CO2 Electroreduction by Engineering the Cu2O/RGO Interphase
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of CU Cu2O/RGO Composites
2.2. Electrochemical Behavior of CU Cu2O/RGO Composites and CO2RR Tests
3. Materials and Methods
3.1. Preparation of the CU Cu2O/RGO Composites
3.2. Characterization
3.3. Electrochemical Characterization
3.4. CO2RR Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khdary, N.H.; Alayyar, A.S.; Alsarhan, L.M.; Alshihri, S.; Mokhtar, M. Metal Oxides as Catalyst/Supporter for CO2 Capture and Conversion, Review. Catalysts 2022, 12, 300. [Google Scholar] [CrossRef]
- Xia, Q.; Zhang, K.; Zheng, T.; An, L.; Xia, C.; Zhang, X. Integration of CO2 Capture and Electrochemical Conversion. ACS Energy Lett. 2023, 8, 2840–2857. [Google Scholar] [CrossRef]
- He, Y.; Müller, F.H.; Palkovits, R.; Zeng, F.; Mebrahtu, C. Tandem Catalysis for CO2 Conversion to Higher Alcohols: A Review. Appl. Catal. B Environ. 2024, 345, 123663. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Z.; Xu, X.; Wang, J. Review on Porous Nanomaterials for Adsorption and Photocatalytic Conversion of CO2. Cuihua Xuebao/Chinese J. Catal. 2017, 38, 1956–1969. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Jung, H.S.; Kim, J.M.; Kang, Y.T. Photocatalytic CO2 Conversion on Highly Ordered Mesoporous Materials: Comparisons of Metal Oxides and Compound Semiconductors. Appl. Catal. B Environ. 2018, 224, 594–601. [Google Scholar] [CrossRef]
- Christoforidis, K.C.; Fornasiero, P. Photocatalysis for Hydrogen Production and CO2 Reduction: The Case of Copper-Catalysts. ChemCatChem 2019, 11, 368–382. [Google Scholar] [CrossRef]
- Verma, R.; Belgamwar, R.; Polshettiwar, V. Plasmonic Photocatalysis for CO2 Conversion to Chemicals and Fuels. ACS Mater. Lett. 2021, 3, 574–598. [Google Scholar] [CrossRef]
- Rej, S.; Bisetto, M.; Naldoni, A.; Fornasiero, P. Well-Defined Cu2O Photocatalysts for Solar Fuels and Chemicals. J. Mater. Chem. A 2021, 9, 5915–5951. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Zhu, S.S.; Liu, Y.Y.; Zhang, X.; Wang, J.J.; Braun, A. Covalent S-O Bonding Enables Enhanced Photoelectrochemical Performance of Cu2S/Fe2O3 Heterojunction for Water Splitting. Small 2021, 17, 2100320. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Y.; Fan, T.; Wei, D.; Huang, Z.; Zhang, Z.; Zhang, Z.; Dong, Y.; Hong, Q.; Chen, Z.; et al. Facet Dopant Regulation of Cu2O Boosts Electrocatalytic CO2 Reduction to Formate. Adv. Funct. Mater. 2023, 33, 2213145. [Google Scholar] [CrossRef]
- Jun, M.; Kwak, C.; Lee, S.Y.; Joo, J.; Kim, J.M.; Im, D.J.; Cho, M.K.; Baik, H.; Hwang, Y.J.; Kim, H.; et al. Microfluidics-Assisted Synthesis of Hierarchical Cu2O Nanocrystal as C2-Selective CO2 Reduction Electrocatalyst. Small Methods 2022, 6, 2200074. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Deng, Y.; Handoko, A.D.; Chen, C.S.; Malkhandi, S.; Yeo, B.S. Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) Oxide Catalysts. ACS Catal. 2015, 5, 2814–2821. [Google Scholar] [CrossRef]
- Mistry, H.; Varela, A.S.; Bonifacio, C.S.; Zegkinoglou, I.; Sinev, I.; Choi, Y.W.; Kisslinger, K.; Stach, E.A.; Yang, J.C.; Strasser, P.; et al. Highly Selective Plasma-Activated Copper Catalysts for Carbon Dioxide Reduction to Ethylene. Nat. Commun. 2016, 7, 12123. [Google Scholar] [CrossRef]
- Wang, S.; Kou, T.; Baker, S.E.; Duoss, E.B.; Li, Y. Recent Progress in Electrochemical Reduction of CO2 by Oxide-Derived Copper Catalysts. Mater. Today Nano 2020, 12, 100096. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, L.; Wang, Y.; Chen, R.; Xiao, C.; Zhou, X.; Zhu, Y.; Li, Y.; Li, C. Dynamic Determination of Cu+ Roles for CO2 Reduction on Electrochemically Stable Cu2O-Based Nanocubes. J. Mater. Chem. A 2022, 10, 8459–8465. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, X.; Duan, D.; He, C.; Ma, J.; Zhang, W.; Liu, H.; Long, R.; Li, Z.; Kong, T.; et al. Structural Reconstruction of Cu2O Superparticles toward Electrocatalytic CO2 Reduction with High C2+ Products Selectivity. Adv. Sci. 2022, 9, 2105292. [Google Scholar] [CrossRef]
- Larrazábal, G.O.; Okatenko, V.; Chorkendorff, I.; Buonsanti, R.; Seger, B. Investigation of Ethylene and Propylene Production from CO2 Reduction over Copper Nanocubes in an MEA-Type Electrolyzer. ACS Appl. Mater. Interfaces 2022, 14, 7779–7787. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Liu, Y.; Huang, Y.; Wang, H.; Murphy, E.; Delafontaine, L.; Chen, J.; Zenyuk, I.V.; Atanassov, P. Promoting Electrolysis of Carbon Monoxide toward Acetate and 1-Propanol in Flow Electrolyzer. ACS Energy Lett. 2023, 8, 935–942. [Google Scholar] [CrossRef]
- Wu, Q.; Du, R.; Wang, P.; Waterhouse, G.I.N.; Li, J.; Qiu, Y.; Yan, K.; Zhao, Y.; Zhao, W.W.; Tsai, H.J.; et al. Nanograin-Boundary-Abundant Cu2O-Cu Nanocubes with High C2+ Selectivity and Good Stability during Electrochemical CO2 Reduction at a Current Density of 500 mA/cm2. ACS Nano 2023, 17, 12884–12894. [Google Scholar] [CrossRef]
- Zaza, L.; Rossi, K.; Buonsanti, R. Well-Defined Copper-Based Nanocatalysts for Selective Electrochemical Reduction of CO2 to C2 Products. ACS Energy Lett. 2022, 7, 1284–1291. [Google Scholar] [CrossRef]
- Rossi, K.; Buonsanti, R. Shaping Copper Nanocatalysts to Steer Selectivity in the Electrochemical CO2 Reduction Reaction. Acc. Chem. Res. 2022, 55, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Guo, X.; Jiao, Z.; Jin, G.; Guo, X.Y. Graphene-Supported Cu2O Nanoparticles: An Efficient Heterogeneous Catalyst for C-O Cross-Coupling of Aryl Iodides with Phenols. Catal. Sci. Technol. 2014, 4, 4196–4199. [Google Scholar] [CrossRef]
- Abu-Zied, B.M.; Hussein, M.A.; Khan, A.; Asiri, A.M. Cu-Cu2O@graphene Nanoplatelets Nanocomposites: Facile Synthesis, Characterization, and Electrical Conductivity Properties. Mater. Chem. Phys. 2018, 213, 168–176. [Google Scholar] [CrossRef]
- Alhaddad, M.; Navarro, R.M.; Hussein, M.A.; Mohamed, R.M. Visible Light Production of Hydrogen from Glycerol over Cu2O-gC3N4 Nanocomposites with Enhanced Photocatalytic Efficiency. J. Mater. Res. Technol. 2020, 9, 15335–15345. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, C.; Zhang, X.; Guo, Q.; Wang, J. Graphene-Based CO2 Reduction Electrocatalysts: A Review. New Carbon Mater. 2024, 39, 100–130. [Google Scholar] [CrossRef]
- Zhang, D.; Wei, D.; Cui, Z.; Wang, S.; Yang, S.; Cao, M.; Hu, C. Improving Water Splitting Performance of Cu2O through a Synergistic “Two-Way Transfer” Process of Cu and Graphene. Phys. Chem. Chem. Phys. 2014, 16, 25531–25536. [Google Scholar] [CrossRef] [PubMed]
- Nemiwal, M.; Zhang, T.C.; Kumar, D. Graphene-Based Electrocatalysts: Hydrogen Evolution Reactions and Overall Water Splitting. Int. J. Hydrogen Energy 2021, 46, 21401–21418. [Google Scholar] [CrossRef]
- Sharma, V.; Jain, Y.; Kumari, M.; Gupta, R.; Sharma, S.K.; Sachdev, K. Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (RGO) for Gas Sensing Application. Macromol. Symp. 2017, 376, 1700006. [Google Scholar] [CrossRef]
- Yoon, Y.; Kye, H.; Yang, W.S.; Kang, J.W. Comparing Graphene Oxide and Reduced Graphene Oxide as Blending Materials for Polysulfone and Polyvinylidene Difluoride Membranes. Appl. Sci. 2020, 10, 2015. [Google Scholar] [CrossRef]
- Jaafar, E.; Kashif, M.; Sahari, S.K.; Ngaini, Z. Study on Morphological, Optical and Electrical Properties of Graphene Oxide (GO) and Reduced Graphene Oxide (RGO). Mater. Sci. Forum 2018, 917, 112–116. [Google Scholar] [CrossRef]
- Wang, W.; Ning, H.; Yang, Z.; Feng, Z.; Wang, J.; Wang, X.; Mao, Q.; Wu, W.; Zhao, Q.; Hu, H.; et al. Interface-Induced Controllable Synthesis of Cu2O Nanocubes for Electroreduction CO2 to C2H4. Electrochim. Acta 2019, 306, 360–365. [Google Scholar] [CrossRef]
- Susman, M.D.; Feldman, Y.; Vaskevich, A.; Rubinstein, I. Chemical Deposition of Cu2O Nanocrystals with Precise Morphology Control. ACS Nano 2014, 8, 162–174. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Li, K.; Tang, J. Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2. ChemSusChem 2014, 7, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Liu, Z.; Wang, T.; Liang, J.; Duan, S.; Xie, L.; Han, J.; Li, Q. Promoting C2+ Production from Electrochemical CO2 Reduction on Shape-Controlled Cuprous Oxide Nanocrystals with High-Index Facets. ACS Sustain. Chem. Eng. 2020, 8, 15223–15229. [Google Scholar] [CrossRef]
- Xu, J.; Wang, R.; Chen, X.; Zhou, R.; Zhang, J. Cu2SnS3 Nanocrystals Decorated RGO Nanosheets towards Efficient and Stable Hydrogen Evolution Reaction in Both Acid and Alkaline Solutions. Mater. Today Energy 2020, 17, 100435. [Google Scholar] [CrossRef]
- Khanra, P.; Kuila, T.; Kim, N.H.; Bae, S.H.; Yu, D.-S.; Lee, J.H. Simultaneous Bio-Functionalization and Reduction of Graphene Oxide by Baker’s Yeast. Chem. Eng. J. 2012, 183, 526–533. [Google Scholar] [CrossRef]
- Sadhukhan, S.; Ghosh, T.K.; Rana, D.; Roy, I.; Bhattacharyya, A.; Sarkar, G.; Chakraborty, M.; Chattopadhyay, D. Studies on Synthesis of Reduced Graphene Oxide (RGO) via Green Route and Its Electrical Property. Mater. Res. Bull. 2016, 79, 41–51. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Z.X.; Yin, J. Facile Synthesis of Soluble Graphene via a Green Reduction of Graphene Oxide in Tea Solution and Its Biocomposites. ACS Appl. Mater. Interfaces 2011, 3, 1127–1133. [Google Scholar] [CrossRef]
- Cui, P.; Lee, J.; Hwang, E.; Lee, H. One-Pot Reduction of Graphene Oxide at Subzero Temperatures. Chem. Commun. 2011, 47, 12370–12372. [Google Scholar] [CrossRef]
- Kuila, T.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. Recent Advances in the Efficient Reduction of Graphene Oxide and Its Application as Energy Storage Electrode Materials. Nanoscale 2013, 5, 52–71. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Pang, C.; He, D.; Shen, L.; Gupta, A.; Bao, N. Synthesis of Hierarchical Nanoporous Microstructures via the Kirkendall Effect in Chemical Reduction Process. Sci. Rep. 2015, 5, 16061. [Google Scholar] [CrossRef] [PubMed]
- Möller, T.; Scholten, F.; Thanh, T.N.; Sinev, I.; Timoshenko, J.; Wang, X.; Jovanov, Z.; Gliech, M.; Roldan Cuenya, B.; Varela, A.S.; et al. Electrocatalytic CO2 Reduction on CuOx Nanocubes: Tracking the Evolution of Chemical State, Geometric Structure, and Catalytic Selectivity Using Operando Spectroscopy. Angew. Chemie Int. Ed. 2020, 59, 17974–17983. [Google Scholar] [CrossRef] [PubMed]
- Nallal, M.; Park, K.H.; Park, S.; Kim, J.; Shenoy, S.; Chuaicham, C.; Sasaki, K.; Sekar, K. Cu2O/Reduced Graphene Oxide Nanocomposites for Electrocatalytic Overall Water Splitting. ACS Appl. Nano Mater. 2022, 5, 17271–17280. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, S.; Li, M.; Ma, J.; Song, S.; Kumar, A.; Duan, H.; Kuang, Y.; Sun, X. Rational Design of Copper-Based Electrocatalysts and Electrochemical Systems for CO2 Reduction: From Active Sites Engineering to Mass Transfer Dynamics. Mater. Today Phys. 2021, 18, 100354. [Google Scholar] [CrossRef]
- Dattila, F.; Garclá-Muelas, R.; López, N. Active and Selective Ensembles in Oxide-Derived Copper Catalysts for CO2 Reduction. ACS Energy Lett. 2020, 5, 3176–3184. [Google Scholar] [CrossRef]
- Cao, X.; Cao, G.; Li, M.; Zhu, X.; Han, J.; Ge, Q.; Wang, H. Enhanced Ethylene Formation from Carbon Dioxide Reduction through Sequential Catalysis on Au Decorated Cubic Cu2O Electrocatalyst. Eur. J. Inorg. Chem. 2021, 2021, 2353–2364. [Google Scholar] [CrossRef]
- Zheng, T.; Liu, C.; Guo, C.; Zhang, M.; Li, X.; Jiang, Q.; Xue, W.; Li, H.; Li, A.; Pao, C.W.; et al. Copper-Catalysed Exclusive CO2 to Pure Formic Acid Conversion via Single-Atom Alloying. Nat. Nanotechnol. 2021, 16, 1386–1393. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Kim, C.; Min, B.K. Theoretical Insights into Selective Electrochemical Conversion of Carbon Dioxide. Nano Converg. 2019, 6, 8. [Google Scholar] [CrossRef]
- Goyal, A.; Marcandalli, G.; Mints, V.A.; Koper, M.T.M. Competition between CO2 Reduction and Hydrogen Evolution on a Gold Electrode under Well-Defined Mass Transport Conditions. J. Am. Chem. Soc. 2020, 142, 4154–4161. [Google Scholar] [CrossRef]
- Cao, C.; Wen, Z. Cu Nanoparticles Decorating RGO Nanohybrids as Electrocatalyst toward CO2 Reduction. J. CO2 Util. 2017, 22, 231–237. [Google Scholar] [CrossRef]
- Ning, H.; Mao, Q.; Wang, W.; Yang, Z.; Wang, X.; Zhao, Q.; Song, Y.; Wu, M. N-Doped Reduced Graphene Oxide Supported Cu2O Nanocubes as High Active Catalyst for CO2 Electroreduction to C2H4. J. Alloys Compd. 2019, 785, 7–12. [Google Scholar] [CrossRef]
- Bochlin, Y.; Korin, E.; Bettelheim, A. Different Pathways for CO2 Electrocatalytic Reduction by Confined CoTMPyP in Electrodeposited Reduced Graphene Oxide. ACS Appl. Energy Mater. 2019, 2, 8434–8440. [Google Scholar] [CrossRef]
- Nguyen, D.L.T.; Lee, C.W.; Na, J.; Kim, M.C.; Tu, N.D.K.; Lee, S.Y.; Sa, Y.J.; Won, D.H.; Oh, H.S.; Kim, H.; et al. Mass Transport Control by Surface Graphene Oxide for Selective CO Production from Electrochemical CO2 Reduction. ACS Catal. 2020, 10, 3222–3231. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Q.; Xiao, X.; Chen, J.; Shen, Y.; Wang, M. Interfacial Engineering of Bismuth with Reduced Graphene Oxide Hybrid for Improving CO2 Electroreduction Performance. Electrochim. Acta 2020, 357, 136840. [Google Scholar] [CrossRef]
- Ramakrishnan, M.C.; Thangavelu, R.R. Synthesis and Characterization of Reduced Graphene Oxide. Adv. Mater. Res. 2013, 678, 56–60. [Google Scholar] [CrossRef]
- Bansal, K.; Singh, J.; Dhaliwal, A.S. Synthesis and Characterization of Graphene Oxide and Its Reduction with Different Reducing Agents. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1225, 012050. [Google Scholar] [CrossRef]
- Chanda, K.; Rej, S.; Huang, M.H. Investigation of Facet Effects on the Catalytic Activity of Cu2O Nanocrystals for Efficient Regioselective Synthesis of 3,5-Disubstituted Isoxazoles. Nanoscale 2013, 5, 12494–12501. [Google Scholar] [CrossRef]
- Zhuang, T.T.; Liang, Z.Q.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F.; Meng, F.; Min, Y.; Quintero-Bermudez, R.; et al. Steering Post-C-C Coupling Selectivity Enables High Efficiency Electroreduction of Carbon Dioxide to Multi-Carbon Alcohols. Nat. Catal. 2018, 1, 421–428. [Google Scholar] [CrossRef]
- Singh, R.K.; Devivaraprasad, R.; Kar, T.; Chakraborty, A.; Neergat, M. Electrochemical Impedance Spectroscopy of Oxygen Reduction Reaction (ORR) in a Rotating Disk Electrode Configuration: Effect of Ionomer Content and Carbon-Support. J. Electrochem. Soc. 2015, 162, F489–F498. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bisetto, M.; Rej, S.; Naldoni, A.; Montini, T.; Bevilacqua, M.; Fornasiero, P. CO2 Electroreduction by Engineering the Cu2O/RGO Interphase. Catalysts 2024, 14, 412. https://doi.org/10.3390/catal14070412
Bisetto M, Rej S, Naldoni A, Montini T, Bevilacqua M, Fornasiero P. CO2 Electroreduction by Engineering the Cu2O/RGO Interphase. Catalysts. 2024; 14(7):412. https://doi.org/10.3390/catal14070412
Chicago/Turabian StyleBisetto, Matteo, Sourav Rej, Alberto Naldoni, Tiziano Montini, Manuela Bevilacqua, and Paolo Fornasiero. 2024. "CO2 Electroreduction by Engineering the Cu2O/RGO Interphase" Catalysts 14, no. 7: 412. https://doi.org/10.3390/catal14070412
APA StyleBisetto, M., Rej, S., Naldoni, A., Montini, T., Bevilacqua, M., & Fornasiero, P. (2024). CO2 Electroreduction by Engineering the Cu2O/RGO Interphase. Catalysts, 14(7), 412. https://doi.org/10.3390/catal14070412