Recent Mechanistic Understanding of Fischer-Tropsch Synthesis on Fe-Carbide
Abstract
:1. Fischer-Tropsch Synthesis
2. Catalysts
3. Fe-Based Catalysts
4. Product Distribution
5. Reaction Mechanism
6. Fe Carburization Kinetics and C Hydrogenation Mechanisms on Fe-Carbide
7. Promoters
8. Deactivation of Fe-Based Catalysts
9. Structure-Activity Relationships
10. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fischer, F.; Tropsch, H. The Synthesis of Petroleum at Atmospheric Pressures from Gasification Products of Coal. Brennst. Chem. 1926, 7, 97–104. [Google Scholar]
- Fischer, F.; Tropsch, H. Development of Noval Catalysts for Fischer-Tropsch Synthesis. Brennst. Chem. 1923, 4, 276–285. [Google Scholar]
- Office of Fossil Energy and Carbon Management. Early Days of Coal Research. 2000. Available online: https://www.energy.gov/fecm/early-days-coal-research (accessed on 5 April 2022).
- Zhang, Q.; Kang, J.; Wang, Y. Development of Novel Catalysts for Fischer-Tropsch Synthesis: Tuning the Product Selectivity. ChemCatChem 2010, 2, 1030–1058. [Google Scholar] [CrossRef]
- de Smit, E.; Weckhuysen, B.M. The Renaissance of Iron-based Fischer-Tropsch Synthesis: On the Multifaceted Catalyst Deactivation Behaviour. Chem. Soc. Rev. 2008, 37, 2758–2781. [Google Scholar] [CrossRef] [PubMed]
- King, D.L.; de Klerk, A. Overview of Feed-to-Liquid (XTL) Conversion. ACS Symp. Ser. 2011, 1084, 1–24. [Google Scholar]
- Hao, X.; Dong, G.; Yang, Y.; Xu, Y.; Li, Y. Coal to Liquid (CTL): Commercialization Prospects in China. Chem. Eng. Technol. 2007, 30, 1157–1165. [Google Scholar] [CrossRef]
- Cao, Y.; Gao, Z.; Jin, J.; Zhou, H.; Cohron, M.; Zhao, H.; Liu, H.; Pan, W. Synthesis Gas Production with an Adjustable H2/CO Ratio through the Coal Gasification Process: Effects of Coal Ranks and Methane Addition. Energy Fuels 2008, 22, 1720–1730. [Google Scholar] [CrossRef]
- Wang, P.; Chen, W.; Chiang, F.K.; Dugulan, A.I.; Song, Y.; Pestman, R.; Zhang, K.; Yao, J.; Feng, B.; Miao, P.; et al. Synthesis of Stable and Low-CO2 Selective Iron carbide Fischer-Tropsch Catalysts. Sci. Adv. 2018, 4, eaau2947. [Google Scholar] [CrossRef] [Green Version]
- Dry, M.E. The Fischer-Tropsch process: 1950–2000. Catal. Today 2002, 71, 227–241. [Google Scholar] [CrossRef]
- Dry, M.E.; Hoogendoorn, J.C. Technology of the Fischer-Tropsch Process. Catal. Rev. Sci. Eng. 2006, 23, 265–278. [Google Scholar] [CrossRef]
- Steynberg, A.P.; Espinoza, R.L.; Jager, B.; Vosloo, A.C. High Temperature Fischer-Tropsch Synthesis in Commercial Practice. Appl. Catal. A Gen. 1999, 186, 41–54. [Google Scholar] [CrossRef]
- Dry, M.E. Practical and Theoretical Aspects of the Ccatalytic Fischer-Tropsch Process. Appl. Catal. A Gen. 1996, 138, 319–344. [Google Scholar] [CrossRef]
- Karre, A.V.; Kababji, A.; Kugler, E.L.; Dadyburjor, D.B. Effect of Addition of Zeolite to Iron-based Activated-carbon-supported Catalyst for Fischer-Tropsch Synthesis in Separate Beds and Mixed Beds. Catal. Today 2012, 198, 280–288. [Google Scholar] [CrossRef]
- Martínez, A.; López, C. The Influence of ZSM-5 Zeolite Composition and Crystal Size on the in situ Conversion of Fischer-Tropsch Products over Hybrid Catalysts. Appl. Catal. A Gen. 2005, 294, 251–259. [Google Scholar] [CrossRef]
- Tobisch, S.; Ziegler, T. Catalytic Oligomerization of Ethylene to Higher Linear α-Olefins Promoted by Cationic Group 4 Cyclopentadienyl-Arene Active Catalysts: Toward the Computational Design of Zirconium- and Hafnium-Based Ethylene Trimerization Catalysts. Organometallics 2005, 24, 256–265. [Google Scholar] [CrossRef]
- Galvis, H.M.T.; Bitter, J.H.; Khare, C.B.; Ruitenbeek, M.; Dugulan, A.I.; de Jong, K.P. Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower olefins. Science 2012, 335, 835–838. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, X.; Gao, J.; Wang, J.; Ma, G.; Wen, X.; Yang, Y.; Li, Y.; Ding, M. A Hydrophobic FeMn@Si Catalyst Increases Olefins from Syngas by Suppressing C1 by-products. Science 2021, 371, 610–613. [Google Scholar] [CrossRef]
- Xie, J.; Palalanen, P.P.; van Deelen, T.W.; Wechhuysen, B.M.; Louwerse, M.J.; de Jong, K.P. Promoted Cobalt Metal Catalysts Suitable for the Production of Lower Olefins from Natural Gas. Nat. Commun. 2019, 10, 167. [Google Scholar] [CrossRef] [Green Version]
- Jiao, F.; Li, J.; Pan, X.; Xiao, J.; Li, H.; Ma, H.; Wei, M.; Pan, Y.; Zhou, Z.; Li, M.; et al. Selective Conversion of Syngas to Light Olefins. Science 2016, 351, 1065–1067. [Google Scholar] [CrossRef]
- Cheng, K.; Gu, B.; Liu, X.; Kang, J.; Zhang, Q.; Wang, Y. Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling. Angew. Chem. Int. Ed. 2016, 55, 4725–4728. [Google Scholar] [CrossRef]
- Belov, G.P. Tetramerization of Ethylene to Octene1 (A Review). Pet. Chem. 2012, 52, 139–154. [Google Scholar] [CrossRef]
- Filot, I.A.W.; van Santen, R.A.; Hensen, E.J.M. Quantum Chemistry of the Fischer-Tropsch Reaction Catalysed by a Stepped Ruthenium Surface. Catal. Sci. Technol. 2014, 4, 3129–3140. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Liu, S.; Zha, S.; Cheng, D.; Studt, F.; Henkelman, G.; Gong, J. Theory-guided Design of Catalytic Materials Using Scaling Relationships and Reactivity Descriptors. Nat. Rev. Mater. 2019, 4, 792–804. [Google Scholar] [CrossRef]
- van Bokhoven, J.A.; Miller, J.T. d Electron Density and Reactivity of the d Band as a Function of Particle Size in Supported Gold Catalysts. J. Phys. Chem. C 2007, 111, 9245–9249. [Google Scholar] [CrossRef]
- Schulz, H. Short History and Present Trends of Fischer-Tropsch Synthesis. Appl. Catal. A Gen. 1999, 186, 3–12. [Google Scholar] [CrossRef]
- Ma, W.; Dalai, A.K. Effects of Structure and Particle Size of Iron, Cobalt and Ruthenium Catalysts on Fischer-Tropsch Synthesis. Reactions 2021, 2, 62–77. [Google Scholar] [CrossRef]
- van der Laan, G.P.; Beenackers, A.A.C.M. Kinetics and Selectivity of the Fischer-Tropsch Synthesis: A Literature Review. Catal. Rev. 1999, 41, 255–318. [Google Scholar] [CrossRef]
- Khodakov, A.Y.; Chu, W.; Fongarland, P. Advances in the Development of Novel Cobalt Fischer-Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. Chem. Rev. 2007, 107, 1692–1744. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H. Comparing Fischer-Tropsch Synthesis on Iron-and Cobalt Catalysts: The Dynamics of Structure and Function, Fischer-Tropsch Sythesis. Catal. Catal. 2007, 163, 177–199. [Google Scholar]
- Yang, C.; Zhao, B.; Gao, R.; Yao, S.; Zhai, P.; Li, S.; Yu, J.; Hou, Y.; Ma, D. Construction of Synergistic Fe5C2/Co Heterostructured Nanoparticles as an Enhanced Low Temperature Fischer-Tropsch Synthesis Catalyst. ACS Catal. 2017, 7, 5661–5667. [Google Scholar] [CrossRef]
- Ismail, A.S.M.; Casavola, M.; Liu, B.; Gloter, A.; van Deelen, T.W.; Versluijs, M.; Meeldijk, J.D.; Stephan, O.; de Jong, K.P.; de Groot, F.M.F. Atomic-Scale Investigation of the Structural and Electronic Properties of Cobalt-Iron Bimetallic Fischer-Tropsch Catalysts. ACS Catal. 2019, 9, 7998–8011. [Google Scholar] [CrossRef] [Green Version]
- Calderone, V.R.; Shiju, N.R.; Ferre, D.C.; Rothenberg, G. Bimetallic catalysts for the Fischer-Tropsch reaction. Green Chem. 2011, 13, 1950–1959. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Abbas, M.; Chen, J. The Evolution of Fe Phases of a Fused Iron Catalyst during Reduction and Fischer-Tropsch Synthesis. Catal. Sci. Technol. 2017, 7, 3626–3636. [Google Scholar] [CrossRef]
- Espinoza, R.L.; Steynberg, A.P.; Jager, B.; Vosloo, A.C. Low Temperature Fischer-Tropsch Synthesis from a Sasol Perspective. Appl. Catal. A Gen. 1999, 186, 13–26. [Google Scholar] [CrossRef]
- de Smit, E.; Cinquini, F.; Beale, A.M.; Safonova, O.V.; van Beek, W.; Sautet, P.; Weckhuysen, B.M. Stability and Reactivity of ϵ-χ-θ Iron Carbide Catalyst Phases in Fischer-Tropsch Synthesis: Controlling μC. J. Am. Chem. Soc. 2010, 132, 14928–14941. [Google Scholar] [CrossRef]
- Niemantsverdriet, J.W.; van der Kraan, A.M. Behavior of Metallic Iron Catalysts during Fischer-Tropsch Synthesis Studied with Mössbauer Spectroscopy, X-ray Diffraction, Carbon Content Determination, and Reaction Kinetic Measurements. J. Phys. Chem. B 1980, 84, 3363–3370. [Google Scholar] [CrossRef]
- Chen, W.; Fan, Z.; Pan, X.; Bao, X. Effect of Confinement in Carbon Nanotubes on the Activity of Fischer-Tropsch Iron Catalyst. J. Am. Chem. Soc. 2008, 130, 9414–9419. [Google Scholar] [CrossRef] [PubMed]
- Janbroers, S.; Louwen, J.N.; Zandbergen, H.W.; Kooyman, P.J. Insights into the Nature of Iron-based Fischer-Tropsch Catalysts from Quasi in situ TEM-EELS and XRD. J. Catal. 2009, 268, 235–242. [Google Scholar] [CrossRef]
- Shroff, D.M.; Datye, A.K. The Importance of Passivation in the Study of Iron Fischer-Tropsch Catalysts. Catal. Lett. 1996, 37, 101–106. [Google Scholar] [CrossRef]
- Moyer, M.M.; Karakaya, C.; Kee, R.J.; Trewyn, B. In Situ Formation of Metal Carbide Catalysts. ChemCatChem 2017, 9, 3090–3101. [Google Scholar] [CrossRef]
- Zhang, Y.; Sirimanothan, N.; O’Brien, R.J.; Hamdeh, H.H.; Davis, B.H. Study of Deactivation of Iron-Based Fischer-Tropsch Synthesis Catalysts. Stud. Surf. Sci. Catal. 2001, 139, 125–132. [Google Scholar]
- Broos, R.J.P.; Zijlstra, B.; Filot, I.A.W.; Hensen, E.J.M. Quantum-Chemical DFT Study of Direct and H- and C-Assisted CO Dissociation on the χ-Fe5C2 Hägg Carbide. J. Phys. Chem. C 2018, 122, 9929–9938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Cao, Z.; Zhao, S.; Gao, R.; Meng, Y.; Zhu, J.; Rogers, C.; Huo, C.; Yang, Y.; Li, Y.; et al. Iron Carbides in Fischer-Tropsch Synthesis: Theoretical and Experimental Understanding in Epsilon-Iron Carbide Phase Assignment. J. Phys. Chem. C 2017, 121, 21390–21396. [Google Scholar] [CrossRef]
- Xu, K.; Sun, B.; Lin, J.; Wen, W.; Pei, Y.; Yan, S.; Qiao, M.; Zhang, X.; Zong, B. ε-Iron Carbide as a Low-Temperature Fischer-Tropsch Synthesis Catalyst. Nat. Commun. 2014, 5, 5783. [Google Scholar] [CrossRef] [Green Version]
- Bukur, D.B.; Okabe, K.; Rosynek, M.P.; Li, C.; Wang, D.; Rao, K.R.P.M.; Huffman, G.P. Activation Studies with a Precipitated Iron Catalyst for Fischer-Tropsch Synthesis: I. Characterization Studies. J. Catal. 1995, 155, 353–365. [Google Scholar] [CrossRef]
- Jung, H.; Thomson, W.J. Dynamic X-ray Diffraction Study of an Unsupported Iron Catalyst in Fischer-Tropsch Synthesis. J. Catal. 1992, 134, 654–667. [Google Scholar] [CrossRef]
- Nagakura, S. Study of Metallic Carbides by Electron Diffraction Part III. Iron Carbides. J. Phys. Soc. Jpn. 1959, 14, 186–195. [Google Scholar] [CrossRef]
- Wezendonk, T.A.; Santos, V.P.; Nasalevich, M.A.; Warringa, Q.S.E.; Dugulan, A.I.; Chojecki, A.; Koeken, A.C.J.; Ruitenbeek, M.; Meima, G.; Islam, H.-U.; et al. Elucidating the Nature of Fe Species during Pyrolysis of the Fe-BTC MOF into Highly Active and Stable Fischer-Tropsch Catalysts. ACS Catal. 2016, 6, 3236–3247. [Google Scholar] [CrossRef]
- Königer, A.; Hammerl, C.; Zeitler, M.; Rauschenbach, B. Formation of Metastable Iron Carbide Phases after High-Fluence Carbon Ion Implantation into Iron at Low Temperatures. Phys. Rev. B Condens. Matter 1997, 55, 8143–8147. [Google Scholar] [CrossRef]
- Herranz, T.; Rojas, S.; Perezalonso, F.; Ojeda, M.; Terreros, P.; Fierro, J. Genesis of Iron Carbides and Their Role in the Synthesis of Hydrocarbons from Synthesis Gas. J. Catal. 2006, 243, 199–211. [Google Scholar] [CrossRef]
- de Smit, E.; Beale, A.M.; Nikitenko, S.; Weckhuysen, B.M. Local and Long Range Order in Promoted Iron-Based Fischer-Tropsch Catalysts: A Combined in situ X-ray Absorption Spectroscopy/Wide Angle X-ray. J. Catal. 2009, 262, 244–256. [Google Scholar] [CrossRef]
- Galuszka, J.; Sano, T.; Sawicki, J.A. Study of Carbonaceous Deposits on Fischer-Tropsch Oxide-Supported Iron Catalysts. J. Catal. 1992, 136, 96–109. [Google Scholar] [CrossRef]
- Hazemann, P.; Decottignies, D.; Maury, S.; Humbert, S.; Meunier, F.C.; Schuurman, Y. Selectivity Loss in Fischer-Tropsch Synthesis: The Effect of Carbon Deposition. J. Catal. 2021, 397, 1–12. [Google Scholar] [CrossRef]
- Niu, L.; Liu, X.; Liu, J.; Liu, X.; Wen, X.; Yang, Y.; Xu, J.; Li, Y. Tuning Carburization Behaviors of Metallic Iron Catalysts with Potassium Promoter and CO/syngas/C2H4/C2H2 Gases. J. Catal. 2019, 371, 333–345. [Google Scholar] [CrossRef]
- Chang, Q.; Zhang, C.; Liu, C.; Wei, Y.; Cheruvathur, A.V.; Dugulan, A.I.; Niemantsverdriet, J.W.; Liu, X.; He, Y.; Qing, M.; et al. Relationship between Iron Carbide Phases (ε-Fe2C, Fe7C3, and χ-Fe5C2) and Catalytic Performances of Fe/SiO2 Fischer-Tropsch Catalysts. ACS Catal. 2018, 8, 3304–3316. [Google Scholar] [CrossRef]
- Chun, D.; Park, J.; Hong, S.; Lim, J.; Kim, C.; Lee, H.; Yang, J.; Hong, S.; Jung, H. Highly Selective Iron-based Fischer-Tropsch Catalysts Activated by CO2-containing Syngas. J. Catal. 2014, 317, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.; Chen, X.; Lei, Z.; Wen, L.; Zhang, Y. Revealing the Activity of Different Iron Carbides for Fischer-Tropsch Synthesis. Appl. Catal. B 2021, 281, 119521. [Google Scholar] [CrossRef]
- Wezendonk, T.A.; Sun, X.; Dugulan, A.I.; van Hoof, A.J.F.; Hensen, E.J.M.; Kapteijn, F.; Gascon, J. Controlled Formation of Iron Carbides and Their Performance in Fischer-Tropsch Synthesis. J. Catal. 2018, 362, 106–117. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, J.; Yang, C.; Yao, S.; Su, H.; Gao, Z.; Dong, M.; Wang, J.; Rykov, A.I.; Wang, J.; et al. Synthesis of Iron-Carbide Nanoparticles: Identification of the Active Phase and Mechanism of Fe-Based Fischer-Tropsch Synthesis. CCS Chem. 2021, 3, 2712–2724. [Google Scholar] [CrossRef]
- Moodley, P.; Scheijen, F.J.E.; Niemantsverdriet, J.W.; Thüne, P.C. Iron Oxide Nanoparticles on Flat Oxidic Surfaces-Introducing a New Model Catalyst for Fischer-Tropsch Catalysis. Catal. Today 2010, 154, 142–148. [Google Scholar] [CrossRef]
- Shipilin, M.; Degerman, D.; Lömker, P.; Goodwin, C.M.; Rodrigues, G.L.S.; Wagstaffe, M.; Gladh, J.; Wang, H.; Stierle, A.; Schlueter, C.; et al. In Situ Surface-Sensitive Investigation of Multiple Carbon Phases on Fe(110) in the Fischer-Tropsch Synthesis. ACS Catal. 2022, 12, 7609–7621. [Google Scholar] [CrossRef] [PubMed]
- Lyu, S.; Wang, L.; Li, Z.; Yin, S.; Chen, J.; Zhang, Y.; Li, J.; Wang, Y. Stabilization of ε-iron Carbide as High-Temperature Catalyst under Realistic Fischer-Tropsch Synthesis Conditions. Nat. Commun. 2020, 11, 6219. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhao, H.; Hou, Y.; Ma, D. Fe5C2 Nanoparticles: A Facile Bromide-Induced Synthesis and as an Active Phase for Fischer-Tropsch Synthesis. J. Am. Chem. Soc. 2012, 134, 15814–15821. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H. Major and Minor reactions in Fischer-Tropsch Synthesis on Cobalt Catalysts. Top. Catal. 2003, 26, 73–85. [Google Scholar] [CrossRef]
- Chen, W.; Kimpel, T.F.; Song, Y.; Chiang, F.K.; Zijlstra, B.; Pestman, R.; Wang, P.; Hensen, E.J.M. Influence of Carbon Deposits on the Cobalt-Catalyzed Fischer-Tropsch Reaction: Evidence of a Two-Site Reaction Model. ACS Catal. 2018, 8, 1580–1590. [Google Scholar] [CrossRef]
- Zijlstra, B.; Broos, R.J.P.; Chen, W.; Filot, I.A.W.; Hensen, E.J.M. First-Principles based Microkinetic Modeling of Transient Kinetics of CO Hydrogenation on Cobalt Catalysts. Catal. Today 2020, 342, 131–141. [Google Scholar] [CrossRef]
- Filot, I.A.W.; van Santen, R.A.; Hensen, E.J.M. The Optimally Performing Fischer-Tropsch Catalyst. Angew. Chem. Int. Ed. 2014, 53, 12746–12750. [Google Scholar] [CrossRef] [Green Version]
- Kuipers, E.W.; Wilson, J.H.; Oosterbeek, H. Chain Length Dependence of α-Olefin Readsorption in Fischer-Tropsch Synthesis. J. Catal. 1995, 152, 137–146. [Google Scholar] [CrossRef]
- Kuipers, E.W.; Scheper, C.; Wilson, J.H.; Vinkenburg, I.H.; Oosterbeek, H. Non-ASF Product Distributions Due to Secondary Reactions during Fischer-Tropsch Synthesis. J. Catal. 1996, 158, 288–300. [Google Scholar] [CrossRef]
- Chen, W.; Filot, I.A.W.; Pestman, R.; Hensen, E.J.M. Mechanism of Cobalt-Catalyzed CO Hydrogenation: 2. Fischer-Tropsch Synthesis. ACS Catal. 2017, 7, 8061–8071. [Google Scholar] [CrossRef]
- Zubkov, T.; Morgan, G.A.; Yates, J.T.; Kühlert, O.; Lisowski, M.; Schillinger, R.; Fick, D.; Jänsch, H.J. The Effect of Atomic Steps on Adsorption and Desorption of CO on Ru(109). Surf. Sci. 2003, 526, 57–71. [Google Scholar] [CrossRef]
- Mitchell, W.J.; Xie, J.; Jachimowski, T.A.; Weinberg, W.H. Carbon Monoxide Hydrogenation on the Ru(001) Surface at Low Temperature Using Gas-Phase Atomic Hydrogen: Spectroscopic Evidence for the Carbonyl Insertion Mechanism on a Transition Metal Surface. J. Am. Chem. Soc. 1995, 117, 2606–2617. [Google Scholar] [CrossRef]
- Chen, W.; Zijlstra, B.; Wang, P.; Pestman, R.; Hensen, E.J.M. Mechanism of Carbon Monoxide Dissociation on a Cobalt Fischer-Tropsch Catalyst. ChemCatChem 2018, 10, 136–140. [Google Scholar] [CrossRef] [Green Version]
- Chai, J.; Pestman, R.; Chen, W.; Dugulan, A.I.; Feng, B.; Men, Z.; Wang, P.; Hensen, E.J.M. The Role of H2 in Fe Carburization by CO in Fischer-Tropsch Catalysts. J. Catal. 2021, 400, 93–102. [Google Scholar] [CrossRef]
- Pham, T.H.; Duan, X.; Qian, G.; Zhou, X.; Chen, D. CO Activation Pathways of Fischer-Tropsch Synthesis on χ-Fe5C2 (510): Direct versus Hydrogen-Assisted CO Dissociation. J. Phys. Chem. C 2014, 118, 10170–10176. [Google Scholar] [CrossRef]
- Kummer, J.T.; De Witt, T.W.; Emmet, P.H. Some Mechanism Studies on the Fischer-Tropsch Synthesis Using C14. J. Am. Chem. Soc. 1948, 70, 3632–3643. [Google Scholar] [CrossRef]
- Pichler, H.; Schulz, H. Neuere Erkenntnisse auf dem Gebiet der Synthese von Kohlenwasserstoffen aus CO und H2. Chem. Ing. Tech. 1970, 42, 1162–1174. [Google Scholar] [CrossRef]
- Petersen, M.A.; van Rensburg, W.J. CO Dissociation at Vacancy Sites on Hägg Iron Carbide: Direct versus Hydrogen-Assisted Routes Investigated with DFT. Top. Catal. 2015, 58, 665–674. [Google Scholar] [CrossRef]
- Chai, J.; Pestman, R.; Chen, W.; Donkervoet, N.; Dugulan, A.I.; Men, Z.; Wang, P.; Hensen, E.J.M. Isotopic Exchange Study on the Kinetics of Fe Carburization and the Mechanism of the Fischer-Tropsch Reaction. ACS Catal. 2022, 12, 2877–2887. [Google Scholar] [CrossRef]
- Schweicher, J.; Bundhoo, A.; Frennet, A.; Kruse, N.; Daly, H.; Meunier, F.C. DRIFTS/MS Studies during Chemical Transients and SSITKA of the CO/H2 Reaction over Co-MgO Catalysts. J. Phys. Chem. C 2010, 114, 2248–2255. [Google Scholar] [CrossRef]
- van Santen, R.A.; Markvoort, A.J.; Filot, I.A.W.; Ghouri, M.M.; Hensen, E.J.M. Mechanism and Microkinetics of the Fischer-Tropsch Reaction. Phys. Chem. Chem. Phys. 2013, 15, 17038–17063. [Google Scholar] [CrossRef] [Green Version]
- Claeys, M.; van Steen, E. Basic Studies. Stud. Surf. Sci. Catal. 2004, 152, 601–680. [Google Scholar]
- Govender, N.S.; Botes, F.G.; de Croon, M.H.J.M.; Schouten, J.C. Mechanistic Pathway for C2+ Hydrocarbons over an Fe/K Catalyst. J. Catal. 2014, 312, 98–107. [Google Scholar] [CrossRef]
- Bhatelia, T.; Li, C.; Sun, Y.; Hazewinkel, P.; Burke, N.; Sage, V. Chain Length Dependent Olefin Re-adsorption Model for Fischer-Tropsch Synthesis over Co-Al2O3 Catalyst. Fuel Process. Technol. 2014, 125, 217–289. [Google Scholar] [CrossRef]
- van Santen, R.A.; Ghouri, M.; Hensen, E.J.M. Microkinetics of Oxygenate Formation in the Fischer-Tropsch Reaction. Phys. Chem. Chem. Phys. 2014, 16, 10041–10058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niemantsverdriet, J.W.; van der Kraan, A.M. On the Time-Dependent Behavior of Iron Catalysts in Fischer-Tropsch Synthesis. J. Catal. 1981, 72, 385–388. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Yang, Y.; Li, Y.; Wen, X. Theoretical Perspectives on the Modulation of Carbon on Transition-Metal Catalysts for Conversion of Carbon-Containing Resources. ACS Catal. 2021, 11, 2156–2181. [Google Scholar] [CrossRef]
- Huo, C.; Li, Y.; Wang, J.; Jiao, H. Insight into CH4 Formation in Iron-Catalyzed Fischer-Tropsch Synthesis. J. Am. Chem. Soc. 2009, 131, 14713–14721. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, S.; Howard, S.; Muir, B.W.; Wang, H.; Kennedy, D.F.; Ma, X. Elucidating Surface and Bulk Phase Transformation in Fischer-Tropsch Synthesis Catalysts and Their Influences on Catalytic Performance. ACS Catal. 2019, 9, 7976–7983. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, X.; Huo, C.; Li, Y.; Wang, J.; Jiao, H. Determining Surface Structure and Stability of ε-Fe2C, χ-Fe5C2, θ-Fe3C and Fe4C Phases under Carburization Environment from Combined DFT and Atomistic Thermodynamic Studies. Catal. Struct. React. 2014, 1, 44–60. [Google Scholar] [CrossRef] [Green Version]
- Asano, R.; Sasaki, Y.; Ishii, K. Carburization of Iron by Ar-CO-H2 at 1523 K. ISIJ Int. 2001, 42, 121–126. [Google Scholar] [CrossRef]
- Ribeiro, M.C.; Jacobs, G.; Davis, B.H.; Cronauer, D.C.; Kropf, A.J.; Marshall, C.L. Fischer-Tropsch Synthesis: An in situ TPR-EXAFS/XANES Investigation of the Influence of Group I Alkali Promoters on the Local Atomic and Electronic Structure of Carburized Iron/Silica Catalysts. J. Phys. Chem. C 2010, 114, 7895–7903. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, T.; Huang, X.; Chu, X.; Tang, T.; Ju, Y.; Wang, Q.; Hou, Y.; Gao, S. Modulating the Phases of Iron Carbide Nanoparticles: From a Perspective of Interfering with the Carbon Penetration of Fe@Fe3O4 by Selectively Adsorbed Halide Ions. Chem. Sci. 2017, 8, 473–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shroff, M.D.; Coulter, D.S.K.K.E.; Köhler, S.D.; Harrington, M.S.; Jackson, N.B.; Sault, A.G.; Dayte, A.K. Activation of Precipitated Iron Fischer-Tropsh Synthesis Catalysts. J. Catal. 1995, 156, 185–207. [Google Scholar] [CrossRef]
- Zhou, X.; Mannie, G.J.A.; Yin, J.; Yu, X.; Weststrate, C.J.; Wen, X.; Wu, K.; Yang, Y.; Li, Y.; Niemantsverdriet, J.W. Iron Carbidization on Thin-Film Silica and Silicon: A Near-Ambient Pressure X-ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study. ACS Catal. 2018, 8, 7326–7333. [Google Scholar] [CrossRef]
- Butt, J.B. Carbide Phases on Iron-Based Fischer-Tropsch Synthesis Catalysis Part 1: Characterization Studies. Catal. Lett. 1990, 7, 83–106. [Google Scholar] [CrossRef]
- Li, S.; Ding, W.; Meitzner, G.D.; Iglesia, E. Spectroscopic and Transient Kinetic Studies of Site Requirements in Iron-Catalyzed Fischer-Tropsch Synthesis. J. Phys. Chem. B 2002, 106, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Bukur, D.B.; Liang, X.; Ding, Y. Pretreatment Effect Studies with a Precipitated Iron Fischer-Tropsch Catalyst in a Slurry Reactor. Appl. Catal. A Gen. 1999, 186, 255–275. [Google Scholar] [CrossRef]
- Li, S.; Meitzner, G.D.; Iglesia, E. Structure and Site Evolution of Iron Oxide Catalyst Precursors during the Fischer-Tropsch Synthesis. J. Phys. Chem. B 2001, 105, 5743–5750. [Google Scholar] [CrossRef] [Green Version]
- Lohitharn, N.; Goodwin, J.G. An Investigation Using SSITKA of Chain Growth on Fe and FeMnK Fischer-Tropsch Synthesis Catalysts. Catal. Commun. 2009, 10, 758–762. [Google Scholar] [CrossRef]
- Eliason, S.A.; Bartholomew, C.H. Temperature-Programmed Reaction Study of Carbon Transformations on Iron Fischer-Tropsch Catalysts during Steady-State Synthesis. Stud. Surf. Sci. Catal. 1997, 111, 517–526. [Google Scholar]
- Xu, J.; Bartholomew, C.H. Temperature-Programmed Hydrogenation (TPH) and in situ Mössbauer Spectroscopy Studies of Carbonaceous Species on Silica-Supported Iron Fischer-Tropsch Catalysts. J. Phys. Chem. B 2005, 109, 2392–2403. [Google Scholar] [CrossRef] [PubMed]
- Govender, N.S.; de Croon, M.H.J.M.; Schouten, J.C. Reactivity of Surface Carbonaceous Intermediates on an Iron-Based Fischer-Tropsch Catalyst. Appl. Catal. A Gen. 2010, 373, 81–89. [Google Scholar] [CrossRef]
- Ding, M.; Yang, Y.; Wu, B.; Wang, T.; Ma, L.; Xiang, H.; Li, Y. Transformation of Carbonaceous Species and its Influence on Catalytic Performance for Iron-Based Fischer-Tropsch Synthesis Catalyst. J. Mol. Catal. A Chem. 2011, 351, 165–173. [Google Scholar] [CrossRef]
- Jin, Y.; Xu, H.; Datye, A.K. Electron Energy Loss Spectroscopy (EELS) of Iron Fischer-Tropsch Catalysts. Microsc. Microanal. 2006, 12, 124–134. [Google Scholar] [CrossRef]
- Govender, N.S.; Botes, F.G.; de Croon, M.H.J.M.; Schouten, J.C. Mechanistic Pathway for Methane Formation over an Iron-based Catalyst. J. Catal. 2008, 260, 254–261. [Google Scholar] [CrossRef]
- Graf, B.; Schulte, H.; Muhler, M. The Formation of Methane over Iron Catalysts Applied in Fischer-Tropsch Synthesis: A Transient and Steady State Kinetic Study. J. Catal. 2010, 276, 66–75. [Google Scholar] [CrossRef]
- Xie, J.; Yang, J.; Dugulan, A.I.; Holmen, A.; Chen, D.; de Jong, K.P.; Louwerse, M.J. Size and Promoter Effects in Supported Iron Fischer-Tropsch Catalysts: Insights from Experiment and Theory. ACS Catal. 2016, 6, 3147–3157. [Google Scholar] [CrossRef]
- Mars, P.; van Krevelen, D.W. Oxidations Carried out by Means of Vanadium Oxide Catalysts. Chem. Eng. Sci. 1954, 3, 41–59. [Google Scholar] [CrossRef]
- Gracia, J.M.; Prinsloo, F.F.; Niemantsverdriet, J.W. Mars-van Krevelen-like Mechanism of CO Hydrogenation on an Iron Carbide Surface. Appl. Catal. A Gen. 2009, 354, 257–261. [Google Scholar] [CrossRef] [Green Version]
- Ordomsky, V.V.; Legras, B.; Cheng, K.; Paul, S.; Khodakov, A.Y. The Role of Carbon Atoms of Supported Iron Carbides in Fischer-Tropsch Synthesis. Catal. Sci. Technol. 2015, 5, 1433–1437. [Google Scholar] [CrossRef]
- Keyvanloo, K.; Lanham, S.J.; Hecker, W.C. Kinetics of Fischer-Tropsch Synthesis on Supported Cobalt: Effect of Temperature on CO and H2 Partial Pressure Dependencies. Catal. Today 2016, 270, 9–18. [Google Scholar] [CrossRef]
- Mohammad, N.; Bepari, S.; Aravamudhan, S.; Kuila, D. Kinetics of Fischer-Tropsch Synthesis in a 3-D Printed Stainless Steel Microreactor Using Different Mesoporous Silica Supported Co-Ru Catalysts. Catalysts 2019, 9, 872. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C.M. Chain Growth Mechanism in Fischer-Tropsch Synthesis: A DFT Study of C−C Coupling over Ru, Fe, Rh, and Re Surfaces. J. Phys. Chem. C 2008, 112, 6082–6086. [Google Scholar] [CrossRef]
- Valero-Romero, M.J.; Rodríguez-Cano, M.Á.; Palomo, J.; Rodríguez-Mirasol, J.; Cordero, T. Carbon-Based Materials as Catalyst Supports for Fischer-Tropsch Synthesis: A Review. Front. Mater. Sci. 2021, 7, 617432. [Google Scholar] [CrossRef]
- van Dijk, H.A.J.; Hoebink, J.H.B.J.; Schouten, J.C. A Mechanistic Study of the Fischer-Tropsch Synthesis Using Transient Isotopic Tracing. Part 2: Model Quantification. Catal. Today 2003, 26, 163–171. [Google Scholar] [CrossRef]
- Galvis, H.M.T.; Bitter, J.H.; Davidian, T.; Ruitenbeek, M.; Dugulan, A.I.; de Jong, K.P. Iron Particle Size Effects for Direct Production of Lower Olefins from Synthesis Gas. J. Am. Chem. Soc. 2012, 134, 16207–16215. [Google Scholar] [CrossRef] [Green Version]
- de Smit, E.; de Groot, F.M.F.; Blume, R.; Havecker, M.; Gericke, A.K.; Weckhuysen, B.M. The Role of Cu on the Reduction Behavior and Surface Properties of Fe-Based Fischer-Tropsch Catalysts. Phys. Chem. Chem. Phys. 2010, 12, 667–680. [Google Scholar] [CrossRef] [Green Version]
- Hindermann, J.P.; Hutchings, G.J.; Kiennemann, A. Mechanistic Aspects of the Formation of Hydrocarbons and Alcohols from CO Hydrogenation. Catal. Rev. 1993, 35, 1–127. [Google Scholar] [CrossRef]
- Campos, A.; Lohitharn, N.; Roy, A.; Lotero, E.; Goodwin, J.G.; Spivey, J.J. An Activity and XANES Study of Mn-Promoted, Fe-Based Fischer-Tropsch Catalysts. Appl. Catal. A Gen. 2010, 375, 12–16. [Google Scholar] [CrossRef]
- Lohitharn, N.; Goodwin, J.G. Impact of Cr, Mn and Zr Addition on Fe Fischer-Tropsch Synthesis Catalysis: Investigation at the Active Site Level Using SSITKA. J. Catal. 2008, 257, 142–151. [Google Scholar] [CrossRef]
- Lohitharn, N.; Goodwin, J.G. Effect of K Promotion of Fe and FeMn Fischer-Tropsch Synthesis Catalysts: Analysis at the Site Level using SSITKA. J. Catal. 2008, 260, 7–16. [Google Scholar] [CrossRef]
- Jensen, K.B.; Massoth, F.E. Studies on Iron-Manganese Oxide Carbon Monoxide Catalysts, II. Carburization and Catalytic Activity. J. Catal. 1985, 92, 109–118. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Bao, J.; Zhang, Y. Manganese-Modified Fe3O4 Microsphere Catalyst with Effective Active Phase of Forming Light Olefins from Syngas. ACS Catal. 2015, 5, 3905–3909. [Google Scholar] [CrossRef]
- Ribeiro, M.C.; Jacobs, G.; Pendyala, R.; Davis, B.H.; Cronauer, D.C.; Kropf, A.J.; Marshall, C.L. Fischer-Tropsch Synthesis: Influence of Mn on the Carburization Rates and Activities of Fe-Based Catalysts by TPR-EXAFS/XANES and Catalyst Testing. J. Phys. Chem. C 2011, 115, 4783–4792. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Z.; Liu, Y.; Ding, X.; Zhang, J.; Xu, J.; Han, Y. Tuning Direct CO Hydrogenation Reaction over Fe-Mn Bimetallic Catalysts toward Light Olefins: Effects of Mn Promotion. Appl. Catal. B Environ. 2021, 285, 119815. [Google Scholar] [CrossRef]
- Wielers, A.F.H.; Kock, A.J.H.M.; Hop, C.E.C.A.; Geus, J.W.; van Kraan, A.M. The Reduction Behavior of Silica-Supported and Alumina-Supported Iron Catalysts: A Mössbauer and Infrared Spectroscopic Study. J. Catal. 1989, 117, 1–18. [Google Scholar] [CrossRef]
- Lin, Q.; Cheng, M.; Zhang, K.; Li, W.; Wu, P.; Chang, H.; Lv, Y.; Men, Z. Development of an Iron-Based Fischer-Tropsch Catalyst with High Attrition Resistance and Stability for Industrial Application. Catalysts 2021, 11, 908. [Google Scholar] [CrossRef]
- Schulte, H.J.; Graf, B.; Xia, W.; Muhler, M. Nitrogen- and Oxygen-Functionalized Multiwalled Carbon Nanotubes Used as Support in Iron-Catalyzed, High Temperature Fischer-Tropsch Synthesis. ChemCatChem 2012, 4, 350–355. [Google Scholar] [CrossRef]
- Lokteva, E.S.; Golubina, E.V. Metal-support Interactions in the Design of Heterogeneous Catalysts for Redox Processes. Pure Appl. Chem. 2019, 91, 609–631. [Google Scholar] [CrossRef]
- Zhao, R.; Goodwin, J.G.; Jothimurugesan, K., Jr.; Gangwal, S.K.; Spivey, J.J. Spray-Dried Iron Fischer-Tropsch Catalysts. 2. Effect of Carburization on Catalyst Attrition Resistance. Ind. Eng. Chem. Res. 2001, 40, 1320–1328. [Google Scholar] [CrossRef]
- Thüne, P.; Moodley, P.; Scheijen, F.; Fredriksson, H.; Lancee, R.; Kropf, J.; Miller, J.; Niemantsverdriet, J.W. The Effect of Water on the Stability of Iron Oxide and Iron Carbide Nanoparticles in Hydrogen and Syngas Followed by in situ X-ray Absorption Spectroscopy. J. Phys. Chem. C 2012, 116, 7367–7373. [Google Scholar] [CrossRef]
- Eliason, S.A.; Bartholomew, C.H. Reaction and Deactivation Kinetics for Fischer-Tropsch Synthesis on Unpromoted and Potassium-promoted Iron Catalysts. Appl. Catal. A Gen. 1999, 186, 229–243. [Google Scholar] [CrossRef]
- Chai, J.; Pestman, R.; Chaing, F.; Men, Z.; Wang, P.; Hensen, E.J.M. Influence of Carbon Deposits on Fe-carbide for the Fischer-Tropsch Reaction. J. Catal. 2022, 416, 289–300. [Google Scholar] [CrossRef]
- Pour, A.N.; Housaindokht, M.R.; Tayyari, S.F.; Zarkesh, J.; Alaei, M.R. Fischer-Tropsch Synthesis by Nano-Structured Iron Catalyst. J. Mol. Catal. A Chem. 2010, 330, 112–120. [Google Scholar] [CrossRef]
- Nakamura, J.; Tanaka, K.; Toyoshima, I. Reactivity of Deposited Carbon on Co/Al2O3 Catalyst. J. Catal. 1987, 108, 55–62. [Google Scholar] [CrossRef]
- Warringham, R.; Davidson, A.L.; Webb, P.B.; Tooze, R.P.; Ewings, R.A.; Parker, S.F.; Lennon, D. Examining the Temporal Behavior of the Hydrocarbonaceous Overlayer on an Iron Based Fischer-Tropsch Catalyst. RSC Adv. 2019, 9, 2608–2617. [Google Scholar] [CrossRef] [Green Version]
- Koeken, A.C.; Galvis, H.M.T.; Davidian, T.; Ruitenbeek, M.; de Jong, K.P. Suppression of Carbon Deposition in the Iron-Catalyzed Production of Lower Olefins from Synthesis Gas. Angew. Chem. Int. Ed. 2012, 51, 7190–7193. [Google Scholar] [CrossRef] [PubMed]
- Sarkari, M.; Fazlollahi, F.; Ajamein, H.; Atashi, H.; Hecker, W.C.; Baxter, L.L. Fischer-Tropsch Synthesis: Development of Kinetic Expression for a Sol-Gel Fe-Ni/Al2O3 Catalyst. Fuel Process. Technol. 2012, 127, 163–170. [Google Scholar] [CrossRef]
- Claeys, M.; van Steen, E. On the Effect of Water during Fischer-Tropsch Synthesis with a Ruthenium Catalyst. Catal. Today 2002, 71, 419–427. [Google Scholar] [CrossRef]
- Ning, W.; Koizumi, N.; Chang, H.; Mochizuki, T.; Itoh, T.; Yamada, M. Phase Transformation of Unpromoted and Promoted Fe Catalysts and the Formation of Carbonaceous Compounds during Fischer-Tropsch Synthesis Reaction. Appl. Catal. A Gen. 2006, 312, 35–44. [Google Scholar] [CrossRef]
- McDonald, M.A.; Storm, D.A.; Boudart, M. Hydrocarbon Synthesis from CO-H2 on Supported Iron: Effect of Particle Size and Interstitials. J. Catal. 1986, 102, 386–400. [Google Scholar] [CrossRef]
- Liu, J.; Su, H.; Sun, D.; Zhang, B.; Li, W. Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC. J. Am. Chem. Soc. 2013, 135, 16284–16287. [Google Scholar] [CrossRef] [PubMed]
- Carballo, J.M.G.; Yang, J.; Holmen, A.; García-Rodríguez, S.; Rojas, S.; Ojeda, M.; Fierro, J.L.G. Catalytic Effects of Ruthenium Particle Size on the Fischer-Tropsch Synthesis. J. Catal. 2011, 284, 102–108. [Google Scholar] [CrossRef]
- den Breejen, J.P.; Radstake, P.B.; Bezemer, G.L.; Bitter, J.H.; Frøseth, V.; Holmen, A.; de Jong, K.P. On the Origin of the Cobalt Particle Size Effects in Fischer-Tropsch Catalysis. J. Am. Chem. Soc. 2009, 131, 7197–7203. [Google Scholar] [CrossRef]
- Cheng, Q.; Tian, Y.; Lyu, S.; Zhao, N.; Ma, K.; Ding, T.; Jiang, Z.; Wang, L.; Zhang, J.; Zheng, L.; et al. Confined Small-sized Cobalt Catalysts Stimulate Carbon-Chain Growth Reversely by Modifying ASF Law of Fischer-Tropsch Synthesis. Nat. Commun. 2018, 9, 3250. [Google Scholar] [CrossRef] [Green Version]
- Barkhuizen, D.; Mabaso, I.; Viljoen, E.; Welker, C.; Claeys, M.; van Steen, E.; Fletcher, J.C.Q. Experimental Approaches to the Preparation of Supported Metal Nanoparticles. Pure Appl. Chem. 2006, 78, 1759–1769. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Lee, Y.; Khanna, P.K.; Jun, K.; Bae, J.; Kim, Y. Alumina-Supported Iron Oxide Nanoparticles as Fischer-Tropsch Catalysts: Effect of Particle Size of Iron Oxide. J. Mol. Catal. A Chem. 2010, 323, 84–90. [Google Scholar] [CrossRef]
- Yin, J.; Liu, X.; Liu, X.; Wang, H.; Wan, H.; Wang, S.; Zhang, W.; Zhou, X.; Teng, B.; Yang, Y.; et al. Theoretical Exploration of Intrinsic Facet-Dependent CH4 and C2 Formation on Fe5C2 Particle. Appl. Catal. B 2020, 278, 119308. [Google Scholar] [CrossRef]
Property | Co | Fe |
---|---|---|
Cost | expensive | cheap |
Reaction temperature | 200–240 °C | 250–350 °C |
FT activity | high | relativley low |
WGS activity | neglible | active |
Carbon source | Natural gas | Coal and biomass |
H2/CO ratio | ~2 | 0.5–2.5 |
Active phase | Metallic Co | Fe-carbides |
Methane selectivity | high | low |
Products | Wax (paraffins) | C1–C15, olefins, oxygenates |
Sulfur tolerance | Very sensitive | sensitive |
ε(′)-Carbide | χ-Fe5C2 | Θ-Fe3C | |
---|---|---|---|
Space group | P63/mmc | C2/c | pnma |
Crystal structure | hexagonal | monoclinic | orthorhombic |
C/Fe | 0.45~0.5 | 0.4 | 0.33 |
Required carbon chemical potential | High (low T, high H2/CO) | Low (high T, low H2/CO) | Low (high T, low H2/CO) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, J.; Jiang, J.; Gong, Y.; Wu, P.; Wang, A.; Zhang, X.; Wang, T.; Meng, X.; Lin, Q.; Lv, Y.; et al. Recent Mechanistic Understanding of Fischer-Tropsch Synthesis on Fe-Carbide. Catalysts 2023, 13, 1052. https://doi.org/10.3390/catal13071052
Chai J, Jiang J, Gong Y, Wu P, Wang A, Zhang X, Wang T, Meng X, Lin Q, Lv Y, et al. Recent Mechanistic Understanding of Fischer-Tropsch Synthesis on Fe-Carbide. Catalysts. 2023; 13(7):1052. https://doi.org/10.3390/catal13071052
Chicago/Turabian StyleChai, Jiachun, Jidong Jiang, Yan Gong, Peng Wu, Annan Wang, Xuebing Zhang, Tao Wang, Xiangkun Meng, Quan Lin, Yijun Lv, and et al. 2023. "Recent Mechanistic Understanding of Fischer-Tropsch Synthesis on Fe-Carbide" Catalysts 13, no. 7: 1052. https://doi.org/10.3390/catal13071052
APA StyleChai, J., Jiang, J., Gong, Y., Wu, P., Wang, A., Zhang, X., Wang, T., Meng, X., Lin, Q., Lv, Y., Men, Z., & Wang, P. (2023). Recent Mechanistic Understanding of Fischer-Tropsch Synthesis on Fe-Carbide. Catalysts, 13(7), 1052. https://doi.org/10.3390/catal13071052