Comparison of the Mechanisms of deNOx and deN2O Processes on Bimetallic Cu–Zn and Monometallic Cu–Cu Dimers in Clinoptilolite Zeolite—A DFT Study Simulating Industrial Conditions
Abstract
:1. Introduction
2. Results
2.1. Adsorption of Dimers
2.2. DeNOx Mechanism
2.3. DeN2O Mechanism
2.4. Molecular Orbitals
2.5. Electron Analysis
3. Discussion
4. Experimental
4.1. Computational Details
4.2. Geometrical Models
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Liang, J.; Peng, H.; Mi, Y.; Luo, P.; Xu, H.; He, M.; Wu, P. Cost-effective fast-synthesis of chabazite zeolites for the reduction of NOx. Appl. Catal. B 2021, 292, 120163. [Google Scholar] [CrossRef]
- Yan, R.; Lin, S.; Li, Y.; Liu, W.; Mi, Y.; Tang, C.; Wang, L.; Wu, P.; Peng, H. Novel shielding and synergy effects of Mn-Ce oxides confined in mesoporous zeolite for low temperature selective catalytic reduction of NOx with enhanced SO2/H2O tolerance. J. Hazard. Mater. 2020, 396, 122592. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Mi, Y.; Song, G.; Peng, H.; Li, Y.; Yan, R.; Liu, W.; Wang, Z.; Wu, P.; Liu, F. Environmental benign synthesis of Nano-SSZ-13 via FAU transcrystallization: Enhanced NH3-SCR performance on Cu-SSZ-13 with nanosized effect. J. Hazard. Mater. 2020, 398, 122986. [Google Scholar] [CrossRef] [PubMed]
- Chlebda, D.K.; Stachurska, P.; Jędrzejczyk, R.J.; Kuterasiński, Ł.; Dziedzicka, A.; Górecka, S.; Chmielarz, L.; Łojewska, J.; Sitarz, M.; Jodłowski, P.J. DeNOx Abatement over Sonically Prepared Iron-Substituted Y, USY and MFI Zeolite Catalysts in Lean Exhaust Gas Conditions. J. Nanomater. 2018, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Lammel, G.; Graßl, H. Greenhouse effect of NOx. Environ. Sci. Pollut. Res. 1995, 2, 40–45. [Google Scholar] [CrossRef]
- Inger, M.; Moszowski, B.; Ruszak, M.; Rajewski, J.; Wilk, M. Two-Stage Catalytic Abatement of N2O Emission in Nitric Acid Plants. Catalysts 2020, 10, 987. [Google Scholar] [CrossRef]
- Ho, P.H.; Jabłońska, M.; Palkovits, R.; Rodríguez-Castellón, E.; Ospitali, F.; Fornasari, G.; Vaccari, A.; Benito, P. N2O catalytic decomposition on electrodeposited Rh-based open-cell metallic foams. J. Chem. Eng. 2020, 379, 122259. [Google Scholar] [CrossRef]
- Basahel, S.N.; Mokhtar, M.; Ali, T.T.; Narasimharao, K. Porous Fe2O3-ZrO2 and NiO-ZrO2 nanocomposites for catalytic N2O decomposition. Catal. Today 2020, 348, 166–176. [Google Scholar] [CrossRef]
- Li, M.; Zhang, R.; Wang, H.; Chen, H.; Wei, Y. Role of the exposure facets upon diverse morphologies of cobalt spinels on catalytic deN2O process. Catal. Today 2021, 376, 177–187. [Google Scholar] [CrossRef]
- Chen, P.; Rizzotto, V.; Khetan, A.; Xie, K.; Moos, R.; Pitsch, H.; Ye, D.; Simon, U. Mechanistic Understanding of Cu-CHA Catalyst as Sensor for Direct NH3-SCR Monitoring: The Role of Cu Mobility. ACS Appl. Mater. Interfaces 2019, 11, 8097–8105. [Google Scholar] [CrossRef]
- Bendrich, M.; Scheuer, A.; Hayes, R.E.; Votsmeier, M. Unified mechanistic model for Standard SCR, Fast SCR, and NO2 SCR over a copper chabazite catalyst. Appl. Catal. B Environ. 2018, 222, 76–87. [Google Scholar] [CrossRef]
- Shan, W.; Yu, Y.; Zhang, Y.; He, G.; Peng, Y.; Li, J.; He, H. Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NOx with NH3. Catal. Today 2021, 376, 292–301. [Google Scholar] [CrossRef]
- Pankin, I.A.; Hamoud, H.I.; Lomachenko, K.A.; Rasmussen, S.B.; Martini, A.; Bazin, P.; Valtchev, V.; Maturi, M.; Lamberti, C.; Bordiga, S. Cu- and Fe-speciation in composite zeolite catalyst for selective catalytic reduction of NOx: Insights from operando XAS. Catal. Sci. Technol. 2021, 11, 846–860. [Google Scholar] [CrossRef]
- Guan, B.; Jiang, H.; Wei, Y.; Liu, Z.; Wu, X.; Lin, H.; Huang, Z. Density functional theory researches for atomic structure, properties prediction, and rational design of selective catalytic reduction catalysts: Current progresses and future perspectives. Mol. Catal. 2021, 510, 111704. [Google Scholar] [CrossRef]
- Kurzydym, I.; Czekaj, I. Theoretical studies on the mechanism of deNOx process in Cu-Zn bimetallic system—Comparison of FAU and MFI zeolites. Molecules 2022, 27, 300. [Google Scholar] [CrossRef] [PubMed]
- Kurzydym, I.; Czekaj, I. Theoretical studies of SCR deNOx over Cu-, Mn- and Fe-FAU catalysts. Chem. Chem. Technol. 2021, 15, 16–25. [Google Scholar] [CrossRef]
- Jodłowski, P.J.; Czekaj, I.; Stachurska, P.; Kuterasiński, Ł.; Chmielarz, L.; Jędrzejczyk, R.J.; Jeleń, P.; Sitarz, M.; Górecka, S.; Mazur, M.; et al. Experimental and Theoretical Studies of Sonically Prepared Cu-Y, Cu-USY and Cu-ZSM-5 Catalysts for SCR deNOx. Catalysts 2021, 11, 824. [Google Scholar] [CrossRef]
- Endou, A.; Jung, C.; Kusagaya, T.; Kubo, M.; Selvam, P.; Miyamoto, A. Combinatorial computational chemistry approach to the design of metal catalysts for deNOx. Appl. Surf. Sci. 2004, 223, 159–167. [Google Scholar] [CrossRef]
- Ye, B.; Jeong, B.; Lee, M.J.; Kim, T.H.; Park, S.S.; Jung, J.; Lee, S.; Kim, H.D. Recent trends in vanadium-based SCR catalysts for NOx reduction in industrial applications: Stationary sources. Nano Converg. 2022, 9, 51. [Google Scholar] [CrossRef]
- Huang, L.; Zeng, Y.; Gao, Y.; Wang, H.; Zong, Y.; Chang, Z.; Zhang, S.; Han, P.; Yu, Y. Promotional effect of phosphorus addition on improving the SO2 resistance of V2O5-MoO3/TiO2 catalyst for NH3-SCR of NO. J. Phys. Chem. Solids 2022, 163, 110566. [Google Scholar] [CrossRef]
- Xin, Y.; Li, Q.; Zhang, Z. Zeolitic Materials for DeNOx Selective Catalytic Reduction. ChemCatChem 2018, 10, 29–41. [Google Scholar] [CrossRef]
- Wang, P.; Yu, D.; Zhang, L.; Ren, Y.; Jin, M.; Lei, L. Evolution mechanism of NOx in NH3-SCR reaction over Fe-ZSM-5 catalyst: Species-performance relationships. Appl. Catal. A Gen. 2020, 607, 117806. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, S.; Fan, Z.; Wang, C.; Chang, H.; Li, J. Simultaneous Selective Catalytic Reduction of NO and N2O by NH3 over Fe-Zeolite Catalysts. Ind. Eng. Chem. Res. 2020, 59, 19500–19509. [Google Scholar] [CrossRef]
- Khivantsev, K.; Kwak, J.-H.; Jaegers, N.R.; Koleva, I.Z.; Vayssilov, G.N.; Derewinski, M.A.; Wang, Y.; Aleksandrov, H.A.; Szanyi, J. Identification of the mechanism of NO reduction with ammonia (SCR) on zeolite catalysts. Chem. Sci. 2022, 13, 10383–10394. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Du, J.; Zhang, Y.; Shan, W.; Shi, X.; Yu, Y.; Zhang, R.; Meng, X.; Xiao, F.-S.; He, H. Selective catalytic reduction of NOx with NH3: Opportunities and challenges of Cu-based small-pore zeolites. Natl. Sci. Rev. 2021, 8, nwab010. [Google Scholar] [CrossRef] [PubMed]
- Ghasemian, N.; Falamaki, C. Zn2+, Fe2+, Cu2+, Mn2+, H+ Ion-exchanged and Raw Clinoptilolite Zeolite Catalytic Performance in the Propane-SCR-NOx Process: A Comparative Study. Int. J. Chem. React. Eng. 2018, 16, 20160192. [Google Scholar] [CrossRef]
- Xu, R.; Wang, Z.; Liu, N.; Dai, C.; Zhang, J.; Chen, B. Understanding Zn Functions on Hydrothermal Stability in a One-Pot-Synthesized Cu&Zn-SSZ-13 Catalyst for NH3 Selective Catalytic Reduction. ACS Catal. 2020, 10, 6197–6212. [Google Scholar] [CrossRef]
- Saeidi, M.; Hamidzadeh, M. Co-doping a metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn) on Mn/ZSM-5 catalyst and its effect on the catalytic reduction of nitrogen oxides with ammonia. Res. Chem. Intermed. 2017, 43, 2143–2157. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Zhao, Z.; Liao, J.; Li, Q. Recent progress of metal-exchanged zeolites for selective catalytic reduction of NOx with NH3 in diesel exhaust. Fuel 2021, 305, 121482. [Google Scholar] [CrossRef]
- Han, L.; Cai, S.; Gao, M.; Hasegawa, J.Y.; Wang, P.; Zhang, J.; Shi, L.; Zhang, D. Selective Catalytic Reduction of NOx with NH3 by Using Novel Catalysts: State of the Art and Future Prospects. Chem. Rev. 2019, 119, 10916–10976. [Google Scholar] [CrossRef]
- Martín, N.; Paris, C.; Vennestrøm, P.N.R.; Thøgersen, J.R.; Moliner, M.; Corma, A. Cage-based small-pore catalysts for NH3-SCR prepared by combining bulky organic structure directing agents with modified zeolites as reagents. Appl. Catal. 2017, 217, 125–136. [Google Scholar] [CrossRef]
- Jin, Q.; Fang, D.; Ye, Y.; Hou, S.; He, F.; Xie, J. Cu, Co, or Ni species in exchanged Y zeolite catalysts and their denitration performance for selective catalytic reduction by ammonia. Appl. Surf. Sci. 2022, 600, 154075. [Google Scholar] [CrossRef]
- Brandenberger, S.; Krocher, O.; Tissler, A.; Althoff, R. The State of the Art in Selective Catalytic Reduction of NOx by Ammonia Using Metal-Exchanged Zeolite Catalysts. Catal. Rev. 2008, 50, 492–531. [Google Scholar] [CrossRef]
- Chen, J.; Huang, W.; Bao, S.; Zhang, W.; Liang, T.; Zheng, S.; Yi, L.; Guo, L.; Wu, X. A review on the characterization of metal active sites over Cu-based and Fe-based zeolites for NH3-SCR. RSC Adv. 2022, 12, 27746–27765. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Wu, C.; Zuo, H.; Gu, Z. Theoretical analyses of NH3-SCR reaction-mass transferover Cu-ZSM-5. Can. J. Chem. Eng. 2022, 100, 3081–3436. [Google Scholar] [CrossRef]
- Qi, X.; Wang, Y.; Liu, C.; Liu, Q. The Challenges and Comprehensive Evolution of Cu-Based Zeolite Catalysts for SCR Systems in Diesel Vehicles: A Review. Catal. Surv. Asia 2022. [Google Scholar] [CrossRef]
- Ren, L.; Zhu, L.; Yang, C.; Chen, Y.; Sun, Q.; Zhang, H.; Li, C.; Nawaz, F.; Meng, X.; Xiao, F.S. Designed copper–amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3. Chem. Commun. 2011, 47, 9789–9791. [Google Scholar] [CrossRef]
- Leistner, K.; Mihai, O.; Wijayanti, K.; Kumar, A.; Kamasamudram, K.; Currier, N.W.; Yezerets, A.; Olsson, L. Comparison of Cu/BEA, Cu/SSZ-13 and Cu/SAPO-34 for ammonia-SCR reactions. Catal. Today 2015, 258, 49–55. [Google Scholar] [CrossRef]
- Kwak, J.H.; Tonkyn, R.G.; Kim, D.H.; Szanyi, J.; Peden, C.H. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J. Catal. 2010, 275, 187–190. [Google Scholar] [CrossRef]
- Jabłońska, M.; Góra-Marek, K.; Bruzzese, P.C.; Palčić, A.; Pyra, K.; Tarach, K.; Bertmer, M.; Poppitz, D.; Pöppl, A.; Gläser, R. Influence of Framework n(Si)/n(Al) Ratio on the Nature of Cu Species in Cu-ZSM-5 for NH3-SCR-DeNOx. ChemCatChem 2022, 14, e202200627. [Google Scholar] [CrossRef]
- Gao, F.; Walter, E.D.; Kollar, M.; Wang, Y.; Szanyi, J.; Peden, C.H. Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions. J. Catal. 2014, 319, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kurzydym, I.; Czekaj, I. The effect of the presence of a hydroxyl group on the vibration frequencies of NO and NH3 adsorbates on Cu-Zn bimetallic nanoparticles in ZSM-5 and FAU zeolite—A DFT study. J. Mol. Struct. 2022, 1255, 132440. [Google Scholar] [CrossRef]
- Ho, P.H.; Jabłońska, M.; Nocuń, M.; Fornasari, G.; Ospitali, F.; Vaccari, A.; Benito, P.; Palkovits, R. Effect of Neodymium on the Physico-chemical Properties and N2O Decomposition Activity of Co(Cu)−Al Mixed Oxides. ChemCatChem 2019, 11, 5580–5592. [Google Scholar] [CrossRef] [Green Version]
- Lykaki, M.; Papista, E.; Carabineiro, S.A.C.; Tavares, P.B.; Konsolakis, M. Optimization of N2O decomposition activity of CuO–CeO2 mixed oxides by means of synthesis procedure and alkali (Cs) promotion. Catal. Sci. Technol. 2018, 8, 2312–2322. [Google Scholar] [CrossRef]
- Pietrogiacomi, D.; Campa, M.C.; Carbone, L.R.; Tuti, S.; Occhiuzzi, M. N2O decomposition on CoOx, CuOx, FeOx or MnOx supported on ZrO2: The effect of zirconia doping with sulfates or K+ on catalytic activity. Appl. Catal. 2016, 187, 218–227. [Google Scholar] [CrossRef]
- Inger, M.; Wilk, M.; Saramok, M.; Grzybek, G.; Grodzka, A.; Stelmachowski, P.; Makowski, W.; Kotarba, A.; Sojka, Z. Cobalt Spinel Catalyst for N2O Abatement in the Pilot Plant Operation–Long-Term Activity and Stability in Tail Gases. Ind. Eng. Chem. Res. 2014, 53, 10335–10342. [Google Scholar] [CrossRef]
- Gholizadeh, R.; Yu, Y.X.; Wang, Y. N2O adsorption and decomposition over ZnO(0001) doped graphene: Density functional theory calculations. Appl. Surf. Sci. 2017, 420, 944–953. [Google Scholar] [CrossRef]
- Sun, B.Z.; Chen, W.K.; Wang, X.; Lu, C.H. A density functional theory study on the adsorption and dissociation of N2O on Cu2O (111) surface. Appl. Surf. Sci. 2007, 253, 7501–7505. [Google Scholar] [CrossRef]
- Heyden, A.; Peters, B.; Bell, A.T.; Keil, F.J. Comprehensive DFT Study of Nitrous Oxide Decomposition over Fe-ZSM-5. J. Phys. Chem. B 2005, 109, 1857–1873. [Google Scholar] [CrossRef]
- Abu-Zieda, B.M.; Soliman, S.A.; Asiri, A.M. Role of rubidium promotion on the nitrous oxide decomposition activity of nanocrystalline Co3O4-CeO2 catalyst. Appl. Surf. Sci. 2019, 479, 148–157. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y.; Wu, R.; Zhao, Y. Graphitic carbon nitride-supported cobalt oxides as a potential catalyst for decomposition of N2O. Appl. Surf. Sci. 2021, 538, 148157. [Google Scholar] [CrossRef]
- Qi, J.; Qi, X.; Pan, Y.; Cui, J.; Xiong, Y.; Shan, W.; Yu, H. Sm doped NiO catalysts with excellent H2O resistance for N2O decomposition under simulated nitric acid plant exhaust condition. Appl. Surf. Sci. 2023, 611, 155657. [Google Scholar] [CrossRef]
- Pérez-Ramirez, J.; Kapteijn, F.; Schöffel, K.; Moulijn, J.A. Formation and control of N2O in nitric acid production. Where do we stand today? Appl. Catal. B 2003, 44, 117–151. [Google Scholar] [CrossRef]
- Pietrzyk, P.; Zasada, F.; Piskorz, W.; Kotarba, A.; Sojka, Z. Computational spectroscopy and DFT investigations into nitrogen and oxygen bond breaking and bond making processes in model deNOx and deN2O reactions. Catal. Today 2007, 119, 219–227. [Google Scholar] [CrossRef]
- Inger, M.; Rajewski, J.; Ruszak, M.; Wilk, M. The infuence of NOx presence on the catalytic N2O decompositionover the supported double-promoted cobalt spinel catalyst. Chem. Pap. 2019, 73, 1979–1986. [Google Scholar] [CrossRef] [Green Version]
- Van den Brink, R.W.; Booneveld, S.; Verhaak, M.J.F.M.; de Bruijn, F.A. Selective catalytic reduction of N2O and NOx in a single reactor in the nitric acid industry. Catal. Today 2002, 75, 227–232. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, Z.; Chen, B.; Guo, Q.; Liu, N. Adsorption of NO and N2O on Fe-BEA and H-BEA zeolites. Appl. Surf. Sci. 2010, 256, 4042–4047. [Google Scholar] [CrossRef]
- Piskorz, W.; Zasada, F.; Stelmachowski, P.; Kotarba, A.; Sojka, Z. DFT Modeling of Reaction Mechanism and Ab Initio Microkinetics of Catalytic N2O Decomposition over Alkaline Earth Oxides: From Molecular Orbital Picture Account to Simulation of Transient and Stationary Rate Profiles. J. Phys. Chem. C 2013, 117, 18488–18501. [Google Scholar] [CrossRef]
- Chen, B.; Liu, N.; Liu, X.; Zhang, R.; Li, Y.; Li, Y.; Sun, X. Study on the direct decomposition of nitrous oxide over Fe-beta zeolites: From experiment to theory. Catal. Today 2011, 175, 245–255. [Google Scholar] [CrossRef]
- He, G.; Lian, Z.; Yu, Y.; Yang, Y.; Liu, K.; Shi, X.; Yan, Z.; Shan, W.; He, H. Polymeric vanadyl species determine the low-temperature activity of V-based catalysts for the SCR of NOx with NH3. Sci. Adv. 2018, 4, eaau4637. [Google Scholar] [CrossRef] [Green Version]
- Avdeev, V.I.; Bedilo, A.F. Formation of reactive oxygen by N2O decomposition over binuclear cationic sites of Fe-ferrierite zeolite: Periodic DFT + U study. Chem. Phys. Lett. 2018, 695, 222–227. [Google Scholar] [CrossRef]
- Gao, C.; Li, J.; Zhang, J.; Sun, X. DFT Study on the Combined Catalytic Removal of N2O, NO, and NO2 over Binuclear Cu-ZSM-5. Catalysts 2022, 12, 438. [Google Scholar] [CrossRef]
- Du, X.; Gao, X.; Hu, W.; Yu, J.; Luo, Z.; Cen, K. Catalyst Design Based on DFT Calculations: Metal Oxide Catalysts for Gas Phase NO Reduction. J. Phys. Chem. C 2014, 118, 13617–13622. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portmann, S.; Lüthi, H.P. MOLEKEL: An Interactive Molecular Graphics Tool. Chimia 2000, 54, 766–769. [Google Scholar] [CrossRef]
- Hermann, K.; Pettersson, L.G.M.; Casida, M.E.; Daul, C.; Goursot, A.; Koester, A.; Proynov, E.; St-Amant, A.; Salahub, D.R.; Carravetta, V.; et al. StoBe-deMon, deMon Software: Stockholm, Sweden; Berlin, Germany, 2005. Available online: http://www.fhi-berlin.mpg.de/KHsoftware/StoBe/(accessed on 8 August 2023).
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, B.; Hansen, L.B.; Nørskov, J.K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413. [Google Scholar] [CrossRef] [Green Version]
- Broclawik, E.; Salahub, D.R. Density functional theory and quantum chemistry: Metals and metal oxides. J. Mol. Catal. 1993, 82, 117. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies. J. Chem. Phys. 1955, 23, 1833. [Google Scholar] [CrossRef] [Green Version]
- Mayer, I. Charge, bond order and valence in the AB initio SCF theory, Chem. Phys. Lett. 1983, 97, 270. [Google Scholar] [CrossRef]
- Mayer, I. Bond orders and valences: Role of d-orbitals for hypervalent Sulphur. J. Mol. Struct. THEOCHEM 1987, 149, 81–89. [Google Scholar] [CrossRef]
- Mills, G.; Jonsson, H. Quantum and thermal effects in H2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems. Phys. Rev. Lett. 1994, 72, 1124. [Google Scholar] [CrossRef] [PubMed]
- Mills, G.; Jonsson, H.; Schenter, G.K. Reversible work transition state theory: Application to dissociative adsorption of hydrogen. Surf. Sci. 1995, 324, 305–337. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, H.; Mills, G.; Jacobson, K.W. Nudged Elastic Band Method for Finding Minimum Energy Paths and Transitions in Classical and Quantum Dynamics in Condensed Phase Simulations; Berne, B.J., Ciccotti, G., Coker, D.F., Eds.; World Scientific Publishing Company: Singapore, 1998. [Google Scholar]
- Henkelman, G.; Uberuaga, B.P.; Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef]
- Koyama, K.; Takéuchi, Y. Clinoptilolite: The distribution of potassium atoms and its role in thermal stability. Z. Krist.-Cryst. Mater. 1977, 145, 216–239. [Google Scholar] [CrossRef]
- Available online: http://www.iza-structure.org/databases/ (accessed on 25 May 2023).
- Uzunova, E.L.; Mikosch, H. Cation site preference in zeolite clinoptilolite: A density functional study. Microporous Mesoporous Mater. 2013, 177, 113–119. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurzydym, I.; Magnuszewska, W.; Czekaj, I. Comparison of the Mechanisms of deNOx and deN2O Processes on Bimetallic Cu–Zn and Monometallic Cu–Cu Dimers in Clinoptilolite Zeolite—A DFT Study Simulating Industrial Conditions. Catalysts 2023, 13, 1210. https://doi.org/10.3390/catal13081210
Kurzydym I, Magnuszewska W, Czekaj I. Comparison of the Mechanisms of deNOx and deN2O Processes on Bimetallic Cu–Zn and Monometallic Cu–Cu Dimers in Clinoptilolite Zeolite—A DFT Study Simulating Industrial Conditions. Catalysts. 2023; 13(8):1210. https://doi.org/10.3390/catal13081210
Chicago/Turabian StyleKurzydym, Izabela, Weronika Magnuszewska, and Izabela Czekaj. 2023. "Comparison of the Mechanisms of deNOx and deN2O Processes on Bimetallic Cu–Zn and Monometallic Cu–Cu Dimers in Clinoptilolite Zeolite—A DFT Study Simulating Industrial Conditions" Catalysts 13, no. 8: 1210. https://doi.org/10.3390/catal13081210
APA StyleKurzydym, I., Magnuszewska, W., & Czekaj, I. (2023). Comparison of the Mechanisms of deNOx and deN2O Processes on Bimetallic Cu–Zn and Monometallic Cu–Cu Dimers in Clinoptilolite Zeolite—A DFT Study Simulating Industrial Conditions. Catalysts, 13(8), 1210. https://doi.org/10.3390/catal13081210