Seeds Combining Pyrrolidine Control the Framework Al Distribution of FER Zeolite to Enhance Its Performance in the Skeletal Isomerization of n-Butene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural and Textural Properties
2.2. Acidity Characterization
2.3. 29Si and 27Al MAS NMR
2.4. Catalytic Performance
2.5. Catalyst Stability
3. Experimental
3.1. Materials
3.2. Preparation of FER-X Zeolites
3.2.1. Preparation of Seeds
3.2.2. Preparation of Seed-Derived FER-X Zeolites
3.2.3. Preparation of H-form FER Zeolites
3.3. Characterization of Catalysts
3.4. Catalyst Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Content | Abbreviations |
Brönsted acid sites | BAS |
10-member ring | 10-MR |
pyrrolidine | PY |
Na-form FER as seeds | SN |
H-form FER as seeds | SH |
organic structure directing agents | OSDAs |
8-member ring | 8-MR |
6-member ring | 6-MR |
International Zeolite Association | IZA |
methyl tert-butyl ether | MTBE |
trimethylamine | TMA |
relative crystallinity | RC |
SiO2 to Al2O3 ratios | SARs |
BAS of desorption temperature as measured from Py-IR | B10-350 |
C4 hydrocarbons produced by fluidized catalytic cracking in refineries react with methanol to produce MTBE after removing isobutene | post-MTBE C4 |
weight hourly space velocity | WHSV |
References
- Díaz Velázquez, H.; Likhanova, N.; Aljammal, N.; Verpoort, F.; Martínez-Palou, R. New Insights into the Progress on the Isobutane/Butene Alkylation Reaction and Related Processes for High-Quality Fuel Production. A Critical Review. Energy Fuels 2020, 34, 15525–15556. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, W.; Chen, Z.; Ye, Y.; Luo, Y.; Street, J.; Zhou, H.; Xu, C. Formation and regeneration of shape-selective ZSM-35 catalysts for n-Butene skeletal isomerization to isobutylene. ACS Omega 2018, 3, 8202–8211. [Google Scholar] [CrossRef] [PubMed]
- Corma, A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev. 1995, 95, 559–614. [Google Scholar] [CrossRef]
- Houzvicka, J.; Ponec, V. Skeletal isomerization of n -Butenes. Catal. Reviews. Sci. Eng. 1997, 39, 319–344. [Google Scholar] [CrossRef]
- Paul, M.; Naccache, C. Skeletal isomerisation of n-butenes catalyzed by medium-pore zeolites and aluminophosphates. Adv. Catal. 2010, 31, 505–543. [Google Scholar]
- Vaughan, P.A. The crystal structure of the zeolite ferrierite. Acta Crystallogr. 1966, 21, 983–990. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, J.; Zhu, L.; Zhou, E.; Shen, C. Advances in the synthesis of ferrierite zeolite. Molecules 2020, 25, 3722. [Google Scholar] [CrossRef]
- Mooiweer, H.H.; de Jong, K.P.; Kraushaar-Czarnetzki, B.; Stork WH, J.; Krutzen BC, H. Skeletal isomerisation of olefins with the zeolite ferrierite as catalyst. Stud. Surf. Sci. Catal. 1994, 84, 2327–2334. [Google Scholar]
- Guo, G.Q.; Long, Y.C. Advances in the catalysis of skeletal isomerization of n-butene into iso-butene on FER zeolite. Chem. Ind. Eng. Prog. 2006, 6, 16–19. [Google Scholar]
- Liu, W.; Hu, H.; Liu, Y.; Zhang, L.; Xia, C.; Wang, Q.; Ke, M. Distribution of effective ferrierite active sites for skeletal isomerization of n-butene to isobutene. ChemistrySelect 2019, 4, 7851–7857. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Chu, W.; Zhao, D.; Chen, F.; Zhu, X.; Li, X.; Liu, S.; Xie, S.; Xu, L. Synthesis and catalytic application of FER zeolites with controllable size. J. Mater. Chem. A 2019, 7, 7573–7580. [Google Scholar] [CrossRef]
- Wichterlová, B.; Žilkova, N.; Uvarova, E.; Čejka, J.; Sarv, P.; Paganini, C.; Lercher, J.A. Effect of Broensted and Lewis sites in ferrierites on skeletal isomerization of n-Butenes. Appl. Catal. A Gen. 1999, 182, 297–308. [Google Scholar] [CrossRef]
- Domokos, L.; Lefferts, L.; Seshan, K.; Lercher, J. The importance of acid site locations for n-Butene skeletal isomerization on ferrierite. J. Mol. Catal. A Chem. 2000, 162, 147–157. [Google Scholar] [CrossRef]
- Pinar, A.; Márquez-Álvarez, C.; Grande-Casas, M.; Pérez-Pariente, J. Template-controlled acidity and catalytic activity of ferrierite crystals. J. Catal. 2009, 263, 258–265. [Google Scholar] [CrossRef]
- Seo, G.; Jeong, H.S.; Hong, S.B.; Uh, Y.S. Skeletal isomerization of 1-Butene over ferrierite and ZSM-5 zeolites: Influence of zeolite acidity. Catal. Lett. 1996, 36, 249–253. [Google Scholar] [CrossRef]
- Van Donk, S.; Bus, E.; Broersma, A.; Bitter, J.H.; de Jong, K.P. Probing the accessible sites for n-Butene skeletal isomerization over aged and selective H-Ferrierite with d3-acetonitrile. J. Catal. 2002, 212, 86–93. [Google Scholar] [CrossRef]
- Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chem. Rev. 1997, 97, 2373–2420. [Google Scholar] [CrossRef]
- Li, J.; Gao, M.; Yan, W.; Yu, J. Regulation of the Si/Al ratios and Al distributions of zeolites and their impact on properties. Chem. Sci. 2023, 14, 1935–1959. [Google Scholar] [CrossRef]
- Mercedes, B.; Corma, A. What Is Measured When Measuring Acidity in Zeolites with Probe Molecules? ACS Catal. 2019, 9, 1539–1548. [Google Scholar]
- Palčić, A.; Valtchev, V. Analysis and control of acid sites in zeolites. Appl. Catal. A Gen. Int. J. Devoted Catal. Sci. Its Appl. 2020, 606, 117795. [Google Scholar] [CrossRef]
- Xiong, Z.; Qi, G.; Bai, L.; Zhan, E.; Chu, Y.; Xu, J.; Ta, N.; Hao, A.; Deng, F.; Shen, W. Preferential population of Al atoms at the T4 site of ZSM-35 for the carbonylation of dimethylether. Catal. Sci. Technol. 2022, 12, 4993–4997. [Google Scholar] [CrossRef]
- Bohinc, R.; Hoszowska, J.; Dousse, J.-C.; Błachucki, W.; Zeeshan, F.; Kayser, Y.; Nachtegaal, M.; Pinar, A.B.; van Bokhoven, J.A. Distribution of aluminum over different T-sites in ferrierite zeolites studied with aluminum valence to core X-ray emission spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 29271–29277. [Google Scholar] [CrossRef] [PubMed]
- Pinar, A.B.; Verel, R.; Pérez-Pariente, J.; van Bokhoven, J.A. Direct evidence of the effect of synthesis conditions on aluminum sitting in zeolite ferrierite: A 27Al MQ MAS NMR study. Microporous Mesoporous Mater. 2014, 193, 111–114. [Google Scholar] [CrossRef]
- Pinar, A.B.; Gómez-Hortigüela, L.; McCusker, L.B.; Pérez-Pariente, J. Controlling the Aluminum Distribution in the Zeolite Ferrierite via the Organic Structure Directing Agent. Chem. Mater. 2013, 25, 3654–3661. [Google Scholar] [CrossRef]
- Márquez-Alvarez, C.; Pinar, A.B.; García, R.; Grande-Casas, M.; Pérez-Pariente, J. Influence of Al distribution and defects concentration of ferrierite catalysts synthesised from na-free gels in the skeletal isomerisation of n-Butene. Top. Catal. 2009, 52, 1281–1291. [Google Scholar] [CrossRef]
- Román-Leshkov, Y.; Moliner, M.; Davis, M.E. Impact of Controlling the Site Distribution of Al Atoms on Catalytic Properties in Ferrierite-Type Zeolites. J. Phys. Chem. C 2011, 115, 1096–1102. [Google Scholar] [CrossRef]
- Chu, W.; Liu, X.; Yang, Z.; Nakata, H.; Tan, X.; Liu, X.; Xu, L.; Guo, P.; Li, X.; Zhu, X. Constrained Al sites in FER-type zeolites. Chin. J. Catal. 2021, 42, 2078–2087. [Google Scholar] [CrossRef]
- Kim, S.; Park, G.; Woo, M.H.; Kwak, G.; Kim, S.K. Control of hierarchical structure and framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion. ACS Catal. 2019, 9, 2880–2892. [Google Scholar] [CrossRef]
- Gábová, V.; Dědeček, J.; Čejka, J. Control of Al distribution in ZSM-5 by conditions of zeolite synthesis. J. Chem. Commun. 2003, 10, 1196–1197. [Google Scholar] [CrossRef]
- Nishitoba, T.; Yoshida, N.; Kondo, J.N.; Yokoi, T. Control of Al distribution in the CHA-type aluminosilicate zeolites and its impact on the hydrothermal stability and catalytic properties. Ind. Eng. Chem. Res 2018, 57, 3914–3922. [Google Scholar] [CrossRef]
- Heard, C.J.; Grajciar, L.; Nachtigall, P. The effect of water on the validity of Lwenstein’s rule. Chem. Sci. 2019, 10, 5705–5711. [Google Scholar] [CrossRef] [PubMed]
- Di Iorio, J.R.; Gounder, R. Controlling the isolation and pairing of aluminum in Chabazite zeolites using mixtures of organic and inorganic structure-directing agents. Chem. Mater. 2016, 28, 2236–2247. [Google Scholar] [CrossRef]
- Di Iorio, J.R.; Li, S.; Jones, C.B.; Nimlos, C.T.; Wang, Y.; Kunkes, E.; Vattipalli, V.; Prasad, S.; Moini, A.; Schneider, W.F.; et al. Cooperative and competitive occlusion of organic and inorganic structure directing agents within Chabazite zeolites influences their aluminum arrangement. J. Am. Chem. Soc. 2020, 142, 4807–4819. [Google Scholar] [CrossRef]
- Fletcher, R.E.; Ling, S.; Slater, B. Violations of Löwensteins rule in zeolites. Chem Sci 2017, 8, 7483–7491. [Google Scholar] [CrossRef]
- Inagaki, S.; Yamada, N.; Nishii, M.; Nishi, Y.; Kubota, Y. Control of framework Al distribution in ZSM-5 zeolite via post-synthetic TiCl4 treatment. Microporous Mesoporous Mater. 2020, 302, 1102231–1102239. [Google Scholar] [CrossRef]
- Vjunov, A.; Fulton, J.L.; Huthwelker, T.; Pin, S.; Mei, D.; Schenter, G.K.; Govind, N.; Camaioni, D.M.; Hu, J.Z.; Lercher, J.A. Quantitatively Probing the Al Distribution in Zeolites. Am. Chem. Soc. 2014, 136, 8296–8306. [Google Scholar] [CrossRef]
- Holzinger, J.; Beato, P.; Lundegaard, L.F.; Skibsted, J. Distribution of Aluminum over the tetrahedral sites in ZSM-5 zeolites and their evolution after steam treatment. J. Phys.Chem. C Nanomater. Interfaces 2018, 122, 15595–15613. [Google Scholar] [CrossRef]
- Meng, X.J.; Xiao, F.S. Green routes for synthesis of zeolites. Chem. Reviews. 2014, 114, 1521–1543. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, H.; Zhang, Y.; Tang, Y. Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties. Front. Chem. Sci. Eng. 2020, 14, 143–158. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.; Zhang, H.; Wang, P.; Shi, Z.; Mao, J.; Zhang, Y.; Tang, Y. Tailoring zeolite ZSM-5 crystal morphology porosity through flexible utilization of Silicalite-1 seeds as templates: Unusual crystallization pathways in a heterogeneous system. Chem. A Eur. J. 2016, 22, 7141–7151. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, Y.; Xie, B.; Xiao, F.S. Zeolite Seeds: Third Type of Structure Directing Agents in the Synthesis of Zeolites. Comments Inorg. Chem. 2016, 36, 1–16. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Q.; Ren, L.; Yang, C.; Zhu, L.; Meng, X.; Li, C.; Xiao, F.-S. Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units. J. Mater. Chem. 2011, 21, 9494–9497. [Google Scholar] [CrossRef]
- Ham, H.; Jung, H.S.; Kim, H.S.; Kim, J.; Cho, S.J.; Lee, W.B.; Park, M.J.; Bae, J.W. Gas-phase carbonylation of dimethyl ether on the stable seed derived Ferrierite. ACS Catal 2020, 10, 5135–5146. [Google Scholar] [CrossRef]
- Kim, J.; Ham, H.; Jung, H.S.; Wang, Y.; He, Y.; Tsubaki, N.; Cho, S.J.; Han, G.Y.; Bae, J.W. Dimethyl ether carbonylation to methyl acetate over highly crystalline zeolite-seed derived Ferrierite. Catal. Sci. Technol. 2018, 8, 3060–3072. [Google Scholar] [CrossRef]
- Kwak, S.J.; Kim, H.S.; Park, N.; Park, M.J.; Lee, W.B. Recent progress on Al distribution over zeolite frameworks: Linking theories and experiments. Korean J. Chem. Eng. 2021, 38, 1117–1128. [Google Scholar] [CrossRef]
- Emeis, C.A. Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. J. Catal. 1993, 141, 347–354. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, S.; Geng, R.; Wang, P.; Li, S.; Dong, M.; Qin, Z.; Wang, J.; Fan, W. Enhancement of the dimethyl ether carbonylation activation via regulating acid sites distribution in FER zeolite framework. iScience 2023, 26, 107748. [Google Scholar] [CrossRef]
- Xue, T.; Li, S.S.; Wu, H.H. Surfactant-promoted synthesis of hierarchical zeolite ferrierite nano-sheets. Microporous Mesoporous Mater. 2021, 312, 1107481–1107488. [Google Scholar] [CrossRef]
- Xie, S.; Peng, J.; Xu, L.; Wu, Z.; Wang, Q. Synthesis of ZSM-35 zeolite using cyclohexylamine as organic template and its catalytic performance. Chin. J. Catal. 2003, 24, 531–534. [Google Scholar]
- Houzvicka, J.; Nienhuis, J.G.; Ponec, V. The role of the acid strength of the catalysts in the skeletal isomerisation of n-Butene. Appl. Catal. A Gen. 1998, 174, 207–212. [Google Scholar] [CrossRef]
- Xu, W.Q.; Yin, Y.G.; Suib, S.L.; Edwards, J.C.; O’Young, C.L. Modification of non-template synthesized ferrierite/ZSM-35 for n-Butene skeletal isomerization to isobutylene. J. Catal. 1996, 163, 232–244. [Google Scholar] [CrossRef]
- Comelli, R.A. Skeletal Isomerization of Linear Butenes on Boron Promoted Ferrierite: Effect of the Catalyst Preparation Technique. Catal. Lett. 2008, 122, 302–309. [Google Scholar] [CrossRef]
Sample | Na2O (mg/g) | SARs | RC (%) | Surface Area (m2/g) | Pore Volume (cm3/g) | ||
---|---|---|---|---|---|---|---|
Total | Micro | Total | Micro | ||||
FER-PY | 40 | 25.6 | 100 | 431 | 388 | 0.27 | 0.14 |
FER-SN | 39 | 25.3 | 101 | 428 | 386 | 0.27 | 0.14 |
FER-SH | 36 | 24.6 | 99 | 422 | 380 | 0.26 | 0.13 |
FER-PY+SN | 42 | 25.3 | 100 | 430 | 378 | 0.28 | 0.14 |
FER-PY+SH | 41 | 24.8 | 101 | 432 | 390 | 0.28 | 0.15 |
Sample | Acidity by NH3-TPD a (mmol/g) | Acidity by Py-IR b (mmol/g) | |||||
---|---|---|---|---|---|---|---|
Weak | Strong | Total | Brønsted | Lewis | Total | B10-350 c | |
FER-PY | 0.79 | 0.56 | 1.35 | 0.29 | 0.03 | 0.32 | 0.20 |
FER-SN | 0.78 | 0.55 | 1.33 | 0.28 | 0.03 | 0.31 | 0.24 |
FER-SH | 0.75 | 0.53 | 1.28 | 0.28 | 0.03 | 0.31 | 0.25 |
FER-PY+SN | 0.76 | 0.52 | 1.28 | 0.30 | 0.03 | 0.33 | 0.28 |
FER-PY+SH | 0.81 | 0.56 | 1.37 | 0.34 | 0.02 | 0.35 | 0.32 |
Sample | Aluminum Distribution (%) | ||||
---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T1 + T3 | |
FER-PY | 0 | 30 | 30 | 39 | 30 |
FER-SN | 8 | 19 | 33 | 40 | 41 |
FER-SH | 10 | 25 | 34 | 31 | 44 |
FER-PY+SN | 12 | 21 | 38 | 29 | 50 |
FER-PY+SH | 6 | 15 | 54 | 25 | 60 |
Composition | wt/% |
---|---|
propane | 0.12 |
propylene | 0.15 |
isobutane | 52.86 |
butane | 10.94 |
trans-2-butene | 13.76 |
1-butene | 12.00 |
isobutene | 0.26 |
cis-2-butene | 9.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Zhu, X.; Yang, F.; Xu, Y.; Chen, L. Seeds Combining Pyrrolidine Control the Framework Al Distribution of FER Zeolite to Enhance Its Performance in the Skeletal Isomerization of n-Butene. Catalysts 2024, 14, 697. https://doi.org/10.3390/catal14100697
Fan J, Zhu X, Yang F, Xu Y, Chen L. Seeds Combining Pyrrolidine Control the Framework Al Distribution of FER Zeolite to Enhance Its Performance in the Skeletal Isomerization of n-Butene. Catalysts. 2024; 14(10):697. https://doi.org/10.3390/catal14100697
Chicago/Turabian StyleFan, Jinlong, Xuedong Zhu, Fan Yang, Yarong Xu, and Lantian Chen. 2024. "Seeds Combining Pyrrolidine Control the Framework Al Distribution of FER Zeolite to Enhance Its Performance in the Skeletal Isomerization of n-Butene" Catalysts 14, no. 10: 697. https://doi.org/10.3390/catal14100697
APA StyleFan, J., Zhu, X., Yang, F., Xu, Y., & Chen, L. (2024). Seeds Combining Pyrrolidine Control the Framework Al Distribution of FER Zeolite to Enhance Its Performance in the Skeletal Isomerization of n-Butene. Catalysts, 14(10), 697. https://doi.org/10.3390/catal14100697