The Construction of p/n-Cu2O Heterojunction Catalysts for Efficient CO2 Photoelectric Reduction
Abstract
:1. Introduction
2. Results
2.1. Structure and Morphology
2.2. Chemical Composition and Surface Information
3. Photocatalytic Activity for CO2RR
3.1. Photoelectrochemical Performance
3.2. CO2 Photoelectric Reduction
4. Materials and Methods
4.1. Materials
4.2. Synthesis Methods
4.3. Electrochemistry (EC) and Photoelectrochemical (PEC) Testing
4.4. Photoelectrochemical (PEC) CO2 Reduction Reaction Performances Testing
4.5. Materials Characterization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.-Q.; Zhang, X.-Y.; Dao, X.-Y.; Cheng, X.-M.; Sun, W.-Y. Cu2O@Cu@UiO-66-NH2 ternary nanocubes for photocatalytic CO2 reduction. ACS Appl. Nano Mater. 2020, 3, 10437–10445. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.-H.; Qi, M.-Y.; Tang, Z.-R.; Xu, Y.-J. Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction. Appl. Catal. B Environ. 2020, 268, 118380. [Google Scholar] [CrossRef]
- Li, Y.; Hu, X.-S.; Huang, J.-W.; Wang, L.; She, H.-D.; Wang, Q.-Z. Development of iron-based heterogeneous cocatalysts for photoelectrochemical water oxidation. Acta Phys.-Chim. Sin. 2021, 37, 2009022. [Google Scholar] [CrossRef]
- Zhang, L.-Q.; Cao, H.-Z.; Lu, Y.-H.; Zhang, H.-B.; Hou, G.-Y.; Tang, Y.-P.; Zheng, G.-Q. Effective combination of CuFeO2 with high temperature resistant Nb-doped TiO2 nanotube arrays for CO2 photoelectric reduction. J. Colloid. Interface Sci. 2020, 568, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Jaén, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov, A.Y. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 2021, 5, 564–579. [Google Scholar] [CrossRef]
- Li, H.; Li, F.; Yu, J.-G.; Cao, S.-W. 2D/2D FeNi-LDH/g-C3N4 hybrid photocatalyst for enhanced CO2 photoreduction. Acta Phys.-Chim. Sin. 2020, 37, 2010073. [Google Scholar] [CrossRef]
- Qiu, H.-X.; Yamamoto, A.; Yoshida, H. Gallium oxide assisting ag-loaded calcium titanate photocatalyst for carbon dioxide reduction with water. ACS Catal. 2023, 13, 3618–3626. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Gombac, V.; Montini, T.; Lavacchi, A.; Filippi, J.; Miller, H.A.; Fornasiero, P.; Vizzaa, F. An increase in hydrogen production from light and ethanol using a dual scale porosity photocatalyst. Green Chem. 2018, 20, 2299–2307. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, Y.-X.; Lu, C.-Z. Bio-inspired materials for photocatalytic hydrogen production. Chin. J. Struct. Chem. 2020, 39, 2123–2130. [Google Scholar]
- Yang, F.; Elnabawy, A.O.; Schimmenti, R.; Song, P.; Wang, J.-W.; Peng, Z.-Q.; Yao, S.; Deng, R.-P.; Song, S.-Y.; Lin, Y.; et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 2020, 11, 1088. [Google Scholar] [CrossRef]
- Wang, L.-Q.; Bevilacqua, M.; Chen, Y.-X.; Filippi, F.; Innocenti, M.; Lavacchi, A.; Marchionni, A.; Miller, H.; Vizza, F. Enhanced electro-oxidation of alcohols at electrochemically treated polycrystalline palladium surface. J. Power Sources 2013, 242, 872–876. [Google Scholar] [CrossRef]
- Yao, R.; Pinals, J.; Dorakhan, R.; Herrera, J.E.; Zhang, M.-H.; Deshlahra, P.; Chin, Y.-H. Cobalt-molybdenum oxides for effective coupling of ethane activation and carbon dioxide reduction catalysis. ACS Catal. 2022, 12, 12227–12245. [Google Scholar] [CrossRef]
- Yu, F.; Wang, C.-H.; Li, Y.-Y.; Ma, H.; Wang, R.; Liu, Y.-C.; Suzuki, N.; Terashima, C.; Ohtani, B.; Ochiai, T.; et al. Enhanced solar photothermal catalysis over solution plasma activated TiO2. Adv. Sci. 2020, 7, 2000204. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.-Y.; Wang, C.-H.; Ma, H.; Li, Y.-Y.; Liu, Y.-C.; Suzuki, N.; Terashima, C.; Fujishima, A.; Zhang, X.-T. Photothermal synergic enhancement of direct Z-scheme behavior of Bi4TaO8Cl/W18O49 heterostructure for CO2 reduction. Appl. Catal. B Environ. 2020, 268, 118401. [Google Scholar] [CrossRef]
- Karim, K.M.R.; Tarek, M.; Sarkar, S.M.; Mouras, R.; Ong, H.R.; Abdullah, H.; Cheng, C.K.; Khan, M.M.R. Photoelectrocatalytic reduction of CO2 to methanol over CuFe2O4@PANI photocathode. Int. J. Hydrog. Energy 2021, 46, 24709–24720. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Li, J.; Shi, H.-J.; Xie, S.-Q.; Zhang, C.-J.; Zhao, G.-H. Enhanced photoelectrocatalytic reduction and removal of atrazine: Effect of co-catalyst and cathode potential. ACS Appl. Mater. Interfaces 2019, 11, 38663–38673. [Google Scholar] [CrossRef]
- Silva, B.C.; Irikura, K.; Flora, J.B.S.; Santos, R.M.M.; Lachgar, A.; Frem, R.C.G.; Zanoni, M.V.B. Electrochemical preparation of Cu/Cu2O-Cu(BDC) metal-organic framework electrodes for photoelectrocatalytic reduction of CO2. J. CO2 Util. 2020, 42, 101299. [Google Scholar] [CrossRef]
- Liu, G.-J.; Zheng, F.; Li, J.-R.; Zeng, G.-S.; Ye, Y.-F.; Larson, D.M.; Yano, J.; Crumlin, E.J.; Ager, J.W.; Wang, L.-W.; et al. Investigation and mitigation of degradation mechanisms in Cu2O photoelectrodes for CO2 reduction to ethylene. Nat. Energy 2021, 6, 1124–1132. [Google Scholar] [CrossRef]
- Ding, P.; Jiang, T.-H.; Han, N.; Li, Y.-G. Photocathode engineering for efficient photoelectrochemical CO2 reduction. Mater. Today Nano 2020, 10, 100077. [Google Scholar] [CrossRef]
- Deng, X.; Li, R.; Wu, S.-K.; Wang, L.; Hu, J.-H.; Ma, J.; Jiang, W.-B.; Zhang, N.; Zheng, X.-S.; Gao, C.; et al. Metal-organic framework coating enhances the performance of Cu2O in photoelectrochemical CO2 reduction. J. Am. Chem. Soc. 2019, 141, 10924–10929. [Google Scholar] [CrossRef]
- Wang, Y.-J.; He, T. ZnTe-based nanocatalysts for CO2 reduction. Curr. Opin. Green Sustain. Chem. 2019, 16, 7–12. [Google Scholar] [CrossRef]
- Feng, J.-P.; Zeng, S.-J.; Liu, H.-Z.; Feng, J.-Q.; Gao, H.-S.; Bai, L.; Dong, H.-F.; Zhang, S.-J.; Zhang, X.-P. Insights into carbon dioxide electroreduction in ionic liquids: Carbon dioxide activation and selectivity tailored by ionic microhabitat. ChemSusChem 2018, 11, 3191–3197. [Google Scholar] [CrossRef]
- Li, C.-H.; Tong, X.; Yu, P.; Du, W.; Wu, J.; Rao, H. Carbon dioxide photo/electroreduction with cobalt. J. Mater. Chem. A 2019, 7, 16622–16642. [Google Scholar] [CrossRef]
- Jiao, X.-C.; Zheng, K.; Hu, Z.-X.; Sun, Y.-F.; Xie, Y. Broad-spectral-response photocatalysts for CO2 reduction. ACS Cent. Sci. 2020, 6, 653–660. [Google Scholar] [CrossRef]
- AlOtaibi, B.; Kong, X.; Vanka, S.; Woo, S.Y.; Pofelski, A.; Oudjedi, F.; Fan, S.; Kibria, M.G.; Botton; Ji, W.; et al. Photochemical carbon dioxide reduction on Mg-doped Ga(In)N nanowire arrays under visible light irradiation. ACS Energy Lett. 2016, 1, 246–252. [Google Scholar] [CrossRef]
- Fu, J.-W.; Jiang, K.-X.; Qiu, X.-Q.; Yu, J.-G.; Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 2020, 3, 222–243. [Google Scholar] [CrossRef]
- Tang, T.-M.; Wang, Z.-L.; Guan, J.-Q. Optimizing the electrocatalytic selectivity of carbon dioxide reduction reaction by regulating the electronic structure of single-atom M-N-C materials. Adv. Funct. Mater. 2022, 32, 2111504. [Google Scholar] [CrossRef]
- Abdullah, H.; Md. Khan, M.M.R.; Ong, H.R.; Yaakob, Z. Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview. J. CO2 Util. 2017, 22, 15–32. [Google Scholar] [CrossRef]
- Talapaneni, S.N.; Singh, G.; Kim, I.Y.; AlBahily, K.; Al-Muhtaseb, A.H.; Karakoti, A.S.; Tavakkoli, E.; Vinu, A. Nanostructured carbon nitrides for CO2 capture and conversion. Adv. Mater. 2020, 32, 1904635. [Google Scholar] [CrossRef]
- Wang, Q.-T.; Fang, Z.-X.; Zhang, W.; Zhang, D. High-efficiency g-C3N4 based photocatalysts for CO2 reduction: Modification methods. Adv. Fiber Mater. 2022, 4, 342–360. [Google Scholar] [CrossRef]
- Gao, W.; Li, S.; He, H.-C.; Li, X.-N.; Cheng, Z.-X.; Yang, Y.; Wang, J.-L.; Shen, Q.; Wang, X.-Y.; Xiong, Y.-J.; et al. Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas. Nat. Commun. 2021, 12, 4747. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.-M.; Li, Y.; Jiang, X.-C. Room-temperature synthesis of cuprous oxide and its heterogeneous nanostructures for photocatalytic applications. J. Alloy. Compd. 2019, 772, 447–459. [Google Scholar] [CrossRef]
- Yu, L.; Li, G.-J.; Zhang, X.-S.; Ba, X.; Shi, G.-D.; Li, Y.; Wong, P.K.; Yu, J.C.; Yu, Y. Enhanced activity and stability of carbon-decorated cuprous oxide mesoporous nanorods for CO2 reduction in artificial photosynthesis. ACS Catal. 2016, 6, 6444–6454. [Google Scholar] [CrossRef]
- Wang, B.-S.; Li, R.-Y.; Zhang, Z.-Y.; Zhang, W.-W.; Yan, X.-L.; Wu, X.-L.; Cheng, G.-A.; Zheng, R.-T. Novel Au/Cu2O multi-shelled porous heterostructures for enhanced efficiency of photoelectrochemical water splitting. J. Mater. Chem. A 2017, 5, 14415–14421. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z.-F.; Guo, Z.-G.; Yan, W.-G.; Ruan, M.-N. Decorating Cu2O photocathode with noble-metal-free Al and NiS cocatalysts for efficient photoelectrochemical water splitting by light harvesting management and charge separation design. Chem. Eng. J. 2020, 381, 122655. [Google Scholar] [CrossRef]
- Alizadeh, M.; Tong, G.B.; Qadir, K.W.; Mehmood, M.S.; Rasuli, R. Cu2O/InGaN heterojunction thin films with enhanced photoelectrochemical activity for solar water splitting. Renew. Energy 2020, 156, 602–609. [Google Scholar] [CrossRef]
- He, X.-F.; Chen, X.; Chen, R.; Zhu, X.; Liao, Q.; Ye, D.-D.; Yu, Y.-X.; Zhang, W.; Li, J.-W. A 3D oriented CuS/Cu2O/Cu nanowire photocathode. J. Mater. Chem. A 2021, 9, 6971–6980. [Google Scholar] [CrossRef]
- Wang, T.; Wei, Y.-J.; Chang, X.-X.; Li, C.-C.; Li, A.; Liu, S.-S.; Zhang, J.-J.; Gong, J.-L. Homogeneous Cu2O p-n junction photocathodes for solar water splitting. Appl. Catal. B Environ. 2018, 226, 31–37. [Google Scholar] [CrossRef]
- Cao, D.-W.; Nasori, N.; Wang, Z.-J.; Wen, L.-Y.; Xu, R.; Mi, Y.; Lei, Y. Facile surface treatment on Cu2O photocathodes for enhancing the photoelectrochemical response. Appl. Catal. B Environ. 2016, 198, 398–403. [Google Scholar] [CrossRef]
- Luo, J.-S.; Steier, L.; Son, M.K.; Schreier, M.; Mayer, M.T.; Grätzel, M. Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett. 2016, 16, 1848–1857. [Google Scholar] [CrossRef]
- Liang, T.-Y.; Chan, S.-J.; Patra, A.S.; Hsieh, P.L.; Chen, Y.-A.; Ma, H.H.; Huang, M.H. Inactive Cu2O cubes become highly photocatalytically active with Ag2S deposition. ACS Appl. Mater. Interfaces 2021, 13, 11515–11523. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S.; Cho, H.; Jeong, S.; Kim, W.D.; Lee, S.; Lee, D.C. Cu+-incorporated TiO2 overlayer on Cu2O nanowire photocathodes for enhanced photoelectrochemical conversion of CO2 to methanol. J. Energy Chem. 2018, 27, 264–270. [Google Scholar] [CrossRef]
- Huo, H.-L.; Liu, D.; Feng, H.; Tian, Z.-H.; Liu, X.; Li, A. Double-shelled Cu2O/MnOx mesoporous hollow structure for CO2 photoreduction with enhanced stability and activity. Nanoscale 2020, 12, 13912–13917. [Google Scholar] [CrossRef]
- Chen, J.; Shen, S.-H.; Guo, P.-H.; Wang, M.; Wu, P.; Wang, X.-X.; Guo, L.-J. In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production. Appl. Catal. B Environ. 2014, 152–153, 335–341. [Google Scholar] [CrossRef]
- Zhu, B.-C.; Hong, X.-Y.; Tang, L.-Y.; Liu, Q.-Q.; Tang, H. Enhanced photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure. Acta Phys.-Chim. Sin. 2022, 38, 2111008. [Google Scholar] [CrossRef]
- Shang, L.-M.; Lv, X.-M.; Shen, H.; Shao, Z.-Z.; Zheng, G.-F. Selective carbon dioxide electroreduction to ethylene and ethanol by core-shell copper/cuprous oxide. J. Colloid Interface Sci. 2019, 552, 426–431. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.-X.; Wan, J.; Wang, J.; Wang, L. A tube-like dual Z-scheme indium oxide@indium phosphide/cuprous oxide photocatalyst based on metal–organic framework for efficient CO2 reduction with water. J. Colloid Interface Sci. 2022, 616, 532–539. [Google Scholar] [CrossRef]
- Shoute, L.C.T.; Alam, K.M.; Vahidzadeh, E.; Manuel, A.P.; Zeng, S.; Kumar, P.; Kar, P.; Shankar, K. Effect of morphology on the photoelectrochemical performance of nanostructured Cu2O photocathodes. Nanotechnology 2021, 32, 374001. [Google Scholar] [CrossRef]
- An, X.-Q.; Li, K.; Tang, J.-W. Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2. Chem. Sustain. Energy Mater. 2014, 7, 1086–1093. [Google Scholar] [CrossRef]
- McShane, C.M.; Choi, K.S. Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. J. Am. Chem. Soc. 2009, 131, 2561–2569. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Chen, Y.; Shi, H.; Chen, R.; Ji, M.; Li, K.; Wang, H.; Jiang, X.; Lu, C. The Construction of p/n-Cu2O Heterojunction Catalysts for Efficient CO2 Photoelectric Reduction. Catalysts 2023, 13, 857. https://doi.org/10.3390/catal13050857
Zhou Q, Chen Y, Shi H, Chen R, Ji M, Li K, Wang H, Jiang X, Lu C. The Construction of p/n-Cu2O Heterojunction Catalysts for Efficient CO2 Photoelectric Reduction. Catalysts. 2023; 13(5):857. https://doi.org/10.3390/catal13050857
Chicago/Turabian StyleZhou, Qianqian, Yanxin Chen, Haoyan Shi, Rui Chen, Minghao Ji, Kexian Li, Hailong Wang, Xia Jiang, and Canzhong Lu. 2023. "The Construction of p/n-Cu2O Heterojunction Catalysts for Efficient CO2 Photoelectric Reduction" Catalysts 13, no. 5: 857. https://doi.org/10.3390/catal13050857
APA StyleZhou, Q., Chen, Y., Shi, H., Chen, R., Ji, M., Li, K., Wang, H., Jiang, X., & Lu, C. (2023). The Construction of p/n-Cu2O Heterojunction Catalysts for Efficient CO2 Photoelectric Reduction. Catalysts, 13(5), 857. https://doi.org/10.3390/catal13050857