Non-Conventional Oilseeds: Unlocking the Global Potential for Sustainable Biofuel Production
Abstract
:1. Introduction
1.1. The Oil Seed Species
1.2. Catalytic Transesterification on Non-Edible Oils
2. Results
2.1. Water Features
2.2. Relative Imbibition
2.3. Integument Hardness
2.4. Biochemical Analysis
2.5. Fatty Acid Profiling of Different Oilseed Species
2.6. Principal Component Analysis
3. Discussion
4. Materials and Methods
4.1. Seed Species and Processing
4.2. Water Potential, Seed Imbibition, and Integument Hardness
4.3. Biochemical Analysis
4.3.1. Soluble Carbohydrates
4.3.2. Starch
4.3.3. Amino Acids
4.3.4. Soluble Proteins
4.3.5. Total Proteins, Ash, Fibers, and Oil
4.4. Experimental Design and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, M.; Khan, M.A.; Zafar, M.; Sultana, S. Biodiesel from non edible oil seeds: A renewable source of bioenergy. In Econon Effects of Biofuel Production; Bernardes, M.A.S., Ed.; IntechOpen: New York, NY, USA, 2011; pp. 259–280. [Google Scholar] [CrossRef]
- Aquino, A.S.; Silva, M.F.D.; Almeida, T.S.D.; Bilheri, F.N.; Converti, A.; Melo, J.C.D. Mapping of alternative oilseeds from the Brazilian Caatinga and assessment of catalytic pathways toward biofuels production. Energies 2022, 15, 6531. [Google Scholar] [CrossRef]
- Balat, M. Potential alternatives to edible oils for biodiesel production—A review of current work. Energy Conv. Manag. 2011, 52, 1479–1492. [Google Scholar] [CrossRef]
- Bergmann, J.C.; Tupinambá, D.D.; Costa, O.Y.A.; Almeida, J.R.M.; Barreto, C.C.; Quirino, B.F. Biodiesel production in Brazil and alternative biomass feedstocks. Renew. Sustain. Energy Rev. 2013, 21, 411–420. [Google Scholar] [CrossRef]
- Ramos, M.; Dias, A.P.S.; Puna, J.F.; Gomes, J.; Bordado, J.C. Biodiesel production processes and sustainable raw materials. Energies 2019, 12, 4408. [Google Scholar] [CrossRef]
- Munir, M.; Ahmad, M.; Saeed, M.; Waseem, A.; Rehan, M.; Nizami, A.S.; Zafar, M.; Arshad, M.; Sultana, S. Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst. Renew. Sustain. Energy Rev. 2019, 109, 321–332. [Google Scholar] [CrossRef]
- Karabulut, A.A.; Crenna, E.; Sala, S.; Udias, A. A proposal for integration of the ecosystem-water-food-land-energy (EWFLE) nexus concept into life cycle assessment: A synthesis matrix system for food security. J. Clean Prod. 2018, 172, 3874–3889. [Google Scholar] [CrossRef]
- Shaah, M.A.H.; Hossain, M.S.; Allafi, F.A.S.; Alsaedi, A.; Ismail, N.; Ab Kadir, M.O.; Ahmad, M.I. A review on non-edible oil as a potential feedstock for biodiesel: Physicochemical properties and production technologies. RSC Adv. 2021, 11, 25018–25037. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, P.; Shrivastava, V.; Sohal, J.K.; Sharma, A.; Kumar, M.; Alam, T.; Yadav, A.S. Potential non-edible oil seeds for biodiesel production: An Indian context. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Jong, H.N. Biofuel Boost Threatens even Greater Deforestation in Indonesia, Malaysia: Study; Mongaby: Menlo Park, CA, USA, 2018. [Google Scholar]
- ANP. Agência Nacional de Petróleo, Anuário Estatístico 2020; ANP: Brasília, Brazil, 2020.
- GOVBR. Informações de Mercado. In Boletim ANP; Agência Nacional do Petróleo, Gás Natural e Biocombustíveis: Brasilia, Brazil, 2021. Available online: https://www.gov.br/anp/pt-br/assuntos/producao-e-fornecimento-de-biocombustiveis/biodiesel/informacoes-de-mercado (accessed on 17 July 2023).
- Popp, J.; Harangi-Rákos, M.; Gabnai, Z.; Balogh, P.; Antal, G.; Bai, A. Biofuels and their co-products as livestock feed: Global economic and environmental implications. Molecules 2016, 21, 285. [Google Scholar] [CrossRef]
- Correa, D.F.; Beyer, H.L.; Fargione, J.E.; Hill, J.D.; Possingham, H.P.; Thomas-Hall, S.R.; Schenk, P.M. Towards the implementation of sustainable biofuel production systems. Renew. Sustain. Energy Rev. 2019, 107, 250–263. [Google Scholar] [CrossRef]
- Ubrabio, F.G.V. O Biodiesel e sua Contribuição ao Desenvolvimento Brasileiro: Fundação Getúlio Vargas and União Brasileira do Biodiesel. 2012. Available online: http://www.ubrabio.com.br/sites/1700/1729/00000201.pdfS (accessed on 18 July 2023).
- Kshnikatkina, A.N.; Kshnikatkin, S.A.; Alenin, P.G.; Shchanin, A.A.; Prakhova, T.Y.; Prakhov, V.A.; Medvedev, A.P.; Voronova, I.A. Biological diversity of non-traditional oil crops. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Rostov, Russia, 2021; p. 012091. [Google Scholar]
- Mukhtar, A.; Awan, M.I.; Sadaf, S.; Mahmood, A.; Javed, T.; Shah, A.N.; Shabbir, R.; Alotaibi, S.S.; Shah, A.A.; Adamski, R.; et al. Sulfur enhancement for the improvement of castor bean growth and yield, and sustainable biodiesel production. Front. Plant Sci. 2022, 13, 905738. [Google Scholar] [CrossRef] [PubMed]
- Zulqarnain; Ayoub, M.; Yusoff, M.H.M.; Nazir, M.H.; Zahid, I.; Ameen, M.; Sher, F.; Floresyona, D.; Budi Nursanto, E.A. Comprehensive review on oil extraction and biodiesel production technologies. Sustainability 2021, 13, 788. [Google Scholar] [CrossRef]
- Marchetti, J.M.; Miguel, V.U.; Errazu, A.F. Possible methods for biodiesel production. Renew. Sustain. Energy Rev. 2007, 11, 1300–1311. [Google Scholar] [CrossRef]
- Verma, P.; Sharma, M.P. Review of process parameters for biodiesel production from different feedstocks. Renew. Sustain. Energy Rev. 2016, 62, 1063–1071. [Google Scholar] [CrossRef]
- Ugwu, B.I.; Nnaji, J.C.; Simonyan, K.J.; Onukwuli, O.D. Advances in biodiesel synthesis: The role of various catalysts. Open J. Eng. Sci. 2018, 1, 31–52. [Google Scholar] [CrossRef]
- Lam, M.K.; Lee, K.T.; Mohamed, A.R. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnol. Adv. 2010, 28, 500–518. [Google Scholar] [CrossRef]
- Bhattacharya, A. Lipid metabolism in plants under low-temperature stress: A review. In Physiological Processes in Plants under Low Temperature Stress; Bhattacharya, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 409–516. [Google Scholar]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography and Evolution of Dormancy and Germination, 2nd ed.; Academic Press: London, UK, 2014. [Google Scholar]
- González, L.; González-Vilar, M. Determination of relative water content. In Handbook of Plant Ecophysiology Techniques; Roger, M.J.R., Ed.; Springer: London, UK, 2001; pp. 207–212. [Google Scholar]
- Jose, S.C.B.R.; Salomão, A.N.; Melo, L.A.M.P.D.; Santos, I.R.I.; Laviola, B.G. Germination and vigor of stored Jatropha (Jatropha curcars L.) seeds. J. Seed Sci. 2018, 40, 52–59. [Google Scholar] [CrossRef]
- Avram, M.; Stroescu, M.A.R.T.A.; Stoica-Guzun, A.; Floarea, O. Optimization of the oil extraction from Camelina (Camelina sativa) seeds using response surface methodology. Rev. Chim. 2015, 66, 417–421. [Google Scholar]
- Afzal, I.; Jaffar, I.; Zahid, S.; Rehman, H.U.; Basra, S.M.A. Physiological and biochemical changes during hermetic storage of Moringa oleifera seeds. S. Afr. J. Bot. 2020, 129, 435–441. [Google Scholar] [CrossRef]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Mobilization of stored reserves. In Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M., Nonogaki, H., Eds.; Springer: New York, NY, USA, 2012; pp. 183–246. [Google Scholar] [CrossRef]
- Pompelli, M.F.; Jarma-Orozco, A.; Rodriguez-Paez, L.A. Imbibition and germination of seeds with economic and ecological interest: Physical and biochemical factors involved. Sustainabiity 2023, 15, 5394. [Google Scholar] [CrossRef]
- Melo, H.F.D.; Souza, E.R.D.; Dourado, P.R.M.; Lins, C.M.T.; Santos, H.R.B.; Monteiro, D.R.; Paulino, M.K.S.S.; Almeida, B.G.; Santos, M.A.D. Comparison of water and osmotic potentials on Vigna unguiculata stress response. Rev. Bras. Cienc. Solo 2020, 44, e0200070. [Google Scholar] [CrossRef]
- da Silva, L.D.; Gomes, F.P.; Araújo, R.P.; Pereira, L.S.; Dalmolin, A.C.; do Amaral, J.F.T. Antioxidative and osmorregulatory responses of Jatropha curcas to water stress are genotype dependent. Aust. J. Crop Sci. 2022, 16, 192–200. [Google Scholar] [CrossRef]
- Babaei, M.; Ajdanian, L. Screening of different Iranian ecotypes of cannabis under water deficit stress. Sci. Hortiv. 2020, 260, 108904. [Google Scholar] [CrossRef]
- Rodrigues, J.K.; Cavalcanti, J.H.F.; Silva, P.O.; Borges, E.E.D.L.; Junior, A.D.R.N.; Carvalho Gonçalves, J.F. Unraveling relationships of prompt germination among four species of Inga Mill detected by morpho-anatomical and histochemical traits. Flora 2021, 285, 151941. [Google Scholar] [CrossRef]
- Bayer, C.; Appel, O. Ocurrence and taxonomic significance of ruminate endosperm. Bot. Rev. 1996, 62, 301–310. [Google Scholar] [CrossRef]
- Svoma, E. Studies on the embryology and gynoecium structures in Drimys winteri (Winteraceae) and some Annonaceae. Plant Syst. Evol. 1998, 209, 205–229. [Google Scholar] [CrossRef]
- Corte-Real, N.; Endres, L.; Santos, K.P.O.; Figueirêdo, R.C.B.; Arruda, E.C.P.; Ulisses, C.; Pompelli, M.F. Morphoanatomy and ontogeny of the fruit and seeds of Jatropha curcas L.: A promising biofuel plant. In The Promising Future of Jatropha curcas: Proprieties and Potential Applications; Segura-Campos, M.R., Betancur-Ancova, D., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2016; pp. 141–158. [Google Scholar]
- Gopinathan, M.C.; Babu, C.R. Structural diversity and its adaptive significance in seeds of Vigna minima (Roxb.) Ohwi and Ohashi and its Allies (Leguminosae-Papilionoideae). Ann. Bot. 1985, 56, 723–732. [Google Scholar]
- Tavecchio, N.E.M.; Vigliocco, A.E.; Terenti, O.A.; Wassner, D.; Reinoso, H.E.; Pedranzani, H.E. Jatropha curcas L. and J. macrocarpa Griseb: Seed morphology, viability, dormancy, germination and growth of seedlings. Am. J. Plant Sci. 2018, 9, 1835–1854. [Google Scholar] [CrossRef]
- Bewley, J.D.; Black, M. Physiology and Biochemistry of Seeds in Relation to Germination: Volume 2: Viability, Dormancy, and Environmental Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Aguirre, M.; Kiegle, E.; Leo, G.; Ezquer, I. Carbohydrate reserves and seed development: An overview. Plant Reprod. 2018, 31, 263–290. [Google Scholar] [CrossRef]
- Mandari, V.; Devarai, S.K. Biodiesel production using homogeneous, heterogeneous, and enzyme catalysts via transesterification and esterification reactions: A critical review. BioEnergy Res. 2021, 2, 935–961. [Google Scholar] [CrossRef]
- Nehmeh, M.; Rodriguez-Donis, I.; Cavaco-Soares, A.; Evon, P.; Gerbaud, V.; Thiebaud-Roux, S. Bio-refinery of oilseeds: Oil extraction, secondary metabolites separation towards protein meal valorisation—A review. Processes 2022, 10, 841. [Google Scholar] [CrossRef]
- Arora, K.; Kumar, P.; Bose, D.; Li, X.; Kulshrestha, S. Potential applications of algae in biochemical and bioenergy sector. 3 Biotech 2021, 11, 296. [Google Scholar] [CrossRef] [PubMed]
- Sunil, L.; Appaiah, P.; Prasanth Kumar, P.K.; Gopala Krishna, A.G. Preparation of food supplements from oilseed cakes. J. Food Sci. Technol. 2015, 52, 2998–3005. [Google Scholar] [CrossRef] [PubMed]
- Ketenoglu, O.; Kiralan, S.S.; Kiralan, M.; Ozkan, G.; Ramadan, M.F. Cold pressed black cumin (Nigella sativa L.) seed oil. In Cold Pressed Oils; Ramadan, M.F., Ed.; Academic Press: London, UK, 2020; pp. 53–64. [Google Scholar] [CrossRef]
- Ramachandran, S.; Singh, S.K.; Larroche, C.; Soccol, C.R.; Pandey, A.K. Oil cakes and their biotechnological applications—A review. Bioresour. Technol. 2007, 98, 2000–2009. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, A.; Rout, P.R.; Dubey, B.; Meena, S.S.; Pal, P.; Goel, M. A critical review on biogas production from edible and non-edible oil cakes. Biomass Convers. Biorefinery 2021, 12, 949–966. [Google Scholar] [CrossRef] [PubMed]
- Sabikhi, L.; Kumar, M.S. Fatty acid profile of unconventional oilseeds. Adv. Food Nutr. Res. 2012, 67, 141–184. [Google Scholar] [CrossRef]
- Pandey, V.C.; Singh, K.; Singh, J.S.; Kumar, A.; Singh, B.; Singh, R.P. Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renew. Sustain. Energy Rev. 2012, 16, 2870–2883. [Google Scholar] [CrossRef]
- Akintayo, E.T. Characteristics and composition of Parkia biglobbossa and Jatropha curcas oils and cakes. Bioresour. Technol. 2004, 92, 307–310. [Google Scholar] [CrossRef]
- Cardoso, C.C.; Celante, V.G.; de Castro, E.V.R.; Pasa, V.M.D. Comparison of the properties of special biofuels from palm oil and its fractions synthesized with various alcohols. Fuel 2014, 135, 406–412. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A.C.; Robbins, C.; Ceniceros, E.; Natarajan, M. Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 2012, 16, 143–169. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Kalam, M.A.; Masjuki, H.H.; Bhuiya, M.M.K.; Mofijur, M. An experimental investigation into biodiesel stability by means of oxidation and property determination. Energy 2012, 44, 616–622. [Google Scholar] [CrossRef]
- Torres-Jimenez, E.; Jerman, M.S.; Gregorc, A.; Lisec, I.; Dorado, M.P.; Kegl, B. Physical and chemical properties of ethanol-diesel fuel blends. Fuel 2011, 90, 795–802. [Google Scholar] [CrossRef]
- Abbadi, A.; Leckband, G. Rapeseed breeding for oil content, quality, and sustainability. Eur. J. Lipid Sci. Technol. 2011, 113, 1198–1206. [Google Scholar] [CrossRef]
- Sahoo, P.; Das, L.; Babu, M.; Naik, S. Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine. Fuel 2007, 86, 448–454. [Google Scholar] [CrossRef]
- Sahoo, P.; Das, L. Process optimization for biodiesel production from Jatropha, Karanja and Polanga oils. Fuel 2009, 88, 1588–1594. [Google Scholar] [CrossRef]
- Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. Biodiesel production from high FFA rubber seed oil. Fuel 2005, 84, 335–340. [Google Scholar] [CrossRef]
- Ma, F.; Hanna, M.A. Biodiesel production: A review. Bioresour. Technol. 1999, 70, 1–15. [Google Scholar] [CrossRef]
- Lee, A.F.; Bennett, J.A.; Manayil, J.C.; Wilson, K. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem. Soc. Rev. 2014, 43, 7887–7916. [Google Scholar] [CrossRef]
- Yucel, S.; Terzioglu, P.; Ozcimen, D. Lipase applications in biodiesel production. In Biodiesel—Feedstocks, Production and Applications; Fang, Z., Ed.; InTech: Rijeka, Croatia, 2012; pp. 209–250. [Google Scholar]
- Demirbas, A. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: A survey. Energy Convers. Manag. 2003, 44, 2093–2109. [Google Scholar] [CrossRef]
- Demirbas, A. Progress and recent trends in biofuels. Prog. Energy Combust. 2007, 33, 1–18. [Google Scholar] [CrossRef]
- Moncaleano-Escandon, J.; Silva, B.C.F.; Silva, S.R.S.; Granja, J.A.; Alves, M.C.J.L.; Pompelli, M.F. Germination responses of Jatropha curcas L. seeds to storage and aging. Ind. Crops Prod. 2013, 44, 684–690. [Google Scholar] [CrossRef]
- WFO. The Plant List Version 1.1. Snapshot of the Taxonomy. Available online: http://www.theplantlist.org/ (accessed on 1 January 2023).
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F.G. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anual. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- AOAC. AOAC 923.03-1923, Ash of Flour. Direct Method; AOAC International: Rockville, ML, USA, 1923; Available online: http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=1190 (accessed on 18 July 2023).
- Barreto, L.P.; Bezerra Neto, E. Método de Análises Químicas em Plantas; UFRPE: Recife, Brazil, 2004; pp. 27–60. [Google Scholar]
- de Araújo Silva, M.M.; Ferreira, L.T.; de Vasconcelos, F.M.T.; Willadino, L.; Camara, T.R.; dos Santos, D.Y.A.C.; Oliveira, A.F.M. Water stress-induced responses in the growth, cuticular wax composition, chloroplast pigments and soluble protein content, and redox metabolism of two genotypes of Ricinus communis L. J. Plant Growth Reg. 2021, 40, 342–352. [Google Scholar] [CrossRef]
- NIST Gas Chromatographic Retention Data. Available online: https://webbook.nist.gov/chemistry/gc-ri/ (accessed on 28 August 2023).
Scientific Name | Common Name | Family | N | Seed Fresh Weigth (g) | Seed Relative Water Content (%) | Ψw (MPa) | |||
---|---|---|---|---|---|---|---|---|---|
Initial | Final | Initial | Final | Initial | Final | ||||
Allamanda blanchetii A.DC. [1] | Purple allamanda | Apocynaceae | 8 | 0.11 ± 0.01 d | 0.17 ± 0.01 e | 13.3 ± 0.8 d | 46.3 ± 0.1 fg | −60.0 ± 4.1 c | −0.9 ± 0.3 bc |
Annona squamosa L. [2] | Sugar-apple | Annonaceae | 8 | 0.27 ± 0.03 d | 0.38 ± 0.02 de | 18.2 ± 0.3 c | 40.9 ± 1.3 g | −19.7 ± 2.6 a | −1.4 ± 0.5 bc |
Arachis hypogaea L. [3] | Peanut | Fabaceae | 5 | 0.65 ± 0.04 cd | 1.01 ± 0.07 de | 6.3 ± 0.2 g | 39.7 ± 1.0 g | −66.9 ± 3.5 c | −0.8 ± 0.2 bc |
Calotropis procera (Aiton) Dryand. [4] | Milkweed | Asclepiadaceae | 30 | 0.01 ± 0.00 d | 0.02 ± 0.00 e | 18.2 ± 0.6 c | 61.6 ± 0.8 cd | −74.3 ± 4.0 cd | −0.6 ± 0.1 bc |
Cucurbita maxima subsp. maxima [5] | Winter squash | Cucurbitaceae | 8 | 0.05 ± 0.01 d | 0.09 ± 0.01 e | 9.1 ± 0.2 f | 56.1 ± 6.0 de | −61.4 ± 1.5 c | −0.3 ± 0.1 a |
Euterpe oleracea Mart. [6] | Açaí palm | Arecaceae | 5 | 1.18 ± 0.13 c | 1.25 ± 0.14 d | 31.4 ± 0.7 a | 37.9 ± 0.9 g | −6.6 ± 1.0 a | −2.6 ± 0.3 d |
Gossypium hirsutum L. [7] | Cotton | Malvaceae | 10 | 0.11 ± 0.01 e | 0.22 ± 0.02 e | 8.8 ± 0.1 f | 54.8 ± 0.1 def | −78.7 ± 5.8 cd | −0.6 ± 0.1 bc |
Helianthus annuus L. [8] | Sunflower | Compositae | 30 | 0.02 ± 0.00 e | 0.05 ± 0.01 e | 9.5 ± 0.4 ef | 64.0 ± 1.1 bc | −64.7 ± 5.7 c | −0.3 ± 0.1 ab |
Jatropha curcas L. [9] | Purging nut | Euphorbiaceae | 5 | 0.71 ± 0.05 cd | 1.24 ± 0.06 d | 8.8 ± 0.3 f | 53.3 ± 1.1 ef | −63.1 ± 0.5 c | −0.7 ± 0.2 bc |
Licania rigida Benth. [10] | Oiticica | Chrysobalanaceae | 3 | 2.82 ± 0.38 b | 3.98 ± 0.55 b | 4.9 ± 0.4 g | 30.7 ± 0.4 h | −76.2 ± 8.7 cd | −1.4 ± 0.3 bc |
Malpighia glabra L. [11] | Acerola | Malpighiaceae | 5 | 0.03 ± 0.00 e | 0.13 ± 0.01 e | 18.1 ± 0.5 c | 77.0 ± 0.8 a | −71.7 ± 5.0 cd | −0.1 ± 0.1 a |
Moringa oleifera Lam. [12] | Drumstick tree | Moringaceae | 5 | 0.37 ± 0.03 e | 0.83 ± 0.06 de | 8.4 ± 0.1 f | 69.2 ± 1.9 b | −73.1 ± 0.3 cd | −0.7 ± 0.1 bc |
Prosopis juliflora (Sw.) DC. [13] | Mesquite | Fabaceae | 10 | 0.04 ± 0.01 e | 0.07 ± 0.02 e | 8.6 ± 0.1 f | 22.2 ± 0.7 i | −90.0 ± 4.3 d | −1.8 ± 0.1 c |
Spondias tuberosa Arruda [14] | Umbu plant | Anacardiaceae | 2 | 1.38 ± 0.18 c | 2.44 ± 0.32 c | 11.0 ± 0.2 e | 46.0 ± 3.5 fg | −71.5 ± 0.4 cd | −0.7 ± 0.1 bc |
Glycine max (Gm) | Soybean | Fabaceae | 10 | 0.46 ± 0.08 d | 0.97 ± 0.09 de | 5.83 ± 0.12 g | 33.3 ± 0.8 gh | −85.3 ± 1.7 e | −0.5 ± 0.0 ab |
Zea mays (Zm) | Maize | Poaceae | 10 | 0.15 ± 0.04 d | 2.36 ± 0.17 c | 12.84 ± 0.96 d | 32.4 ± 0.2 gh | −89.3 ± 1.8 f | −1.6 ± 0.4 c |
Species | Imbibition Relative (12 h) | Imbibition Relative (120 h) | |
---|---|---|---|
A. blanchetti | 30.43 ± 2.05 g | 56.87 ± 2.60 | G * |
A. squamosa | 16.32 ± 1.56 h | 37.16 ± 5.23 | H * |
A. hypogaea | 52.77 ± 5.02 f | 55.92 ± 2.36 | G |
C. procera | 109.95 ± 7.85 b | 158.75 ± 13.64 | B * |
C. maxima | 71.36 ± 8.64 d | 89.63 ± 9.07 | E * |
E. olereaceae | 0.10 ± 0.20 i | 6.66 ± 6.10 | I * |
G. hirsutum | 72.91 ± 13.00 d | 100.91 ± 10.41 | D * |
H. annuus | 59.93 ± 10.54 ef | 116.00 ± 14.57 | C * |
J. curcas | 63.90 ± 2.49 de | 74.96 ± 2.41 | F |
L. rigida | 16.12 ± 1.26 h | 41.20 ± 7.71 | H * |
M. glabra | 275.89 ± 21.80 a | 319.79 ± 17.04 | A * |
M. oleifera | 99.56 ± 5.73 c | 125.14 ± 8.03 | C * |
P. juliflora | 25.83 ± 8.40 g | 89.25 ± 23.41 | E * |
S. lutea | 61.93 ± 3.06 ef | 77.15 ± 7.63 | F * |
G. max | 38.61 ± 0.00 ef | 89.41 ± 0.00 | F * |
Z. mays | 73.28 ± 0.00 g | 116.37 ± 0.00 | C * |
Integument Hardness 1 | Soluble Carbohydrates 2 | Starch 2 | Amino Acids 2 | Soluble Proteins 3 | |
---|---|---|---|---|---|
A. blanchetti | 149.4 ± 4.7 b | 42.9 ± 1.7 g | 201.7 ± 37.1 bcd | 55.1 ± 6.9 c | 89.7 ± 0.9 c |
A. squamosa | 164.0 ± 4.7 a | 84.2 ± 4.9 d | 176.4 ± 27.6 cde | 86.3 ± 10.1 a | 101.5 ± 1.2 b |
A. hypogaea | 22.0 ± 1.2 g | 61.0 ± 3.1 ef | 229.8 ± 48.3 bcd | 30.2 ± 3.0 fg | 72.2 ± 1.6 d |
C. procera | 74.2 ± 2.2 c | 128.7 ± 3.1 b | 375.1 ± 22.9 a | 70.5 ± 2.7 b | 217.4 ± 3.6 a |
C. maxima | 45.6 ± 2.0 def | 68.3 ± 5.8 de | 158.2 ± 35.5 cde | 41.2 ± 4.7 d | 34.6 ± 1.0 g |
E. olereaceae | 200.0 ± 0.0 | 75.6 ± 1.2 cd | 129.1 ± 21.0 e | 19.2 ± 0.9 h | 1.9 ± 0.2 i |
G. hirsutum | 68.5 ± 2.5 c | 102.6 ± 1.1 c | 373.5 ± 52.3 a | 25.0 ± 2.4 g | 66.0 ± 1.2 e |
H. annuus | 53.7 ± 1.2 d | 94.8 ± 6.4 c | 236.5 ± 32.4 bc | 43.9 ± 2.8 d | 74.1 ± 2.8 c |
J. curcas | 49.8 ± 2.0 de | 218.9 ± 7.6 a | 150.1 ± 13.5 de | 33.4 ± 1.8 f | 101.5 ± 1.8 b |
L. rigida | 68.2 ± 2.8 c | 51.5 ± 1.4 fg | 136.0 ± 24.4 de | 36.3 ± 3.5 e | 10.7 ± 0.1 h |
M. glabra | 43.1 ± 1.6 ef | 63.9 ± 1.4 ef | 172.6 ± 19.6 cde | 58.1 ± 4.6 c | 53.7 ± 2.2 f |
M. oleifera | 38.1 ± 1.8 f | 99.1 ± 1.2 b | 259.5 ± 32.4 b | 60.8 ± 1.2 c | 30.6 ± 0.2 g |
P. juliflora | 200.0 ± 0.0 | 58.1 ± 4.7 ef | 217.2 ± 46.0 cde | 40.0 ± 2.3 d | 92.9 ± 1.3 d |
S. lutea | 200.0 ± 0.0 | 62.9 ± 2.2 ef | 209.5 ± 33.3 bcd | 31.1 ± 21.1 f | 10.2 ± 0.5 h |
G. max | 45.9 ± 1.3 ef | 69.0 ± 2.2 e | 202.0 ± 12.7 bcd | 27.0 ± 3.7 g | 82.7 ± 2.1 d |
Z. mays | 167.6 ± 6.2 a | 59.0 ± 4.1 ef | 159.0 ± 12.5 cde | 36.0 ± 3.0 f | 112.9 ± 4.1 b |
Total Proteins (%) | Fibers (%) | Ash (%) | Oil (%) | LC-PUFAs (%) | |
---|---|---|---|---|---|
A. blanchetti | 21.9 ± 0.8 f | 20.6 ± 1.0 c | 2.8 ± 0.1 g | 13.4 ± 0.2 f | 78.1 ± 0.8 a |
A. squamosa | 16.1 ± 0.8 g | 28.5 ± 0.5 a | 1.8 ± 0.1 i | 20.0 ± 0.5 e | 74.8 ± 0.0 ab |
A. hypogaea | 38.4 ± 1.9 a | 2.4 ± 0.2 i | 2.3 ± 0.2 h | 50.5 ± 1.3 a | 80.1 ± 0.3 a |
C. procera | 31.8 ± 3.2 c | 16.0 ± 0.6 de | 4.3 ± 0.2 c | 12.8 ± 0.2 f | 70.4 ± 3.1 bc |
C. maxima | 38.3 ± 1.2 a | 15.3 ± 1.2 def | 4.3 ± 0.1 c | 34.8 ± 1.0 c | 74.2 ± 0.1 ab |
E. olereaceae | 5.7 ± 0.4 i | 10.2 ± 0.7 g | 1.5 ± 0.1 j | 0.7 ± 0.1 h | 50.5 ± 1.0 e |
G. hirsutum | 23.1 ± 1.1 f | 16.1 ± 1.5 de | 4.6 ± 0.2 b | 19.6 ± 1.2 e | 76.7 ± 0.5 a |
H. annuus | 26.1 ± 3.4 e | 12.9 ± 0.5 efg | 3.0 ± 0.1 f | 43.1 ± 0.2 b | 80.3 ± 0.4 a |
J. curcas | 25.8 ± 0.5 e | 12.6 ± 0.5 fg | 4.7 ± 0.1 a | 50.2 ± 1.0 a | 61.0 ± 3.1 d |
L. rigida | 6.2 ± 0.4 i | 11.2 ± 0.9 g | 1.9 ± 0.1 i | 5.5 ± 0.2 g | 31.6 ± 0.4 g |
M. glabra | 14.4 ± 0.6 h | 17.1 ± 1.1 d | 1.4 ± 0.2 j | 2.2 ± 0.2 h | 41.3 ± 3.0 f |
M. oleifera | 29.6 ± 0.8 d | 19.8 ± 0.9 c | 3.5 ± 0.2 e | 30.1 ± 0.8 d | 81.0 ± 0.5 a |
P. juliflora | 34.5 ± 4.4 b | 7.2 ± 0.3 h | 3.6 ± 0.4 d | 1.4 ± 0.1 h | 69.1 ± 0.2 bc |
S. lutea | 1.4 ± 0.4 j | 24.2 ± 1.1 b | 1.1 ± 0.1 k | 0.6 ± 0.1 h | 66.5 ± 1.1 c |
G. max | 34.0 ± 2.8 b | 15.4 ± 2.0 de | 5.0 ± 0.6 a | 21.6 ± 1.0 e | 85.2 ± 3.5 a |
Z. mays | 7.9 ± 0.0 i | 9.6 ± 0.3 gh | 1.9 ± 0.1 i | 3.9 ± 0.1 gh | 87.3 ± 3.0 a |
Species Number | C12:0 | C14:0 | C16:0 | C16:1 | C18:0 | C18:1 | C18:2 | C18:3 | C20:0 | C20:1 | C22:0 | C24: 0 | Others |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[1] | n.d. | n.d. | 14.2 ± 1.0 ef | n.d. | 4.7 ± 0.1 fg | 61.6 ± 2.0 b | 16.6 ± 1.2 h | <1% | 1.1 ± 0.1 f | <1% | <1% | <1% | n.d. |
[2] | n.d. | n.d. | 12.9 ± 0.3 f | n.d. | 11.4 ± 0.1 d | 50.3 ± 0.1 c | 24.5 ± 0.1 h | n.d. | 0.9 ± 0.1 g | n.d. | n.d. | n.d. | n.d. |
[3] | n.d. | n.d. | 10.5 ± 0.4 g | n.d. | 2.8 ± 0.1 h | 48.9 ± 0.6 c | 30.3 ± 0.8 f | < 1% | 1.3 ± 0.1 e | 1.4 ± 0.1 b | 2.9 ± 0.1 c | 1.8 ± 0.3 a | n.d. |
[4] | n.d. | <1% | 17.1 ± 1.2 cd | 1.7 ± 0.9 a | 8.8 ± 0.6 e | 34.8 ± 3.6 d | 32.9 ± 4.5 e | 3.6 ± 1.1 a | <1% | <1% | < 1% | < 1% | n.d. |
[5] | n.d. | n.d. | 15.6 ± 0.1 de | n.d. | 9.8 ± 0.2 e | 17.0 ± 0.2 g | 57.1 ± 0.3 a | < 1% | <1% | n.d. | n.d. | n.d. | n.d. |
[6] | 7.1 ± 1.4 | 16.9 ± 2.3 | 19.9 ± 2.3 b | n.d. | 2.6 ± 1.0 hi | 23.9 ± 2.2 f | 26.8 ± 2.4 g | 1.9 ± 0.1 b | n.d. | n.d. | n.d. | n.d. | n.d. |
[7] | n.d. | <1% | 24.5 ± 0.3 a | <1% | 2.4 ± 0.1 i | 24.1 ± 0.6 f | 53.1 ± 1.5 c | <1% | n.d. | n.d. | 1.1 ± 0.1 d | n.d. | 1.6 ± 0.1 b |
[8] | n.d. | n.d. | 7.0 ± 0.4 h | n.d. | 3.5 ± 0.2 fgh | 23.6 ± 0.6 f | 56.7 ± 0.6 b | <1% | <1% | n.d. | <1% | <1% | n.d. |
[9] | n.d. | n.d. | 19.1 ± 4.4 bc | 0.6 ± 0.1 c | 9.2 ± 0.5 e | 25.1 ± 0.7 f | 29.1 ± 5.1 f | <1% | 1.9 ± 0.2 c | n.d. | 3.9 ± 0.1 b | n.d. | n.d. |
[10] | n.d. | n.d. | 26.1 ± 0.8 a | n.d. | 30.1 ± 0.9 a | 23.5 ± 0.1 f | 5.9 ± 1.1 j | 2.2 ± 0.1 b | n.d. | n.d. | n.d. | n.d. | 1.98 ± 0.1 a |
[11] | n.d. | <1% | 27.9 ± 6.4 a | <1% | 15.6 ± 4.1 c | 23.9 ± 9.2 f | 17.8 ± 4.7 h | <1% | 1.5 ± 0.4 d | <1% | <1% | <1% | n.d. |
[12] | n.d. | n.d. | 5.5 ± 0.1 h | 1.0 ± 0.1 b | 4.0 ± 0.5 fg | 73.5 ± 0.6 a | 1.1 ± 0.2 k | 3.6 ± 0.4 a | 2.5 ± 0.2 b | 2.5 ± 0.1 a | 5.4 ± 0.2 a | 0.9 ± 0.1 b | n.d. |
[13] | n.d. | n.d. | 14.1 ± 0.2 ef | n.d. | 7.7 ± 0.1 f | 32.3 ± 0.5 e | 36.0 ± 0.6 d | 1.0 ± 0.1 c | 4.0 ± 0.1 a | <1% | 2.8 ± 0.1 c | 1.5 ± 0.1 ab | n.d. |
[14] | n.d. | n.d. | 19.7 ± 0.4 b | n.d. | 11.5 ± 0.6 c | 35.8 ± 0.9 d | 31.6 ± 1.9 ef | <1% | <1% | n.d. | n.d. | n.d. | n.d |
G. max | n.d. | n.d. | 11.5 ± 0.8 fg | n.d. | 22.4 ± 0.9 b | n.d. | 59.10 ± 0.3 a | 3.7 ± 0.6 a | <1% | n.d. | n.d. | <1% | n.d. |
Z. mays | n.d. | n.d. | 11.7 ± 0.6 fg | <1% | 1.8 ± 0.4 i | 35.7 ± 0.2 d | 49.2 ± 0.6 cd | < 1% | <1% | n.d. | n.d. | <1% | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhammad, B.A.; Jamal, A.; Carlucci, C.; Saeed, M.F.; Seleiman, M.F.; Pompelli, M.F. Non-Conventional Oilseeds: Unlocking the Global Potential for Sustainable Biofuel Production. Catalysts 2023, 13, 1263. https://doi.org/10.3390/catal13091263
Alhammad BA, Jamal A, Carlucci C, Saeed MF, Seleiman MF, Pompelli MF. Non-Conventional Oilseeds: Unlocking the Global Potential for Sustainable Biofuel Production. Catalysts. 2023; 13(9):1263. https://doi.org/10.3390/catal13091263
Chicago/Turabian StyleAlhammad, Bushra Ahmed, Aftab Jamal, Claudia Carlucci, Muhammad Farhan Saeed, Mahmoud F. Seleiman, and Marcelo F. Pompelli. 2023. "Non-Conventional Oilseeds: Unlocking the Global Potential for Sustainable Biofuel Production" Catalysts 13, no. 9: 1263. https://doi.org/10.3390/catal13091263
APA StyleAlhammad, B. A., Jamal, A., Carlucci, C., Saeed, M. F., Seleiman, M. F., & Pompelli, M. F. (2023). Non-Conventional Oilseeds: Unlocking the Global Potential for Sustainable Biofuel Production. Catalysts, 13(9), 1263. https://doi.org/10.3390/catal13091263