Engineering the Biosynthesis of prFMN Promotes the Conversion between Styrene/CO2 and Cinnamic Acid Catalyzed by the Ferulic Acid Decarboxylase Fdc1
Abstract
:1. Introduction
2. Results
2.1. Reconstruction of the prFMN Biosynthesis Pathway in E. coli
2.2. The Engineered prFMN Strain Demonstrated High Decarboxylation Efficiency
2.3. Kinetic Parameters of SC-2 and SC-6 Cell Catalysts with Cinnamic Acid and 4-Acetoxycinnamic Acid as Substrates
2.4. Semi-Quantitative Analysis of FMN and prFMN by Native Mass Spectrometry
2.5. Biosynthesis of the prFMN Promotes Carbon Fixation on Styrene Catalyzed by ScFdc1
3. Discussion
4. Materials and Methods
4.1. Strains, Plasmids, and Chemicals
4.2. Engineering of the prFMN Biosynthesis Pathway in E. coli Cells
4.3. Preparation of the Biocatalyst
4.4. Pretreatment of the Cell Lysate for Mass Spectrometry Assay
4.5. Intracellular Analysis of the Possible Forms of prFMNs Using LC-MS
4.6. Enzymatic Decarboxylation Catalyzed by the ScFdc1 Whole Cell Lysate
4.7. Kinetic Parameters of ScFdc1 with Cinnamic Acid and 4-Acetoxycinnamic Acid
4.8. Enzymatic Carboxylation of Styrene
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bierbaumer, S.; Nattermann, M.; Schulz, L.; Zschoche, R.; Erb, T.J.; Winkler, C.K.; Tinzl, M.; Glueck, S.M. Enzymatic Conversion of CO2: From Natural to Artificial Utilization. Chem. Rev. 2023, 123, 5702–5754. [Google Scholar] [CrossRef] [PubMed]
- Plasch, K.; Resch, V.; Hitce, J.; Poplonski, J.; Faber, K.; Glueck, S.M. Regioselective Enzymatic Carboxylation of Bioactive (Poly)phenols. Adv. Synth. Catal. 2017, 359, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Payer, S.E.; Faber, K.; Glueck, S.M. Non-Oxidative Enzymatic (De)Carboxylation of (Hetero)Aromatics and Acrylic Acid Derivatives. Adv. Synth. Catal. 2019, 361, 2402–2420. [Google Scholar] [CrossRef] [PubMed]
- Bhuiya, M.W.; Lee, S.G.; Jez, J.M.; Yu, O. Structure and Mechanism of Ferulic Acid Decarboxylase (FDC1) from Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2015, 81, 4216–4223. [Google Scholar] [CrossRef]
- Payne, K.A.P.; Marshall, S.A.; Fisher, K.; Cliff, M.J.; Cannas, D.M.; Yan, C.Y.; Heyes, D.J.; Parker, D.A.; Larrosa, I.; Leys, D. Enzymatic Carboxylation of 2-Furoic Acid Yields 2,5-Furandicarboxylic Acid (FDCA). ACS Catal. 2019, 9, 2854–2865. [Google Scholar] [CrossRef] [PubMed]
- Marshall, S.A.; Fisher, K.; Cheallaigh, A.N.; White, M.D.; Payne, K.A.P.; Parker, D.A.; Rigby, S.E.J.; Leys, D. Oxidative Maturation and Structural Characterization of Prenylated FMN Binding by UbiD, a Decarboxylase Involved in Bacterial Ubiquinone Biosynthesis. J. Biol. Chem. 2017, 292, 4623–4637. [Google Scholar] [CrossRef]
- Datar, P.M.; Marsh, E.N.G. Decarboxylation of Aromatic Carboxylic Acids by the Prenylated-FMN-dependent Enzyme Phenazine-1-carboxylic Acid Decarboxylase. ACS Catal. 2021, 11, 11723–11732. [Google Scholar] [CrossRef]
- Marshall, S.A.; Payne, K.A.P.; Fisher, K.; White, M.D.; Cheallaigh, A.N.; Balaikaite, A.; Rigby, S.E.J.; Leys, D. The UbiX flavin prenyltransferase reaction mechanism resembles class I terpene cyclase chemistry. Nat. Commun. 2019, 10, 2357. [Google Scholar] [CrossRef]
- Bailey, S.S.; Payne, K.A.P.; Saaret, A.; Marshall, S.A.; Gostimskaya, I.; Kosov, I.; Fisher, K.; Hay, S.; Leys, D. Enzymatic control of cycloadduct conformation ensures reversible 1,3-dipolar cycloaddition in a prFMN-dependent decarboxylase. Nat. Chem. 2019, 11, 1049–1057. [Google Scholar] [CrossRef]
- Balaikaite, A.; Chisanga, M.; Fisher, K.; Heyes, D.J.; Spiess, R.; Leys, D. Ferulic Acid Decarboxylase Controls Oxidative Maturation of the Prenylated Flavin Mononucleotide Cofactor. ACS Chem. Biol. 2020, 15, 2466–2475. [Google Scholar] [CrossRef]
- Wang, P.H.; Khusnutdinova, A.N.; Luo, F.; Xiao, J.; Nemr, K.; Flick, R.; Brown, G.; Mahadevan, R.; Edwards, E.A.; Yakunin, A.F. Biosynthesis and Activity of Prenylated FMN Cofactors. Cell Chem. Biol. 2018, 25, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Gahloth, D.; Fisher, K.; Payne, K.A.P.; Cliff, M.; Levy, C.; Leys, D. Structural and biochemical characterization of the prenylated flavin mononucleotide-dependent indole-3-carboxylic acid decarboxylase. J. Biol. Chem. 2022, 298, 101771. [Google Scholar] [CrossRef]
- Saaret, A.; Villiers, B.; Stricher, F.; Anissimova, M.; Cadillon, M.; Spiess, R.; Hay, S.; Leys, D. Directed evolution of prenylated FMN-dependent Fdc supports efficient in vivo isobutene production. Nat. Commun. 2021, 12, 5300. [Google Scholar] [CrossRef] [PubMed]
- Marshall, S.A.; Fisher, K.; Leys, D. The In Vitro Production of prFMN for Reconstitution of UbiD Enzymes. Methods Mol. Biol. 2021, 2280, 219–227. [Google Scholar] [PubMed]
- Mori, Y.; Noda, S.; Shirai, T.; Kondo, A. Direct 1,3-butadiene biosynthesis in Escherichia coli via a tailored ferulic acid decarboxylase mutant. Nat. Commun. 2021, 12, 2195. [Google Scholar] [CrossRef] [PubMed]
- Duta, H.; Filip, A.; Nagy, L.C.; Nagy, E.Z.A.; Totos, R.; Bencze, L.C. Toolbox for the structure-guided evolution of ferulic acid decarboxylase (FDC). Sci. Rep. 2022, 12, 3347. [Google Scholar] [CrossRef]
- Batyrova, K.A.; Khusnutdinova, A.N.; Wang, P.H.; Di Leo, R.; Flick, R.; Edwards, E.A.; Savchenko, A.; Yakunin, A.F. Biocatalytic In Vitro and In Vivo FMN Prenylation and (De)carboxylase Activation. ACS Chem. Biol. 2020, 15, 1874–1882. [Google Scholar] [CrossRef]
- Aleku, G.A.; Saaret, A.; Bradshaw-Allen, R.T.; Derrington, S.R.; Titchiner, G.R.; Gostimskaya, I.; Gahloth, D.; Parker, D.A.; Hay, S.; Leys, D. Enzymatic C-H activation of aromatic compounds through CO2 fixation. Nat. Chem. Biol. 2020, 16, 1255–1260. [Google Scholar] [CrossRef]
- Song, M.K.; Zhang, X.M.; Liu, W.D.; Feng, J.H.; Cui, Y.F.; Yao, P.Y.; Wang, M.; Guo, R.T.; Wu, Q.Q.; Zhu, D.M. 2,3-Dihydroxybenzoic Acid Decarboxylase fromFusarium oxysporum: Crystal Structures and Substrate Recognition Mechanism. Chembiochem 2020, 21, 2950–2956. [Google Scholar] [CrossRef]
- Sheng, X.; Patskovsky, Y.; Vladimirova, A.; Bonanno, J.B.; Almo, S.C.; Himo, F.; Raushel, F.M. Mechanism and Structure of gamma-Resorcylate Decarboxylase. Biochemistry 2018, 57, 3167–3175. [Google Scholar] [CrossRef]
- Plasch, K.; Hofer, G.; Keller, W.; Hay, S.; Heyes, D.J.; Dennig, A.; Glueck, S.M.; Faber, K. Pressurized CO2 as a carboxylating agent for the biocatalytic ortho-carboxylation of resorcinol. Green Chem. 2018, 20, 1754–1759. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Yao, P.Y.; Yu, S.S.; Dong, W.Y.; Chen, Q.J.; Feng, J.H.; Wu, Q.Q.; Zhu, D.M. An Unprecedented Effective Enzymatic Carboxylation of Phenols. ACS Catal. 2016, 6, 564–567. [Google Scholar] [CrossRef]
- Lai, Y.; Chen, H.; Liu, L.; Fu, B.; Wu, P.; Li, W.; Hu, J.; Yuan, J. Engineering a Synthetic Pathway for Tyrosol Synthesis in Escherichia coli. ACS Synth. Biol. 2022, 11, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Aleku, G.A.; Roberts, G.W.; Titchiner, G.R.; Leys, D. Synthetic Enzyme-Catalyzed CO2 Fixation Reactions. Chemsuschem 2021, 14, 1781–1804. [Google Scholar] [CrossRef]
- Aleku, G.A.; Prause, C.; Bradshaw-Allen, R.T.; Plasch, K.; Glueck, S.M.; Bailey, S.S.; Payne, K.A.P.; Parker, D.A.; Faber, K.; Leys, D. Terminal Alkenes from Acrylic Acid Derivatives via Non-Oxidative Enzymatic Decarboxylation by Ferulic Acid Decarboxylases. ChemcatChem 2018, 10, 3736–3745. [Google Scholar] [CrossRef]
- Annaval, T.; Han, L.; Rudolf, J.D.; Xie, G.B.; Yang, D.; Chang, C.Y.; Ma, M.; Crnovcic, I.; Miller, M.D.; Soman, J.; et al. Biochemical and Structural Characterization of TtnD, a Prenylated FMN-Dependent Decarboxylase from the Tautomycetin Biosynthetic Pathway. ACS Chem. Biol. 2018, 13, 2728–2738. [Google Scholar] [CrossRef]
- Payer, S.E.; Marshall, S.A.; Barland, N.; Sheng, X.; Reiter, T.; Dordic, A.; Steinkellner, G.; Wuensch, C.; Kaltwasser, S.; Fisher, K.; et al. Regioselective para-Carboxylation of Catechols with a Prenylated Flavin Dependent Decarboxylase. Angew. Chem.-Int. Ed. 2017, 56, 13893–13897. [Google Scholar] [CrossRef]
- Marshall, S.A.; Payne, K.A.P.; Leys, D. The UbiX-UbiD system: The biosynthesis and use of prenylated flavin (prFMN). Arch. Biochem. Biophys. 2017, 632, 209–221. [Google Scholar] [CrossRef]
- Payne, K.A.P.; Marshall, S.A.; Fisher, K.; Rigby, S.E.J.; Cliff, M.J.; Spiess, R.; Cannas, D.M.; Larrosa, I.; Hay, S.; Leys, D. Structure and Mechanism of Pseudomonas aeruginosa PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase Linked to Virulence. ACS Catal. 2021, 11, 2865–2878. [Google Scholar] [CrossRef]
- Chen, R.B.; Gao, J.Q.; Yu, W.; Chen, X.H.; Zhai, X.X.; Chen, Y.; Zhang, L.; Zhou, Y.J.J. Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast. Nat. Chem. Biol. 2022, 18, 1032. [Google Scholar] [CrossRef]
- Hou, Y.; Hossain, G.S.; Li, J.H.; Shin, H.D.; Du, G.C.; Chen, J.; Liu, L. Metabolic Engineering of Cofactor Flavin Adenine Dinucleotide (FAD) Synthesis and Regeneration in Escherichia coli for Production of alpha-Keto Acids. Biotechnol. Bioeng. 2017, 114, 1928–1936. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E.Z.A.; Nagy, C.L.; Filip, A.; Nagy, K.; Gal, E.; Totos, R.; Poppe, L.; Paizs, C.; Bencze, L.C. Exploring the substrate scope of ferulic acid decarboxylase (FDC1) from Saccharomyces cerevisiae. Sci. Rep. 2019, 9, 647. [Google Scholar] [CrossRef] [PubMed]
- Khusnutdinova, A.N.; Xiao, J.; Wang, P.H.; Batyrova, K.A.; Flick, R.; Edwards, E.A.; Yakunin, A.F. Prenylated FMN: Biosynthesis, purification, and Fdc1 activation. New Approaches Flavin Catal. 2019, 620, 469–488. [Google Scholar]
Strains | Experimental Group |
---|---|
SC-2 | E. coli BL21 (DE3) containing the recombinant plasmid pACYDuet_PaUbiX_ScFdc1 |
SC-4 | SC-2 containing the recombinant plasmid pRSFDuet_EcThiM_CaRFK |
SC-5 | SC-4 containing the recombinant plasmid pETDuet_ EcFre |
SC-6 | SC-4 containing the recombinant plasmid pETDuet_EcFre_PsFDH |
SC-6_FA_5 | SC-6 with supplementing 5 mM formate during cell culture |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Li, H.; Ren, J.; Feng, Y.; Xue, S. Engineering the Biosynthesis of prFMN Promotes the Conversion between Styrene/CO2 and Cinnamic Acid Catalyzed by the Ferulic Acid Decarboxylase Fdc1. Catalysts 2023, 13, 917. https://doi.org/10.3390/catal13060917
Zhu X, Li H, Ren J, Feng Y, Xue S. Engineering the Biosynthesis of prFMN Promotes the Conversion between Styrene/CO2 and Cinnamic Acid Catalyzed by the Ferulic Acid Decarboxylase Fdc1. Catalysts. 2023; 13(6):917. https://doi.org/10.3390/catal13060917
Chicago/Turabian StyleZhu, Xiaoni, Hongfei Li, Jiangang Ren, Yanbin Feng, and Song Xue. 2023. "Engineering the Biosynthesis of prFMN Promotes the Conversion between Styrene/CO2 and Cinnamic Acid Catalyzed by the Ferulic Acid Decarboxylase Fdc1" Catalysts 13, no. 6: 917. https://doi.org/10.3390/catal13060917
APA StyleZhu, X., Li, H., Ren, J., Feng, Y., & Xue, S. (2023). Engineering the Biosynthesis of prFMN Promotes the Conversion between Styrene/CO2 and Cinnamic Acid Catalyzed by the Ferulic Acid Decarboxylase Fdc1. Catalysts, 13(6), 917. https://doi.org/10.3390/catal13060917