Renewable Diesel Production over Mo-Ni Catalysts Supported on Silica
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalysts
Catalysts’ Characterization
2.2. Catalysts’ Performance
3. Materials and Methods
3.1. Materials
3.2. Catalysts’ Synthesis
3.3. Catalysts’ Activation
3.4. Catalysts’ Characterization
3.5. Catalysts’ Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aliefendic, H.; Ban, J.; Diendorfer, C.; AlNaeimi, R.; Attaba, M. Energy demand. In World Oil Outlook 2045; OPEC: Vienna, Austria, 2023; Chapter 2; pp. 47–81. [Google Scholar]
- UAE Energy Strategy 2050. Available online: https://u.ae/en/about-the-uae/strategies-initiatives-and-awards/strategies-plans-and-visions/environment-and-energy/uae-energy-strategy-2050 (accessed on 16 July 2024).
- Padder, S.A.; Khan, R.; Rather, R.A. Biofuel generations: New insights into challenges and opportunities in their microbe-derived industrial production. Biomass Bioenergy 2024, 185, 107220. [Google Scholar] [CrossRef]
- Gil, A.; Sancho-Sanz, I.; Korili, S.A. Progress and Perspectives in the Catalytic Hydrotreatment of Bio-Oils: Effect of the Nature of the Metal Catalyst. Ind. Eng. Chem. Res. 2024, 63, 11759–11775. [Google Scholar] [CrossRef]
- Kubička, D.; Kubičková, I.; Čejka, J. Application of Molecular Sieves in Transformations of Biomass and Biomass-Derived Feedstocks. Catal. Rev. Sci. Eng. 2013, 55, 1–78. [Google Scholar] [CrossRef]
- Yao, X.; Strathmann, T.J.; Li, Y.; Cronmiller, L.E.; Ma, H.; Zhang, J. Catalytic hydrothermal deoxygenation of lipids and fatty acids to diesel-like hydrocarbons: A review. Green Chem. 2021, 23, 1114–1129. [Google Scholar] [CrossRef]
- Mahdi, H.; Bazargan, A.; McKay, G.; Azelee, N.I.W.; Meili, L. Catalytic deoxygenation of palm oil and its residue in green diesel production: A current technological review. Chem. Eng. Res. Des. 2021, 174, 158–187. [Google Scholar] [CrossRef]
- Kordulis, C.; Bourikas, K.; Gousi, M.; Kordouli, E.; Lycourghiotis, A. Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: A critical review. Appl. Catal. B 2016, 181, 156–196. [Google Scholar] [CrossRef]
- Yáñez, É.; Meerman, H.; Ramírez, A.; Castillo, É.; Faaij, A. Assessing bio-oil co-processing routes as CO2 mitigation strategies in oil refineries. Biofuels Bioprod. Biorefin. 2021, 15, 305–333. [Google Scholar] [CrossRef]
- Bezergianni, S.; Dimitriadis, A.; Karonis, D. Diesel decarbonization via effective catalytic Co-hydroprocessing of residual lipids with gas–oil. Fuel 2014, 136, 366–373. [Google Scholar] [CrossRef]
- Seibel, J.; Wancura, J.H.C.; Mayer, F.D. Process simulation and technology prospection to the hydrotreating of vegetable oils and animal fats. Energy Convers. Manag. 2024, 315, 118811. [Google Scholar] [CrossRef]
- Mussa, N.-S.; Toshtay, K.; Capron, M. Catalytic Applications in the Production of Hydrotreated Vegetable Oil (HVO) as a Renewable Fuel: A Review. Catalysts 2024, 14, 452. [Google Scholar] [CrossRef]
- Coumans, A.E.; Hensen, E.J.M. A model compound (methyl oleate, oleic acid, triolein) study of triglycerides hydrodeoxygenation over alumina-supported NiMo sulfide. Appl. Catal. B 2017, 201, 290–301. [Google Scholar] [CrossRef]
- Arora, P.; Ojagh, H.; Woo, J.; Lind Grennfelt, E.; Olsson, L.; Creaser, D. Investigating the effect of Fe as a poison for catalytic HDO over sulfided NiMo alumina catalysts. Appl. Catal. B 2018, 227, 240–251. [Google Scholar] [CrossRef]
- Vlasova, E.N.; Bukhtiyarova, G.A.; Deliy, I.V.; Aleksandrov, P.V.; Porsin, A.A.; Panafidin, M.A.; Gerasimov, E.Y.; Bukhtiyarov, V.I. The effect of rapeseed oil and carbon monoxide on SRGO hydrotreating over sulfide CoMo/Al2O3 and NiMo/Al2O3 catalysts. Catal. Today 2020, 357, 526–533. [Google Scholar] [CrossRef]
- Li, X.; Luo, X.; Jin, Y.; Li, J.; Zhang, H.; Zhang, A.; Xie, J. Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels. Renew. Sustain. Energy Rev. 2018, 82, 3762–3797. [Google Scholar] [CrossRef]
- Srifa, A.; Viriya-empikul, N.; Assabumrungrat, S.; Faungnawakij, K. Catalytic behaviors of Ni/γ-Al2O3 and Co/γ-Al2O3 during the hydrodeoxygenation of palm oil. Catal. Sci. Technol. 2015, 5, 3693–3705. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, G.; Miao, C. Green and renewable bio-diesel produce from oil hydrodeoxygenation: Strategies for catalyst development and mechanism. Renew. Sustain. Energy Rev. 2019, 101, 568–589. [Google Scholar] [CrossRef]
- Malins, K. Synthesis of renewable hydrocarbons from vegetable oil feedstock by hydrotreatment over selective sulfur-free SiO2-Al2O3 supported monometallic Pd, Pt, Ru, Ni, Mo and bimetallic NiMo catalysts. Fuel 2021, 285, 119129. [Google Scholar] [CrossRef]
- Jeon, K.-W.; Gong, J.-H.; Kim, M.-J.; Shim, J.-O.; Jang, W.-J.; Roh, H.-S. Review on the production of renewable biofuel: Solvent-free deoxygenation. Renew. Sustain. Energy Rev. 2024, 195, 114325. [Google Scholar] [CrossRef]
- Rahmawati, Z.; Santoso, L.; McCue, A.; Jamari, N.L.A.; Ninglasari, S.Y.; Gunawan, T.; Fansuri, H. Selectivity of reaction pathways for green diesel production towards biojet fuel applications. RSC Adv. 2023, 13, 13698. [Google Scholar] [CrossRef]
- Lucantonio, S.; Di Giuliano, A.; Rossi, L.; Gallucci, K. Green Diesel Production via Deoxygenation Process: A Review. Energies 2023, 16, 844. [Google Scholar] [CrossRef]
- Douvartzides, S.L.; Charisiou, N.D.; Papageridis, K.N.; Goula, M.A. Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines. Energies 2019, 12, 809. [Google Scholar] [CrossRef]
- Lycourghiotis, S.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Lycourghiotis, A. The role of promoters in metallic nickel catalysts used for green diesel production: A critical review. Fuel Process. Technol. 2023, 244, 107690. [Google Scholar] [CrossRef]
- Zafeiropoulos, J.; Petropoulos, G.; Kordouli, E.; Kordulis, C.; Lycourghiotis, A.; Bourikas, K. Development of nickel catalysts supported on silica for green diesel production. Catal. Today 2023, 423, 113952. [Google Scholar] [CrossRef]
- Kordouli, E.; Sygellou, L.; Kordulis, C.; Bourikas, K.; Lycourghiotis, A. Probing the synergistic ratio of the NiMo/γ-Al2O3 reduced catalysts for the transformation of natural triglycerides into green diesel. Appl. Catal. B 2017, 209, 12–22. [Google Scholar] [CrossRef]
- Petropoulos, G.; Zafeiropoulos, J.; Kordouli, E.; Sygellou, L.; Kordulis, C.; Lycourghiotis, A.; Bourikas, K. Transformation of vegetable oils into green diesel over Ni-Mo catalysts supported on titania. Catal. Today 2023, 423, 114268. [Google Scholar] [CrossRef]
- Kordouli, E.; Pawelec, B.; Bourikas, K.; Kordulis, C.; Fierro, J.L.G.; Lycourghiotis, A. Mo promoted Ni-Al2O3 co-precipitated catalysts for green diesel production. Appl. Catal. B 2018, 229, 139–154. [Google Scholar] [CrossRef]
- Nikolopoulos, N.; Kordouli, E.; Sygellou, L.; Bourikas, K.; Kordulis, C.; Lycourghiotis, A. Mo promoted Ni-ZrO2 co-precipitated catalysts for green diesel production. Chem. Eng. Sci. 2023, 270, 118540. [Google Scholar] [CrossRef]
- Nikolopoulos, I.; Kordouli, E.; Mourgkogiannis, N.; Karapanagioti, H.K.; Lycourghiotis, A.; Kordulis, C. Valorization of Pyrolyzed Biomass Residues for the Transformation of Waste Cooking Oil into Green Diesel. Catalysts 2023, 13, 1004. [Google Scholar] [CrossRef]
- Zepeda, T.A.; Torres-García, N.L.; Antúnez-García, J.; Galván, D.H.; Pawelec, B.; Huirache-Acuña, R.; Díaz de León, J.N.; Alonso-Núñez, G.; Fierro, J.L.G.; Fuentes, S. Synergetic effect in RuxMo(1−x)S2/SBA-15 hydrodesulfurization catalysts: Comparative experimental and DFT studies. Appl. Catal. B 2019, 251, 143–153. [Google Scholar] [CrossRef]
- Chary, K.V.R.; Reddy, K.R.; Kumar, C.P. Dispersion and reactivity of molybdenum oxide catalysts supported on titania. Catal. Commun. 2001, 2, 277–284. [Google Scholar] [CrossRef]
- Liu, K.; Huang, X.; Pidko, E.A.; Hensen, E.J.M. MoO3–TiO2 synergy in oxidative dehydrogenation of lactic acid to pyruvic acid. Green Chem. 2017, 19, 3014–3022. [Google Scholar] [CrossRef]
- Chagas, C.A.; Manfro, R.L.; Toniolo, F.S. Production of Hydrogen by Steam Reforming of Ethanol over Pd-Promoted Ni/SiO2 Catalyst. Catal. Lett. 2020, 150, 3424–3436. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, T.; Jiao, Y.; Cheng, M.; Wang, L.-L.; Wang, J.-L.; Li, X.-Y.; Chen, Y.-Q. Improved activity of Ni–Mo/SiO2 bimetallic catalyst synthesized via sol-gel method for methylcyclohexane cracking. Pet. Sci. 2021, 18, 1530–1542. [Google Scholar] [CrossRef]
- García-Pérez, D.; Alvarez-Galvan, M.C.; Capel-Sanchez, M.C.; Blanco-Brieva, G.; Morales-delaRosa, S.; Campos-Martin, J.M.; Fierro, J.L.G. Influence of bimetallic characteristics on the performance of MoCoP and MoFeP catalysts for methyl laurate hydrodeoxygenation. Catal. Today 2021, 367, 43–50. [Google Scholar] [CrossRef]
- Yang, C.; Wang, W.; Wang, D.; Gong, M.; Xin, Y.; Xiao, L.; Kikhtyanin, O.V.; Kubicka, D.; Wu, W. The promotion effects of MoOx species in the highly effective NiMo/MgAl2O4 catalysts for the hydrodeoxygenation of methyl palmitate. J. Environ. Chem. Eng. 2022, 10, 107761. [Google Scholar] [CrossRef]
- Petropoulos, G.; Zafeiropoulos, J.; Kordouli, E.; Lycourghiotis, A.; Kordulis, C.; Bourikas, K. Influence of Nickel Loading and the Synthesis Method on the Efficiency of Ni/TiO2 Catalysts for Renewable Diesel Production. Energies 2023, 16, 4333. [Google Scholar] [CrossRef]
Catalyst | Composition (wt.%) | SSA (m2/g) | PV (cm3/g) | MPD (nm) | MCSNi0 (nm) 1 | COchem (μmole g−1) |
---|---|---|---|---|---|---|
SiO2 | - | 192 | 0.97 | 21.6 | - | - |
0MoSi | 50% Μο | 77 | 0.54 | 27.5 | - | - |
0.84MoNiSi | 12% Μο; 38% Ni | 125 | 0.60 | 17.9 | 5.9 | 213.55 |
0.91MoNiSi | 7% Μο; 43% Ni | 126 | 0.68 | 19.5 | 5.8 | 228.41 |
0.95MoNiSi | 4% Μο; 46% Ni | 129 | 0.64 | 19.1 | 5.4 | 414.76 |
0.98MoNiSi | 2% Μο; 48% Ni | 128 | 0.76 | 22.3 | 7.1 | 371.80 |
1NiSi | 50% Ni | 124 | 0.72 | 22.1 | 11.7 | 164.96 |
Catalyst | % Ni Components | ||
---|---|---|---|
%Ni0 | %NiO | ||
0MoSi | - | - | 0 |
0.84MoNiSi | 28.1 | 71.9 | 0.81 |
0.91MoNiSi | 30.3 | 69.7 | 0.90 |
0.95MoNiSi | 30.0 | 70.0 | 0.94 |
0.98MoNiSi | 29.9 | 70.1 | 0.97 |
1NiSi | 33.0 | 67.0 | 1 |
Catalyst | SSA (m2/g) | PV (cm3/g) | MPD (nm) | MCSNi0 (nm) |
---|---|---|---|---|
fresh 0.95MoNiSi | 129 | 0.64 | 19.1 | 5.4 |
spent 0.95MoNiSi 1 | 107 | 0.44 | 26.3 | 16.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafeiropoulos, J.; Petropoulos, G.; Kordouli, E.; Sygellou, L.; Lycourghiotis, A.; Bourikas, K. Renewable Diesel Production over Mo-Ni Catalysts Supported on Silica. Catalysts 2024, 14, 662. https://doi.org/10.3390/catal14100662
Zafeiropoulos J, Petropoulos G, Kordouli E, Sygellou L, Lycourghiotis A, Bourikas K. Renewable Diesel Production over Mo-Ni Catalysts Supported on Silica. Catalysts. 2024; 14(10):662. https://doi.org/10.3390/catal14100662
Chicago/Turabian StyleZafeiropoulos, John, George Petropoulos, Eleana Kordouli, Labrini Sygellou, Alexis Lycourghiotis, and Kyriakos Bourikas. 2024. "Renewable Diesel Production over Mo-Ni Catalysts Supported on Silica" Catalysts 14, no. 10: 662. https://doi.org/10.3390/catal14100662
APA StyleZafeiropoulos, J., Petropoulos, G., Kordouli, E., Sygellou, L., Lycourghiotis, A., & Bourikas, K. (2024). Renewable Diesel Production over Mo-Ni Catalysts Supported on Silica. Catalysts, 14(10), 662. https://doi.org/10.3390/catal14100662