, C, and O) Hierarchical Hollow Nanospheres for Hydrogen Evolution Catalysis and Sodium-Ion Storage. J. Adv. Mater. 2018, 30, 1706085. [Google Scholar]
- Wu, T.; Pi, M.; Wang, X.; Guo, W.; Zhang, D.; Chen, S. Hierarchical cobalt poly-phosphide hollow spheres as highly active and stable electrocatalysts for hydrogen evolution over a wide pH range. Appl. Surf. Sci. 2018, 427, 800–806. [Google Scholar] [CrossRef]
- Yang, S.; Chen, G.; Ricciardulli, A.G.; Zhang, P.; Zhang, Z.; Shi, H.; Ma, J.; Zhang, J.; Blom, P.W.; Feng, X. Topochemical Synthesis of Two-Dimensional Transition-Metal Phosphides Using Phosphorene Templates. Angew. Chem. Int. Edi. 2020, 59, 465–470. [Google Scholar] [CrossRef]
- Zong, Q.; Liu, C.; Yang, H.; Zhang, Q.; Cao, G. Tailoring nanostructured transition metal phosphides for high-performance hybrid supercapacitors. Nano Today 2021, 38, 101201. [Google Scholar] [CrossRef]
- Su, J.; Zhou, J.; Wang, L.; Liu, C.; Chen, Y. Synthesis and application of transition metal phosphides as electrocatalyst for water splitting. Sci. Bull. 2017, 62, 633–644. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Feng, W.; Liu, Y.; Chen, D.; Wu, Z.; Wang, H. Synergistic effect of spatially isolated Ni2P and NiO redox cocatalysts on g-C3N4 for sustainably boosted CO2 photocatalytic reduction. J. Mater. Chem. A 2022, 10, 15752–15765. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, S.; Sun, B.; Chang, X.; Zheng, J.; Li, X. A peapod-like CoP@ C nanostructure from phosphorization in a low-temperature molten salt for high-performance lithium-ion batteries. Angew. Chem. Int. Ed. Engl. 2018, 57, 10187–10191. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Y.; Liao, L.L.; Zhou, H.Q.; Zhao, Y.; Cai, F.M.; Zeng, J.S.; Liu, F.; Wu, H.; Tang, D.S.; Yu, F. Highly active non-noble electrocatalyst from Co2P/Ni2P nanohybrids for pH-universal hydrogen evolution reaction. Mater. Today Phys. 2021, 16, 100314. [Google Scholar] [CrossRef]
- Cho, G.; Park, Y.; Kang, H.; Hong, Y.K.; Lee, T.; Ha, D.H. Transition metal-doped FeP nanoparticles for hydrogen evolution reaction catalysis. Appl. Surf. Sci. 2020, 510, 145427. [Google Scholar] [CrossRef]
- Xiong, L.; Wang, B.; Cai, H.; Hao, H.; Li, J.; Yang, T.; Yang, S. Understanding the doping effect on hydrogen evolution activity of transition-metal phosphides: Modeled with Ni2P. Appl. Catal. B 2021, 295, 120283. [Google Scholar] [CrossRef]
- Ye, C.; Wang, M.Q.; Chen, G.; Deng, Y.H.; Li, L.J.; Luo, H.Q.; Li, N.B. One-step CVD synthesis of carbon framework wrapped Co2P as a flexible electrocatalyst for efficient hydrogen evolution. J. Mater. Chem. A 2017, 5, 7791–7795. [Google Scholar] [CrossRef]
- Li, X.L.; Wang, X.J.; Zhu, J.Y.; Li, Y.P.; Zhao, J.; Li, F.T. Fabrication of two-dimensional Ni2P/ZnIn2S4 heterostructures for enhanced photocatalytic hydrogen evolution. J. Chem. Eng. 2018, 353, 15–24. [Google Scholar] [CrossRef]
- Sun, W.; Fu, Z.; Shi, H.; Jin, C.; Liu, E.; Zhang, X.; Fan, J. Cu3P and Ni2P co-modified g-C3N4 nanosheet with excellent photocatalytic H2 evolution activities. J. Chem. Technol. Biotechnol. 2020, 95, 3117–3125. [Google Scholar] [CrossRef]
- Su, L.; Chen, M.; Zhang, H.; Tu, W. Construction of porous Ni2P cocatalyst and its promotion effect on photocatalytic H2 production reaction and CO2 reduction. Int. J. Hydrogen Energy 2023, 48, 15105–15116. [Google Scholar] [CrossRef]
- Fu, Z.C.; Xu, R.C.; Moore, J.T.; Liang, F.; Nie, X.C.; Mi, C.; Mo, J.; Xu, Y.; Xu, Q.Q.; Yang, Z.; et al. Highly Efficient Photocatalytic System Constructed from CoP/Carbon Nanotubes or Graphene for Visible-Light-Driven CO2 Reduction. Chem. Eur. J. 2018, 24, 4273–4278. [Google Scholar] [CrossRef]
- Ji, L.; Li, L.; Ji, X.; Zhang, Y.; Mou, S.; Wu, T.; Liu, Q.; Li, B.; Zhu, X.; Luo, Y.; et al. Highly selective electrochemical reduction of CO2 to alcohols on an FeP nanoarray. Angew. Chem. 2020, 132, 768–772. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Q.; Wang, M.; Shen, M.; Zhang, L.; Shi, J. FeP modified polymeric carbon nitride as a noble-metal-free photocatalyst for efficient CO2 reduction. Catal. Commun. 2021, 156, 106326. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Z.; Deng, B.; Ye, C.; Zhang, L.; Wang, Y.; Li, T.; Liu, Q.; Cui, G.; Asiri, A.M.; et al. Superior hydrogen evolution electrocatalysis enabled by CoP nanowire array on graphite felt. Int. J. Hydrogen Energy 2022, 47, 3580–3586. [Google Scholar] [CrossRef]
- Jin, C.; Xu, C.; Chang, W.; Ma, X.; Hu, X.; Liu, E.; Fan, J. Bimetallic phosphide NiCoP anchored g-C3N4 nanosheets for efficient photocatalytic H2 evolution. J. Alloys Compd. 2019, 803, 205–215. [Google Scholar] [CrossRef]
- Gong, S.; Hou, M.; Niu, Y.; Teng, X.; Liu, X.; Xu, M.; Xu, C.; Au, V.K.M.; Chen, Z. Molybdenum phosphide coupled with highly dispersed nickel confined in porous carbon nanofibers for enhanced photocatalytic CO2 reduction. J. Chem. Eng. 2022, 427, 131717. [Google Scholar] [CrossRef]
- Zhu, J.; He, Q.; Liu, Y.; Key, J.; Nie, S.; Wu, M.; Shen, P.K. Three-dimensional, hetero-structured, Cu3P@C nanosheets with excellent cycling stability as Na-ion battery anode material. J. Mater. Chem. 2019, 7, 16999–17007. [Google Scholar] [CrossRef]
- Hong, L.F.; Guo, R.T.; Yuan, Y.; Ji, X.Y.; Lin, Z.D.; Li, Z.S.; Pan, W.G. Recent progress of transition metal phosphides for photocatalytic hydrogen evolution. ChemSusChem 2021, 14, 539–557. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Qi, M.Y.; Li, J.Y.; Tang, Z.R.; Xu, Y.J. Noble metal free CdS@ CuS-NixP hybrid with modulated charge transfer for enhanced photocatalytic performance. Appl. Catal. B 2019, 257, 117934. [Google Scholar] [CrossRef]
- Zou, Y.; Guo, C.; Cao, X.; Zhang, L.; Chen, T.; Guo, C.; Wang, J. Synthesis of CdS/CoP hollow nanocages with improved photocatalytic water splitting performance for hydrogen evolution. J. Environ. Chem. Eng. 2021, 9, 106270. [Google Scholar] [CrossRef]
- Ray, A.; Sultana, S.; Paramanik, L.; Parida, K.M. Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting. J. Mater. Chem. A 2020, 8, 19196–19245. [Google Scholar] [CrossRef]
- Ali, S.A.; Ahmad, T. Enhanced hydrogen generation via overall water splitting using novel MoS2-BN nanoflowers assembled TiO2 ternary heterostructures. Int. J. Hydrog. Energy 2023, 48, 22044–22059. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, J.; Zheng, F.; Zhao, J.; Lee, L.Y.S. Designing charge transfer route at the interface between WP nanoparticle and g-C3N4 for highly enhanced photocatalytic CO2 reduction reaction. Appl. Catal. B 2021, 286, 119879. [Google Scholar] [CrossRef]
- Mehtab, A.; Banerjee, S.; Mao, Y.; Ahmad, T. Type-II CuFe2O4/graphitic carbon nitride heterojunctions for high-efficiency photocatalytic and electrocatalytic hydrogen generation. ACS Appl. Mater. Interfaces 2022, 14, 44317–44329. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Xie, J.; Ding, Y.; Liu, S.Y.; Adamski, A.; Chen, X.; Li, X. Carbon nanotube-supported Cu3P as high-efficiency and low-cost cocatalysts for exceptional semiconductor-free photocatalytic H2 evolution. ACS Sustain. Chem. Eng. 2018, 7, 3243–3250. [Google Scholar] [CrossRef]
- Song, T.; Zhang, X.; Matras-Postolek, K.; Yang, P. N-doped carbon layer promoted charge separation/transfer in WP/g-C3N4 heterostructures for efficient H2 evolution and 4-nitrophenol removal. Carbon 2023, 202, 378–388. [Google Scholar] [CrossRef]
- Wang, F.; Qian, G.; Kong, X.P.; Zhao, X.; Hou, T.; Chen, L.; Fang, R.; Li, Y. Hierarchical double-shelled CoP nanocages for efficient visible-light-driven CO2 reduction. ACS Appl. Mater. Interfaces 2021, 13, 45609–45618. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Li, X.; Yang, C.; Ding, X.; Zhang, Y.; Zheng, Y.Z.; Li, S.; Sun, X.; Tao, X. Large-size, porous, ultrathin NiCoP nanosheets for efficient electro/photocatalytic water splitting. Adv. Funct. Mater. 2020, 30, 1910830. [Google Scholar] [CrossRef]
- Dou, M.Y.; Han, S.R.; Du, X.X.; Pang, D.H.; Li, L.L. Well-defined FeP/CdS heterostructure construction with the assistance of amine for the efficient H2 evolution under visible light irradiation. Int. J. Hydrogen Energy 2020, 45, 32039–32049. [Google Scholar] [CrossRef]
- Mishra, I.K.; Zhou, H.Q.; Sun, J.Y.; Qin, F.; Dahal, K.; Bao, J.M.; Chen, S.; Ren, Z.F. Hierarchical CoP/Ni5P4/CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation. Energy Environ. Sci. 2018, 11, 2246–2252. [Google Scholar] [CrossRef]
- Tian, J.Q.; Liu, Q.; Asiri, A.M.; Sun, X.P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J. Am. Chem. Soc. 2014, 136, 7587–7590. [Google Scholar] [CrossRef]
- Han, A.L.; Chen, H.L.; Zhang, H.Y.; Sun, Z.J.; Du, P.W. Ternary metal phosphide nanosheets as a highly efficient electrocatalyst for water reduction to hydrogen over a wide pH range from 0 to 14. J. Mater. Chem. A 2016, 4, 10195–10202. [Google Scholar] [CrossRef]
- Li, J.; Zheng, H.; Xu, C.; Su, Z.; Li, X.; Sun, J. Bimetallic phosphides as high-efficient electrocatalysts for hydrogen generation. Inorg. Chem. 2021, 60, 1624–1630. [Google Scholar] [CrossRef]
- Yang, M.; Jiang, Y.; Qu, M.; Qin, Y.; Wang, Y.; Shen, W.; He, R.; Su, W.; Li, M. Strong electronic couple engineering of transition metal phosphides-oxides heterostructures as multifunctional electrocatalyst for hydrogen production. Appl. Catal. B Environ. 2020, 269, 118803. [Google Scholar] [CrossRef]
- Kang, Q.; Li, M.; Shi, J.; Lu, Q.; Gao, F. A universal strategy for carbon-supported transition metal phosphides as high-performance bifunctional electrocatalysts towards efficient overall water splitting. ACS Appl. Mater. Interfaces 2020, 12, 19447–19456. [Google Scholar] [CrossRef]
- Chen, D.; Pu, Z.; Lu, R.; Ji, P.; Wang, P.; Zhu, J.; Lin, C.; Li, H.W.; Zhou, X.; Hu, Z.; et al. Ultralow Ru loading transition metal phosphides as high-efficient bifunctional electrocatalyst for a solar-to-hydrogen generation system. Adv. Energy Mater. 2020, 10, 2000814. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Zhang, L.; Xia, Y.; Wang, H.; Liu, H.; Ge, S.; Yu, J. Manipulating the d-band centers of transition metal phosphides through dual metal doping towards robust overall water splitting. J. Mater. Chem. A 2022, 10, 22125–22134. [Google Scholar] [CrossRef]
- Zhang, H.; Aierke, A.; Zhou, Y.; Ni, Z.; Feng, L.; Chen, A.; Wågberg, T.; Hu, G. A High-performance transition-metal phosphide electrocatalyst for converting solar energy into hydrogen at 19.6% STH efficiency. Carbon Energy 2023, 5, 217. [Google Scholar] [CrossRef]
- Pei, Y.; Cheng, Y.; Chen, J.; Smith, W.; Dong, P.; Ajayan, P.M.; Ye, M.; Shen, J. Recent developments of transition metal phosphides as catalysts in the energy conversion field. J. Mater. Chem. A 2018, 6, 23220–23243. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Z.; Jiao, L. Multifunctional Transition Metal-Based Phosphides in Energy-Related Electrocatalysis. Adv. Energy Mater. 2020, 10, 1902104. [Google Scholar] [CrossRef]
- Downes, C.A.; Libretto, N.J.; Harman-Ware, A.E.; Happs, R.M.; Ruddy, D.A.; Baddour, F.G.; Ferrell III, J.R.; Habas, S.E.; Schaidle, J.A. Electrocatalytic CO2 reduction over Cu3P nanoparticles generated via a molecular precursor route. ACS Appl. Energy Mater. 2020, 3, 10435–10446. [Google Scholar] [CrossRef]
- Sun, X.; Lu, L.; Zhu, Q.; Wu, C.; Yang, D.; Chen, C.; Han, B. MoP nanoparticles supported on indium-doped porous carbon: Outstanding catalysts for highly efficient CO2 electroreduction. Angew. Chem. Int. Ed. Eng. 2018, 57, 2427–2431. [Google Scholar] [CrossRef]
- Kim, M.G.; Choi, Y.; Park, E.; Cheon, C.H.; Kim, N.K.; Min, B.K.; Kim, W. Crystalline/Amorphous Ni2P/Ho2O3 Core/Shell Nanoparticles for Electrochemical Reduction of CO2 to Acetone. ACS Appl. Energy Mater. 2020, 3, 11516–11522. [Google Scholar] [CrossRef]
- Laursen, A.B.; Calvinho, K.U.; Goetjen, T.A.; Yap, K.M.; Hwang, S.; Yang, H.; Garfunkel, E.; Dismukes, G.C. CO2 electro-reduction on Cu3P: Role of Cu (I) oxidation state and surface facet structure in C1-formate production and H2 selectivity. Electrochim. Acta 2021, 391, 138889. [Google Scholar] [CrossRef]
- Calvinho, K.U.; Alherz, A.W.; Yap, K.M.; Laursen, A.B.; Hwang, S.; Bare, Z.J.; Clifford, Z.; Musgrave, C.B.; Dismukes, G.C. Surface Hydrides on Fe2P Electrocatalyst Reduce CO2 at Low Overpotential: Steering Selectivity to Ethylene Glycol. J. Am. Chem. Soc. 2021, 143, 21275–21285. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Kakekhani, A.; Wexler, R.B.; Rappe, A.M. Mechanistic Insights into CO2 Electroreduction on Ni2P: Understanding Its Selectivity toward Multicarbon Products. ACS Catal. 2021, 11, 11706–11715. [Google Scholar] [CrossRef]
- Rosser, T.E.; Windle, C.D.; Reisner, E. Electrocatalytic and Solar-Driven CO2 Reduction to CO with a Molecular Manganese Catalyst Immobilized on Mesoporous TiO2. Angew. Chem. Int. Ed. Eng 2016, 55, 7388–7392. [Google Scholar]
- Liu, T.; Li, P.; Yao, N.; Cheng, G.Z.; Chen, S.L.; Luo, W.; Yin, Y.D. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew. Chem. Int. Ed. 2019, 58, 4679–4684. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, Y.; Liu, C. Nanostructured nickel phosphide supported on carbon nanospheres: Synthesis and application as an efficient electrocatalyst for hydrogen evolution. J. Power Sources 2015, 285, 169–177. [Google Scholar] [CrossRef]
- Niu, P.; Pan, Z.; Wang, S.; Wang, X. Cobalt Phosphide Cocatalysts Coated with Porous N-doped Carbon Layers for Photocatalytic CO2 Reduction. ChemCatChem 2021, 13, 3581–3587. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, N.; Wang, J.; Liu, Y.; Dai, Z.; Nie, G. Polydopamine-derived carbon layer anchoring NiCo-P nanowire arrays for high-performance binder-free supercapacitor and electrocatalytic hydrogen evolution. SusMat 2022, 2, 646–657. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Zheng, Y.; Cui, L.; Yang, W.; Liu, J. Recent advances in cobalt phosphide-based materials for energy-related applications. J. Mater. Chem. A 2017, 5, 22913–22932. [Google Scholar]
- Shah, S.S.A.; Khan, N.A.; Imran, M.; Rashid, M.; Tufail, M.K.; Rehman, A.U.; Balkourani, G.; Sohail, M.; Najam, T.; Tsiakaras, P. Recent Advances in Transition Metal Tellurides (TMTs) and Phosphides (TMPs) for Hydrogen Evolution Electrocatalysis. Membranes 2023, 13, 113. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yuan, Z.Y. Transition metal–phosphorus-based materials for electrocatalytic energy conversion reactions. Catal. Sci. Technol. 2017, 7, 330–347. [Google Scholar] [CrossRef]
- Chu, Y.; Wang, D.; Shan, X.; Liu, C.; Wang, W.; Mitsuzaki, N.; Chen, Z. Activity engineering to transition metal phosphides as bifunctional electrocatalysts for efficient water-splitting. Int. J. Hydrogen Energy 2022, 47, 38983–39000. [Google Scholar] [CrossRef]
- Du, H.; Kong, R.M.; Guo, X.; Qu, F.; Li, J. Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale 2018, 10, 21617–21624. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Xu, W.; Ong, W.J.; Xu, J.; Ren, H.; Chen, Y.; Zheng, H.; Peng, D.L. Toward noble-metal-free visible-light-driven photocatalytic hydrogen evolution: Monodisperse sub–15 nm Ni2P nanoparticles anchored on porous g-C3N4 nanosheets to engineer 0D-2D heterojunction interfaces. Appl. Catal. B 2018, 221, 47–55. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.; Yu, S.; Wen, T.; Zhu, X.; Yang, F.; Sun, X.; Wang, X.; Hu, W. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1605502. [Google Scholar] [CrossRef] [PubMed]
- Downes, C.A.; Van Allsburg, K.M.; Tacey, S.A.; Unocic, K.A.; Baddour, F.G.; Ruddy, D.A.; LiBretto, N.J.; O’Connor, M.M.; Farberow, C.A.; Schaidle, J.A.; et al. Controlled Synthesis of Transition Metal Phosphide Nanoparticles to Establish Composition-Dependent Trends in Electrocatalytic Activity. Chem. Mater. 2022, 34, 6255–6267. [Google Scholar] [CrossRef]
- Irshad, S.; Ullah, F.; Khan, S.; Ludwig, R.; Mahmood, T.; Ayub, K. First row transition metals decorated boron phosphide nanoclusters as nonlinear optical materials with high thermodynamic stability and enhanced electronic properties; A detailed quantum chemical study. Opt. Laser Technol. 2021, 134, 106570. [Google Scholar] [CrossRef]
Catalysts | Synthesis Method | Application | Band Gap (eV) | Rate of HER/CO2RR | Ref. |
---|---|---|---|---|---|
Ru-CoP-1:8/GCN | Chemical reduction | HER | 2.25 | 1172.5 μmol g−1 h−1 | [40] |
Ni2P/NiO/CN | In situ gas–solid reaction | CO2RR | 2.6 | CO (1.506 μmolg−1 h−1) CH4 (0.29 μmolg−1 h−1) | [72] |
Ni2P/ZnIn2S4 | Hydrothermal | HER | ~2 | 2066 μmol g−1 h−1 | [78] |
Cu3P-Ni2P/g-C3N4 | Solvothermal | HER | 2.7 | 6529.8 μmol g−1 h−1 | [79] |
Ni2P/CdS | Hydrothermal | HER and CO2RR | 2.16 | H2 (111.3 mmol g−1 h−1) CO (178.0 μmol g−1 h−1) CH4 (61.2 μmol g−1 h−1) | [80] |
CoP/rGO | Hydrothermal | CO2RR | - | CO (47,330 μmol g−1 h−1) | [81] |
CoP/CNT | Hydrothermal | CO2RR | - | CO (39,510 μmol g−1 h−1) | [81] |
FeP/CN | Thermal decomposition | CO2RR | 2.40 | CO (5.19 μmol g−1 h−1) | [83] |
NiCoP/g-C3N4 | Thermal polymerization | HER | 2.69 | 5162 μmol g−1 h−1 | [85] |
Ni-MoP@NPPF | Electrospinning | CO2RR | 1.42 | CO (953.53 μmol g−1 h−1) | [86] |
WP-NC/g-C3N4 | Facile sonication | CO2RR | 2.8 | CO (376 μmol g−1h−1) | [93] |
WP-NC/g-C3N4 | Thermal polymerization | HER | ~2.8 | 1217.6 μmol g−1 h−1 | [96] |
Fe doped CoP | Self-assembly | CO2RR | - | CO (21.0 μmol h−1) | [97] |
NiCoP nanosheets | Wet chemical and phosphorization | HER | - | 238.2 mmol g−1 h−1 | [98] |
FeP/CdS | Solvothermal | HER | 2.32 | 37.92 mmol g−1 h−1 | [99] |
Electrocatalyst | Synthesis Method | Application | Overpotential (mV) | Tafel Slope (mV dec−1) | Ref. |
---|---|---|---|---|---|
Co2P/Ni2P | Thermal phosphorization | HER | 51 | - | [74] |
Co-FeP | Phosphorization | HER | 126 | 63.6 | [75] |
Co-Ni2P | Synthetic method | HER | 31 | 47 | [76] |
MoP/MoNiP@C | Calcination and phosphorization | HER | 134 | 66 | [103] |
Ni2P/MoO2/NF | Phosphorization | HER | 34 | 45.8 | [104] |
NiFeP@C | Calcination | HER | 160 | 75.8 | [105] |
Ru-MnFeP/NF | Phosphorization | HER | 35 | 69 | [106] |
Ni-Mn-FeP | Phosphorization | HER | 103 | - | [107] |
Er-NiCoP/NF | Phosphorization | HER | 46 | - | [108] |
Electrocatalysts | Synthesis Method | Power Density/ Current Density | Faradaic Efficiency | Ref. |
---|---|---|---|---|
Cu3P/C | Hydrothermal | 2.6 mW cm−2 | 47% (CO) | [28] |
AgP2 | Self-assembly | −8.7 mA cm−2 | 82.0% (CO) | [63] |
FeP/TM | Hydrothermal | - | 94.3% (CH3OH + C2H5OH) | [82] |
Cu3P | Thermal decomposition | - | 8% (Formate) | [111] |
MoP@In-PC | Solid state | 43.8 mA cm−2 | 96.5% (HCOOH) | [112] |
Ni2P/Ho2O3 | Phosphorization | 0.95 mA cm−2 | 25.4% (Acetone) | [113] |
Cu3P NS/Cu | Self-assembly | - | 1.1% ± 0.6% (Formic acid) | [114] |
TiO2/MnP | Annealing | - | 67% ± 5% (CO) 12.4% ± 1.4% (H2) | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaheen, S.; Ali, S.A.; Mir, U.F.; Sadiq, I.; Ahmad, T. Recent Advances in Transition Metal Phosphide Nanocatalysts for H2 Evolution and CO2 Reduction. Catalysts 2023, 13, 1046. https://doi.org/10.3390/catal13071046
Shaheen S, Ali SA, Mir UF, Sadiq I, Ahmad T. Recent Advances in Transition Metal Phosphide Nanocatalysts for H2 Evolution and CO2 Reduction. Catalysts. 2023; 13(7):1046. https://doi.org/10.3390/catal13071046
Chicago/Turabian StyleShaheen, Saman, Syed Asim Ali, Umar Farooq Mir, Iqra Sadiq, and Tokeer Ahmad. 2023. "Recent Advances in Transition Metal Phosphide Nanocatalysts for H2 Evolution and CO2 Reduction" Catalysts 13, no. 7: 1046. https://doi.org/10.3390/catal13071046
APA StyleShaheen, S., Ali, S. A., Mir, U. F., Sadiq, I., & Ahmad, T. (2023). Recent Advances in Transition Metal Phosphide Nanocatalysts for H2 Evolution and CO2 Reduction. Catalysts, 13(7), 1046. https://doi.org/10.3390/catal13071046