Eco-Friendly Synthesis of Thiazole Derivatives Using Recyclable Cross-Linked Chitosan Hydrogel Biocatalyst Under Ultrasonic Irradiation as Anti-Hepatocarcinogenic Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of PIBTU-CS Hydrogel
2.2. Thermogravimetric (TG) Analysis
2.3. Synthesis of Thiazole Derivatives Using PIBTU-CS Hydrogel as Basic Heterogeneous Catalyst
2.4. Antitumor Activity
3. Materials and Methods
3.1. Apparatus and Instrumentations
3.2. Synthesis and Characterization of (PIBTU-CS) Hydrogel
3.3. Synthesis of 2-(4-((2-Carbamothioylhydrazineylidene)Methyl)Phenoxy)-N-(4-Chlorophenyl)Acetamide (5)
3.4. Synthesis of Thiazole Derivatives 7a–f, 9a–c, and 11a,b
3.5. Anticancer Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castiello, C.; Junghanns, P.; Mergel, A.; Jacob, C.; Ducho, C.; Valente, S.; Rotili, D.; Fioravanti, R.; Zwergel, C.; Mai, A. Green med chem: The challenge in the next decade toward eco-friendly compounds and processes in drug design. Green Chem. 2023, 25, 2109–2169. [Google Scholar] [CrossRef]
- Miceli, M.; Frontera, P.; Macario, A.; Malara, A. Recovery/Reuse of Heterogeneous Supported Spent Catalysts. Catalysts 2021, 11, 591. [Google Scholar] [CrossRef]
- Jiménez-Gómez, C.P.; Cecilia, J.A. Chitosan: A natural biopolymer with a wide and varied range of applications. Molecules 2020, 25, 3981. [Google Scholar] [CrossRef]
- Al-Humaidi, J.Y.; Gomha, S.M.; Abd El-Ghany, N.A.; Farag, B.; Zaki, M.E.A.; Abolibda, T.Z.; Mohamed, N.A. Green synthesis and molecular docking study of some new thiazoles using terephthalohydrazide chitosan hydrogel as eco-friendly biopolymeric catalyst. Catalysts 2023, 13, 1311. [Google Scholar] [CrossRef]
- Elmehbad, N.Y.; Mohamed, N.A.; Abd El-Ghany, N.A. Synthesis of novel antimicrobial and food-preserving hydrogel nanocomposite films based on carboxymethylcellulose. Starch-Stärke 2024, 76, 2300258. [Google Scholar] [CrossRef]
- Ekapakul, N.; Lerdwiriyanupap, T.; Siritanon, T.; Choochottiros, C. Double network structure via ionic bond and covalent bond of carboxymethyl chitosan and poly(ethylene glycol): Factors affecting hydrogel formation. Carbohydr. Polym. 2023, 318, 121130. [Google Scholar] [CrossRef]
- Drzymalska, K.W.; Tomaszewska, E.; Sadowska, M.; Opielak, M.; Kucinska-Lipka, J.; Janik, H. Crosslinking of chitosan with dialdehyde chitosan as a new approach for biomedical applications. Materials 2020, 13, 3413. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, N.A.; Abd El-Ghany, N.A.; Fahmy, M.M. Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels. Int. J. Biol. Macromol. 2016, 82, 589–598. [Google Scholar] [CrossRef]
- Zhong, S. Incorporation of palladium catalyst inside cross-linked chitosan hybrid nanofibers for the Sonogashira reaction. Kinet. Catal. 2020, 61, 480–485. [Google Scholar] [CrossRef]
- Xu, H.; Liao, W.M.; Li, H.F. A mild and efficient ultrasound-assisted synthesis of diaryl ethers without any catalyst. Ultrason. Sonochem. 2007, 14, 779–782. [Google Scholar] [CrossRef]
- Jarag, K.J.; Pinjari, D.V.; Pandit, A.B.; Shankarling, G.S. Synthesis of chalcone (3-(4-fluorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one): Advantage of sonochemical method over conventional method. Ultrason. Sonochem. 2011, 18, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Cravotto, G.; Fokin, V.V.; Garella, D.; Binello, A.; Boffa, L.; Barge, A. Ultrasound-promoted copper-catalyzed azide-alkyne cycloaddition. J. Comb. Chem. 2010, 12, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Pizzuti, L.; Martins, P.L.G.; Ribeiro, B.A.; Quina, F.H.; Pinto, E.; Flores, A.F.C.; Venzke, D.; Pereira, C.M.P. Efficient sonochemical synthesis of novel 3,5-diaryl-4,5-dihydro-1H-pyrazole-1-carboximidamides. Ultrason. Sonochem. 2010, 17, 34–37. [Google Scholar] [CrossRef]
- Watt, M.J.; Miotto, P.M.; De Nardo, W.; Montgomery, M.K. The liver as an endocrine organ—Linking NAFLD and insulin resistance. Endocr. Rev. 2019, 40, 1367–1393. [Google Scholar]
- Mukherji, A.; Bailey, S.M.; Staels, B.; Baumert, T.F. The circadian clock and liver function in health and disease. J. Hepatol. 2019, 71, 200–211. [Google Scholar] [CrossRef]
- Macpherson, A.J.; Heikenwalder, M.; Ganal-Vonarburg, S.C. The liver at the nexus of host-microbial interactions. Cell Host Microbe 2016, 20, 561–571. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019, 2, 141. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; DeSantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S.; et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin. 2012, 62, 220–241. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett. 2014, 347, 159–166. [Google Scholar] [CrossRef]
- Varmus, H. The new era in cancer research. Science 2006, 312, 1162–1165. [Google Scholar] [CrossRef]
- Franchetti, P.; Cappellacci, L.; Grifantini, M.; Barzi, A.; Nocentini, G.; Yang, H.; O’Connor, A.; Jayaram, H.N.; Carrell, C.; Goldstein, B.M. Furanfurin and thiophenfurin: Two novel tiazofurin analogues. Synthesis, structure, antitumor activity, and interactions with inosine monophosphate dehydrogenase. J. Med. Chem. 1995, 38, 3829–3837. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Ruiz, C.H.; Koenig, M.; Cameron, M.D. Characterization of dasatinib and its structural analogs as CYP3A4 mechanism-based inactivators and the proposed bioactivation pathways. Drug Metab. Dispos. 2009, 37, 1242–1250. [Google Scholar] [CrossRef] [PubMed]
- Hu-Lieskovan, S.; Mok, S.; Homet Moreno, B.; Tsoi, J.; Robert, L.; Goedert, L.; Pinheiro, E.M.; Koya, R.C.; Graeber, T.G.; Comin-Anduix, B.; et al. Improved antitumor activity of immunotherapy with B-RAF and MEK inhibitors in BRAF(V600E) melanoma. Sci. Transl. Med. 2015, 7, 279ra41. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Chen, S.; Zhou, X.; Xie, L.; Chen, A. 5-FU and ixabepilone modify the microRNA expression profiles in MDA-MB-453 triple-negative breast cancer cells. Oncol. Lett. 2014, 7, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Altmann, K.H. Epothilone B and its analogs—A new family of anti-cancer agents. Mini-Rev. Med. Chem. 2003, 3, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Aliabadi, A.; Shamsa, F.; Ostad, S.N.; Emami, S.; Shafiee, A.; Davoodi, J.; Foroumadi, A. Synthesis and biological evaluation of 2-phenylthiazole-4-carboxamide derivatives as anti-cancer agents. Eur. J. Med. Chem. 2010, 45, 5384–5389. [Google Scholar] [CrossRef] [PubMed]
- Banimustafa, M.; Kheirollahi, A.; Safavi, M.; Ardestani, S.K.; Aryapour, H.; Foroumadi, A.; Emami, S. Synthesis and biological evaluation of 3-(trimethoxyphenyl)-2(3H)-thiazole thiones as combretastatin analogs. Eur. J. Med. Chem. 2013, 70, 692–702. [Google Scholar] [CrossRef]
- Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem. 2015, 97, 699–718. [Google Scholar] [CrossRef]
- Das, D.; Sikdar, P.; Bairagi, M. Recent developments of 2-aminothiazoles in medicinal chemistry. Eur. J. Med. Chem. 2016, 109, 89–98. [Google Scholar] [CrossRef]
- Gomha, S.M.; Abolibda, T.Z.; Alruwaili, A.H.; Farag, B.; Boraie, W.E.; Al-Hussain, S.A.; Zaki, M.E.A.; Hussein, A.M. Efficient green synthesis of hydrazide derivatives using L-proline: Structural characterization, anticancer activity, and molecular docking studies. Catalysts 2024, 14, 489. [Google Scholar] [CrossRef]
- Rashdan, H.R.M.; Gomha, S.M.; El-Gendey, M.S.; El-Hashash, M.A.; Soliman, A.M.M. Eco-friendly one-pot synthesis of some new pyrazolo[1,2-b]phthalazinediones with antiproliferative efficacy on human hepatic cancer cell lines. Green Chem. Lett. Rev. 2018, 11, 264–274. [Google Scholar] [CrossRef]
- Rashdan, H.R.M.; Abdelmonsef, A.H.; Shehadi, I.A.; Gomha, S.M.; Soliman, A.M.M.; Mahmoud, H.K. Synthesis, molecular docking screening and anti-proliferative potency evaluation of some new imidazo[2,1-b]thiazole linked thiadiazole conjugates. Molecules 2020, 25, 4997. [Google Scholar] [CrossRef]
- Ma, L.; Xie, C.; Ma, Y.; Liu, J.; Xiang, M.; Ye, X.; Zheng, H.; Chen, Z.; Xu, Q.; Chen, T.; et al. Synthesis and biological evaluation of novel 5-benzylidenethiazolidine-2,4-dione derivatives for the treatment of inflammatory diseases. J. Med. Chem. 2011, 54, 2060–2068. [Google Scholar] [CrossRef]
- Rashid, K.O.; Mohamed, K.S.; Salam, M.A.E.; Abdel-Latif, E.; Fadda, A.A.; Elmorsy, M.R. Synthesis of novel phenoxyacetamide derivatives as potential insecticidal agents against the cotton leafworm, Spodoptera littoralis. Polycycl. Aromat. Compd. 2023, 43, 356–369. [Google Scholar] [CrossRef]
- Eddya, M.; Tbib, B.; El-Hami, K. A comparison of chitosan properties after extraction from shrimp shells by diluted and concentrated acids. Heliyon 2020, 6, e03486. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
Temperature (°C) | Weight Loss (%) a | |
---|---|---|
Chitosan | PIBTU-CS | |
25 | 0.41 | 0.00 |
50 | 1.66 | 0.00 |
100 | 6.04 | 0.00 |
150 | 9.00 | 1.00 |
200 | 10.48 | 2.50 |
250 | 12.53 | 4.70 |
260 | 14.26 | 7.59 |
270 | 17.53 | 8.51 |
280 | 22.20 | 10.00 |
290 | 27.29 | 11.35 |
300 | 31.41 | 13.63 |
310 | 33.80 | 16.51 |
320 | 35.49 | 19.44 |
330 | 37.07 | 22.00 |
340 | 38.30 | 24.65 |
350 | 39.36 | 27.00 |
400 | 42.60 | 29.00 |
450 | 44.77 | 33.99 |
500 | 47.06 | 37.16 |
Compound. | R1 | R2 | TEA | PIBTU-CS Hydrogel | ||
---|---|---|---|---|---|---|
Time (min) | (%) Yield b | Time (min) | (%) Yield b | |||
7a | Me | C6H5 | 48 | 69 | 25 | 87 |
7b | Me | 4-MeC6H4 | 51 | 71 | 27 | 89 |
7c | Me | 4-MeOC6H4 | 57 | 72 | 35 | 86 |
7d | Me | 4-ClC6H4 | 47 | 70 | 22 | 90 |
7e | Me | 4-NO2C6H4 | 32 | 73 | 20 | 87 |
7f | Ph | Ph | 49 | 74 | 30 | 90 |
9a | 4-ClC6H4 | H | 53 | 71 | 26 | 88 |
9b | 4-BrC6H4 | H | 39 | 72 | 28 | 87 |
9c | 4-NO2C6H4 | H | 44 | 68 | 21 | 89 |
11a | Me | COCH3 | 49 | 70 | 29 | 87 |
11b | Me | COOEt | 60 | 67 | 31 | 85 |
Entry | Catalyst (Wt%) | Solvent | Time (min) | Temperature (°C) | Yield (%) |
---|---|---|---|---|---|
1 | 5 | EtOH | 25 | 40 | 61 |
2 | 10 | EtOH | 25 | 40 | 83 |
3 a | 15 | EtOH | 25 | 40 | 87 |
4 | 15 | DMSO | 25 | 40 | 78 |
5 | 15 | Dioxan | 25 | 40 | 80 |
6 | 15 | EtOH | 20 | 40 | 81 |
7 | 15 | EtOH | 30 | 40 | 87 |
8 | 15 | EtOH | 25 | 25 | 75 |
9 | 15 | EtOH | 25 | 35 | 82 |
10 | 15 | EtOH | 25 | 50 | 87 |
State of Catalyst | Fresh Catalyst | Run 1 | Run 2 | Run 3 | Run 4 |
---|---|---|---|---|---|
Product 7a (% Yield) b | 87 | 85 | 82 | 79 | 55 |
Compound | R1 | R2 | IC50 (µM) a |
---|---|---|---|
7a | Me | C6H5N=N- | 2.31 ± 0.57 |
7b | Me | 4-MeC6H4N=N- | 1.25 ± 0.67 |
7c | Me | 4-MeOC6H4N=N- | 0.73 ± 0.48 |
7d | Me | 4-ClC6H4N=N- | 9.04 ± 0.77 |
7e | Me | 4-NO2C6H4N=N- | 14.36 ± 0.53 |
7f | Ph | Ph | 35.27 ± 0.75 |
9a | 4-ClC6H4 | H | 8.08 ± 0.96 |
9b | 4-BrC6H4 | H | 7.06 ± 0.48 |
9c | 4-NO2C6H4 | H | 17.35 ± 0.94 |
11a | Me | COCH3 | 1.42 ± 0.71 |
11b | Me | COOEt | 1.03 ± 0.29 |
Doxorubicin | - | - | 0.31 ± 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomha, S.M.; El-Ghany, N.A.A.; Ebaid, M.S.; Abolibda, T.Z.; E. A. Zaki, M.; Alhilal, M.; Alhilal, S.; Mohamed, N.A. Eco-Friendly Synthesis of Thiazole Derivatives Using Recyclable Cross-Linked Chitosan Hydrogel Biocatalyst Under Ultrasonic Irradiation as Anti-Hepatocarcinogenic Agents. Catalysts 2024, 14, 840. https://doi.org/10.3390/catal14120840
Gomha SM, El-Ghany NAA, Ebaid MS, Abolibda TZ, E. A. Zaki M, Alhilal M, Alhilal S, Mohamed NA. Eco-Friendly Synthesis of Thiazole Derivatives Using Recyclable Cross-Linked Chitosan Hydrogel Biocatalyst Under Ultrasonic Irradiation as Anti-Hepatocarcinogenic Agents. Catalysts. 2024; 14(12):840. https://doi.org/10.3390/catal14120840
Chicago/Turabian StyleGomha, Sobhi M., Nahed A. Abd El-Ghany, Manal S. Ebaid, Tariq Z. Abolibda, Magdi E. A. Zaki, Mohammad Alhilal, Suzan Alhilal, and Nadia A. Mohamed. 2024. "Eco-Friendly Synthesis of Thiazole Derivatives Using Recyclable Cross-Linked Chitosan Hydrogel Biocatalyst Under Ultrasonic Irradiation as Anti-Hepatocarcinogenic Agents" Catalysts 14, no. 12: 840. https://doi.org/10.3390/catal14120840
APA StyleGomha, S. M., El-Ghany, N. A. A., Ebaid, M. S., Abolibda, T. Z., E. A. Zaki, M., Alhilal, M., Alhilal, S., & Mohamed, N. A. (2024). Eco-Friendly Synthesis of Thiazole Derivatives Using Recyclable Cross-Linked Chitosan Hydrogel Biocatalyst Under Ultrasonic Irradiation as Anti-Hepatocarcinogenic Agents. Catalysts, 14(12), 840. https://doi.org/10.3390/catal14120840