The Activation of Oxygen Species on the Pt/CeO2 Catalyst by H2 for NO Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. NO Oxidation Performance
2.2. Kinetic Study
2.3. Catalyst Characterization
2.3.1. XRD Analysis
2.3.2. TEM Analysis
2.3.3. H2-TPR Analysis
2.3.4. NO-TPSR Analysis
2.3.5. O2-TPD Analysis
2.3.6. XPS Analysis
2.3.7. In Situ DRIFTS Analysis
NO Adsorption and Desorption
Pt and Oxygen Species Confirmation Probed by CO over Pt/CeO2
O2 and Pre-Adsorbed NO
2.4. Catalytic Mechanism
3. Experimental Section
3.1. Catalyst Synthesis
3.2. Catalytic Testing
3.3. Catalyst Characterization Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, L.; Sin, S.; Ji, J.; Yang, S.; Tan, C.; Gu, Z.; Song, W.; Huang, C.; Sun, C.; Tang, C.; et al. Selective catalytic reduction of NO with NH3 over MnOx-CeO2 catalysts: The great synergy between CeO2 and crystalline phase of Mn3O4. Fuel 2023, 342, 127772. [Google Scholar] [CrossRef]
- He, X.; Chiu, Y.H.; Chang, T.H.; Lin, T.Y.; Wang, Z. The energy efficiency and the impact of air pollution on health in China. Healthcare 2020, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Wu, P.; Wang, Y.; Liu, Y. Recent advances in heavy metal poisoning mechanism and regeneration methods of selective catalytic reduction (SCR) denitration catalyst. Fuel 2024, 355, 129429. [Google Scholar] [CrossRef]
- Javed, M.T.; Irfan, N.; Gibbs, B.M. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. J. Environ. Manag. 2007, 83, 251–289. [Google Scholar] [CrossRef]
- Shigemoto, A.; Inoda, Y.; Ukai, C.; Higo, T.; Oka, K.; Sekine, Y. Electric field-assisted NSR process for lean NOx reduction at low temperatures. Chem. Commun. 2024, 60, 1563–1566. [Google Scholar] [CrossRef]
- Bendrich, M.; Scheuer, A.; Hayes, R.E.; Votsmeier, M. Unified mechanistic model for standard SCR, fast SCR, and NO2 SCR over a copper chabazite catalyst. Appl. Catal. B 2018, 222, 76–87. [Google Scholar] [CrossRef]
- Zhang, N.; Qian, Y.; Toyao, T.; Shimizu, K. Continuous unsteady-state De-NOx system via tandem water–gas shift, NH3 synthesis, and NH3-SCR under periodic lean/rich conditions. Environ. Sci. Technol. 2023, 57, 19584–19593. [Google Scholar] [CrossRef]
- Hong, Z.; Wang, Z.; Li, X. Catalytic oxidation of nitric oxide (NO) over different catalysts: An overview. Catal. Sci. Technol. 2017, 7, 3440–3452. [Google Scholar] [CrossRef]
- Liu, S.; Wu, X.; Weng, D.; Li, M.; Lee, H. Combined promoting effects of platinum and MnOx–CeO2 supported on alumina on NOx-assisted soot oxidation: Thermal stability and sulfur resistance. Chem. Eng. J. 2012, 203, 25–35. [Google Scholar] [CrossRef]
- Nickolov, R.; Stankova, N.; Khristova, M.; Mehandjiev, D. Copper oxide supported on carbon modified alumina as catalyst for reduction of NO with CO. J. Colloid. Interf. Sci. 2003, 265, 121–128. [Google Scholar] [CrossRef]
- An, Z.; Zhuo, Y.; Xu, C.; Chen, C. Influence of the TiO2 crystalline phase of MnOx/TiO2 catalysts for NO oxidation. Chinese J. Catal. 2014, 35, 120–126. [Google Scholar] [CrossRef]
- Kim, C.H.; Qi, G.; Dahlberg, K.; Li, W. Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science 2010, 327, 1624–1627. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.C.; Xie, Y.S.; Hong, I.Y.; Kim, J.Y. Catalytic oxidation of NO to NO2 on activated carbon. Energy Conv. Manag. 2001, 42, 2005–2018. [Google Scholar] [CrossRef]
- Kang, M.; Kim, D.; Park, E.; Kim, J.; Yie, J.; Kim, S.; Hopeweeks, L.; Eyring, E. Two-stage catalyst system for selective catalytic reduction of NOx by NH3 at low temperatures. Appl. Catal. B 2006, 68, 21–27. [Google Scholar] [CrossRef]
- Hernandez-Fernandez, J.; Aguilar-Elguezabal, A.; Castillo, S.; Ceron-Ceron, B.; Arizabalo, R.D.; Moran-Pineda, M. Oxidation of NO in gas phase by Au-TiO2 photocatalysts prepared by the sol-gel method. Catal. Today 2009, 148, 115–118. [Google Scholar] [CrossRef]
- Li, L.; Zhang, N. Atomic dispersion of bulk/nano metals to atomic-sites catalysts and their application in thermal catalysis. Nano Res. 2023, 16, 6380–6401. [Google Scholar] [CrossRef]
- Liu, K.; Zhao, X.; Ren, G.; Yang, T.; Ren, Y.; Lee, A.F.; Su, Y.; Pan, X.; Zhang, J.; Chen, Z.; et al. Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts. Nat. Commun. 2020, 11, 1263. [Google Scholar] [CrossRef]
- Ma, Y.; Gao, W.; Zhang, Z.; Zhang, S.; Tian, Z.; Liu, Y.; Ho, J.C.; Qu, Y. Regulating the surface of nanoceria and its applications in heterogeneous catalysis. Surf. Sci. Rep. 2018, 73, 1–36. [Google Scholar] [CrossRef]
- Olsson, L. The influence of Pt oxide formation and Pt dispersion on the reactions NO2 ⇔ NO + 1/2O2 over Pt/Al2O3 and Pt/BaO/Al2O3. J. Catal. 2002, 210, 340–353. [Google Scholar] [CrossRef]
- Lykhach, Y.; Kozlov, S.M.; Skála, T.; Tovt, A.; Stetsovych, V.; Tsud, N.; Dvořák, F.; Johánek, V.; Neitzel, A.; Mysliveček, J.; et al. Counting electrons on supported nanoparticles. Nat. Mater. 2016, 15, 284–288. [Google Scholar] [CrossRef]
- Li, S.; Xu, Y.; Chen, Y.; Li, W.; Lin, L.; Li, M.; Deng, Y.; Wang, X.; Ge, B.; Yang, C.; et al. Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal-support interaction. Angew. Chem. Int. Ed. 2017, 56, 10761–10765. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.; Mei, D.; Xiong, H.; Peng, B.; Ren, Z.; Hernandez, X.; Delariva, A.; Wang, M.; Engelhard, M.H.; Kovarik, L.; et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Li, L.; Jing, Y.; Qian, Y.; Chen, D.; Maeda, N.; Murayama, T.; Toyao, T.; Shimizu, K. In situ/operando spectroscopic evidence on associative redox mechanism for periodic unsteady-state water–gas shift reaction on Au/CeO2 catalyst. J. Catal. 2024, 433, 115500. [Google Scholar] [CrossRef]
- Khivantsev, K.; Jaegers, N.R.; Aleksandrov, H.A.; Song, I.; Pereira-Hernandez, X.I.; Engelhard, M.H.; Tian, J.; Chen, L.; Motta Meira, D.; Kovarik, L.; et al. Single Ru(II) ions on ceria as a highly active catalyst for abatement of NO. J. Am. Chem. Soc. 2023, 145, 5029–5040. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Toops, T.J.; Graham, U.M.; Jacobs, G.; Crocker, M. A kinetic and DRIFTS study of supported Pt catalysts for NO oxidation. Catal. Lett. 2006, 110, 29–37. [Google Scholar] [CrossRef]
- Marques, R.; Darcy, P.; Costa, P.D.; Mellottée, H.; Trichard, J.; Djéga-Mariadassou, G. Kinetics and mechanism of steady-state catalytic NO + O2 reactions on Pt/SiO2 and Pt/CeZrO2. J. Mol. Catal. A 2004, 221, 127–136. [Google Scholar] [CrossRef]
- Xie, J.; Wang, S.; Wang, F. Photo-induced thermal effect on Pt/CeO2 surface for promoting formaldehyde oxidation performance by photothermal catalysis. Appl. Surf. Sci. 2024, 644, 158709. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, X.; Chu, X.; Chen, M.; Chen, X.; Chen, J.; He, H.; Zhang, C. Tuning metal-support interaction of Pt-CeO2 catalysts for enhanced oxidation reactivity. Environ. Sci. Technol. 2021, 55, 16687–16698. [Google Scholar] [CrossRef]
- Li, M.; Li, W.; Yang, Y.; Yu, D.; Lin, J.; Wan, R.; Zhu, H. Remarkably efficient Pt/CeO2–Al2O3 catalyst for catalytic hydrodeiodination of monoiodoacetic acid: Synergistic effect of Al2O3 and CeO2. Chemosphere 2023, 327, 138515. [Google Scholar] [CrossRef]
- Lv, Y.; Li, A.; Ye, J.; Wang, H.; Hu, P.; Wang, K.; Guo, Y.; Tang, X.; Dai, S. Exploring the facet-dependent structural evolution of Pt/CeO2 catalysts induced by typical pretreatments for CO oxidation. ACS Appl. Mater. Interfaces 2024, 16, 43556–43564. [Google Scholar] [CrossRef]
- Wang, J.; Shi, X.; Chen, L.; Li, H.; Mao, M.; Zhang, G.; Yi, H.; Fu, M.; Ye, D.; Wu, J. Enhanced performance of low pt loading amount on Pt-CeO2 catalysts prepared by adsorption method for catalytic ozonation of toluene. Appl. Catal. A 2021, 625, 118342. [Google Scholar] [CrossRef]
- Peng, R.; Li, S.; Sun, X.; Ren, Q.; Chen, L.; Fu, M.; Wu, J.; Ye, D. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts. Appl. Catal. B 2018, 220, 462–470. [Google Scholar] [CrossRef]
- Yang, Q.; Li, L.; Wang, X.; Ma, Y. Tunable metal-support interaction of Pt/CeO2 catalyst via surfactant-assisted strategy: Insight into the total oxidation of CO and toluene. J. Hazard. Mater. 2022, 424, 127601. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, R.; Wu, S.; Chen, M.; Tang, J.; Zhao, L.; Liu, Y.; Fan, Y. The tuned selective catalytic reduction behaviors of NO over the Pt/CeO2 catalysts by preferentially exposing different facets of CeO2 supports. Catal. Commun. 2022, 172, 106530. [Google Scholar] [CrossRef]
- Chen, B.; Wang, B.; Sun, Y.; Wang, X.; Fu, M.; Wu, J.; Chen, L.; Tan, Y.; Ye, D. Plasma-assisted surface interactions of Pt/CeO2 catalyst for enhanced toluene catalytic oxidation. Catalysts 2019, 9, 2. [Google Scholar] [CrossRef]
- Zhou, G.; Lan, H.; Gao, T.; Xie, H. Influence of Ce/Cu ratio on the performance of ordered mesoporous CeCu composite oxide catalysts. Chem. Eng. J. 2014, 246, 53–63. [Google Scholar] [CrossRef]
- Ma, L.; Ding, C.; Wang, J.; Xu, H.; Zhang, K. Lanthanide modified pt/CeO2-based catalysts for methane partial oxidation: Relationship between catalytic activity and structure. Int. J. Hydrogen Energy 2023, 48, 19074–19086. [Google Scholar] [CrossRef]
- Zhang, N.; Miyazaki, S.; Qian, Y.; Jing, Y.; Toyao, T.; Shimizu, K. Mechanism of the periodic unsteady-state water–gas shift reaction on highly dispersed Cu-loaded CeO2 catalysts. ACS Catal. 2023, 13, 8503–8515. [Google Scholar] [CrossRef]
- Mihaylov, M.Y.; Ivanova, E.Z.; Vayssilov, G.N.; Hadjiivanov, K.I. Revisiting ceria-NOx interaction: FTIR studies. Catal. Today 2020, 357, 613–620. [Google Scholar] [CrossRef]
- Lu, Y.; Lin, F.; Zhang, Z.; Thompson, C.; Zhu, Y.; Doudin, N.; Kovarik, L.; García Vargas, C.E.; Jiang, D.; Fulton, J.L.; et al. Enhancing activity and stability of Pd-on-TiO2 single-atom catalyst for low-temperature CO oxidation through in situ local environment tailoring. J. Am. Chem. Soc. 2024, 146, 28141–28152. [Google Scholar] [CrossRef]
- Meunier, F.C. Relevance of IR spectroscopy of adsorbed CO for the characterization of heterogeneous catalysts containing isolated atoms. J. Phys. Chem. C 2021, 125, 21810–21823. [Google Scholar] [CrossRef]
- Philipp, S.; Drochner, A.; Kunert, J.; Vogel, H.; Theis, J.; Lox, E.S. Investigation of NO adsorption and NO/O2 co-adsorption on NOx -storage-components by DRIFT-spectroscopy. Top. Catal. 2004, 30–31, 235–238. [Google Scholar] [CrossRef]
- Urán, L.; Gallego, J.; Ruiz, W.; Bailón-García, E.; Bueno-López, A.; Santamaría, A. Monitoring intermediate species formation by DRIFT during the simultaneous removal of soot and NOx over LaAgMnO3 catalyst. Appl. Catal. A 2019, 588, 117280. [Google Scholar] [CrossRef]
Catalyst | Ea (kJ/mol) | Feed Gas Composition | Ref. | |
---|---|---|---|---|
Fresh | H2 Pretreatment | |||
1 wt% Pt/CeO2-500 | 23.7 | 19.5 | 500 ppm NO, 10% O2, N2 (balance) | This work |
1 wt% Pt/CeO2-600 | 26.7 | 20.9 | ||
1 wt% Pt/CeO2-700 | 31.1 | 30.6 | ||
1 wt% Pt/CeO2-800 | 32.2 | 31.8 | ||
0.5 wt% Pt/CeO2-500 | 31.4 | − | 500 ppm NO, 10% O2, N2 (balance) | [25] |
1.7 wt% Pt/SiO2-500 | 57.7 | − | 250 ppm NO, 3.5%O2, N2 (balance) | [26] |
0.35 wt% Pt/CeZrO2-500 | 34.6 | − | 500 ppm NO, 8% O2, N2 (balance) | [26] |
Catalyst | 1 wt% Pt/CeO2-500 | 1 wt% Pt/CeO2-600 | 1 wt% Pt/CeO2-800 |
---|---|---|---|
Fresh | 75.81 | 81.20 | 108.62 |
H2 pretreatment | 51.60 | 74.94 | 50.03 |
Catalyst | Molar Ratio | ||
---|---|---|---|
Pt0/(Pt2+ + Pt4+) | Ce3+/Ce4+ | Oads/Olatt | |
1 wt% Pt/CeO2-500 | 0.86 | 0.18 | 0.35 |
1 wt% Pt/CeO2-600 | 0.48 | 0.25 | 0.32 |
1 wt% Pt/CeO2-500-H2 | 0.98 | 0.49 | 0.51 |
1 wt% Pt/CeO2-600-H2 | 0.86 | 0.37 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, S.; Cheng, Y.; Zheng, L.; Song, L.; Zi, X.; Dai, H. The Activation of Oxygen Species on the Pt/CeO2 Catalyst by H2 for NO Oxidation. Catalysts 2024, 14, 778. https://doi.org/10.3390/catal14110778
Li X, Li S, Cheng Y, Zheng L, Song L, Zi X, Dai H. The Activation of Oxygen Species on the Pt/CeO2 Catalyst by H2 for NO Oxidation. Catalysts. 2024; 14(11):778. https://doi.org/10.3390/catal14110778
Chicago/Turabian StyleLi, Xiangru, Shuangye Li, Yao Cheng, Lechen Zheng, Liyun Song, Xuehong Zi, and Hongxing Dai. 2024. "The Activation of Oxygen Species on the Pt/CeO2 Catalyst by H2 for NO Oxidation" Catalysts 14, no. 11: 778. https://doi.org/10.3390/catal14110778
APA StyleLi, X., Li, S., Cheng, Y., Zheng, L., Song, L., Zi, X., & Dai, H. (2024). The Activation of Oxygen Species on the Pt/CeO2 Catalyst by H2 for NO Oxidation. Catalysts, 14(11), 778. https://doi.org/10.3390/catal14110778