Synthesis and Experimental Screening of Catalysts for H2S to H2 Decomposition Under Close-to-Industry Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalysts
- Series of FeS doped with Mo at a concentration of 1–3 at%;
- Series of FeS doped with W at a concentration of 1–3 at%;
- A sample of pyrrhotite-like structure doped with Mo: (Fe0.98Mo0.02)0.87S;
- A sample of pyrrhotite-like structure doped with W: (Fe0.98W0.02)0.87S;
- A sample of Ni3S2;
- Series of hexaaluminate catalysts: LaFexAl12−xO19, where x = 2, 4, or 6.
2.2. Catalyst Activity Tests
2.3. Catalyst Regeneration
2.4. Supported Catalyst Tests
2.5. DFT Study
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pouliquen, F.; Blanc, C.; Arretz, E.; Labat, I.; Tournier-Lasserve, J.; Ladousse, A.; Nougayrede, J.; Savin, G.; Ivaldi, R.; Nicolas, M.; et al. Hydrogen Sulfide. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Bongartz, D.; Ghoniem, A.F. Impact of sour gas composition on ignition delay and burning velocity in air and oxy-fuel combustion. Combust. Flame 2015, 162, 2749–2757. [Google Scholar] [CrossRef]
- Krenzke, D. Troubleshooting Hydrotreater Performance: Part I. A comprehensive review of operating parameters and performance issues affecting ULSD hydrotreater. Refin. Oper. 2011, 2, 1–11. [Google Scholar]
- Khairulin, S.; Kerzhentsev, M.; Salnikov, A.; Ismagilov, Z.R. Direct Selective Oxidation of Hydrogen Sulfide: Laboratory, Pilot and Industrial Tests. Catalysts 2021, 11, 1109. [Google Scholar] [CrossRef]
- Startsev, A.N. The crucial role of catalysts in the reaction of low temperature decomposition of hydrogen sulfide: Non-equilibrium thermodynamics of the irreversible process in an open system. J. Mol. Catal. 2020, 497, 111240. [Google Scholar] [CrossRef]
- Li, J.; Chen, C.-B.; Wang, D.-D.; Li, C.-X.; Zhang, F.; Li, D.-B.; Min, D.; Li, W.-W.; Lam, P.K.S.; Yu, H.-Q. Solar-Driven Synchronous Photoelectrochemical Sulfur Recovery and Pollutant Degradation. ACS Sustain. Chem. Eng. 2018, 6, 9591–9595. [Google Scholar] [CrossRef]
- De Crisci, A.G.; Moniri, A.; Xu, Y. Hydrogen from hydrogen sulfide: Towards a more sustainable hydrogen economy. Int. J. Hydrog. Energy 2019, 44, 1299–1327. [Google Scholar] [CrossRef]
- Jangam, K.; Chen, Y.Y.; Qin, L.; Fan, L.S. Perspectives on reactive separation and removal of hydrogen sulfide. Chem. Eng. Sci. 2021, 11, 100105. [Google Scholar] [CrossRef]
- Chan, Y.H.; Loy, A.C.M.; Cheah, K.W.; Chai, S.Y.W.; Ngu, L.H.; How, B.S.; Li, C.; Lock, S.S.M.; Wong, M.K.; Yiin, C.L.; et al. Hydrogen sulfide (H2S) conversion to hydrogen (H2) and value-added chemicals: Progress, challenges and outlook. Chem. Eng. J. 2023, 458, 141398. [Google Scholar] [CrossRef]
- Paqell Home Page. Available online: https://Paqell.Com/ (accessed on 2 February 2024).
- Fukuda, K.; Dokiya, M.; Kameyama, T.; Kotera, Y. Catalytic Decomposition of Hydrogen Sulfide. Ind. Eng. Chem. Fundam. 1978, 17, 243–248. [Google Scholar] [CrossRef]
- Chivers, T.; Hyne, J.B.; Lau, C. The thermal decomposition of hydrogen sulfide over transition metal sulfides. Int. J. Hydrog. Energy 1980, 3, 499–506. [Google Scholar] [CrossRef]
- Kwok, K.M.; Ong, S.W.D.; Chen, L.; Zeng, H.C. Constrained Growth of MoS2 Nanosheets within a Mesoporous Silica Shell and Its Effects on Defect Sites and Catalyst Stability for H2S Decomposition. ACS Catal. 2018, 8, 714–724. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, S.Y.; Ye, L.H.; Zhang, X.F.; Zhang, Y.F.; Chen, W.J. Exploring the Reaction Mechanism of H2S Decomposition with MS3 (M = Mo, W) Clusters. ACS Omega 2020, 5, 13324–13332. [Google Scholar] [CrossRef]
- Jiang, G.; Yang, Z.; Zhang, F.; Li, G.; Wei, Z.; Niu, B.; Zhao, M.; Zhang, Z.; Hao, Z. Thermal Decomposition of H2S at Low Temperature on Mo-Containing Catalysts Derived from MAlO (M = Mg, Co, and Ni) Layered Double Hydroxides. Ind. Eng. Chem. Res. 2023, 62, 7224–7234. [Google Scholar] [CrossRef]
- Kraia, T.; Kaklidis, N.; Konsolakis, M.; Marnellos, G.E. Hydrogen production by H2S decomposition over ceria supported transition metal (Co, Ni, Fe and Cu) catalysts. Int. J. Hydrog. Energy 2019, 44, 9753–9762. [Google Scholar] [CrossRef]
- Jangam, K.V.; Joshi, A.S.; Chen, Y.Y.; Mahalingam, S.; Sunny, A.A.; Fan, L.S. Synergistic decomposition of H2S into H2 by Ni3S2 over ZrO2 support via a sulfur looping scheme with CO2 enabled carrier regeneration. Chem. Eng. J. 2021, 426, 131815. [Google Scholar] [CrossRef]
- Kiucht, H.; Nakamura, T.; Funaki, K.; Tanaka, T. Recovery of hydrogen from hydrogen sulfide with metals or metal sulfides. Int. J. Hydrog. Energy 1982, 7, 477–482. [Google Scholar] [CrossRef]
- Kiuchi, H.; Funaki, K.; Tanaka, T. Thermochemical decomposition of hydrogen sulfide with nickel sulfide. Metall. Mater. Trans. B 1983, 14, 347–352. [Google Scholar] [CrossRef]
- Kraia, T.; Varvoutis, G.; MArnellos, G.E. Unveiling the Role of In Situ Sulfidation and H2O Excess on H2S Decomposition to Carbon-Free H2 over Cobalt/Ceria Catalysts. Catalysts 2023, 13, 504. [Google Scholar] [CrossRef]
- Jangam, K.; Chen, Y.Y.; Qin, L.; Fan, L.S. Mo-Doped FeS Mediated H2 Production from H2S via an in Situ Cyclic Sulfur Looping Scheme. ACS Sustain. Chem. Eng. 2021, 9, 11204–11211. [Google Scholar] [CrossRef]
- Aljama, H.; Alaithan, Z.; Almofleh, A. Catalytic Conversion of H2S to H2: Challenges and Catalyst Limitations. J. Phys. Chem. C 2023, 127, 9022–9029. [Google Scholar] [CrossRef]
- Palma, V.; Vaiano, V.; Barba, D.; Colozzi, M.; Palo, E.; Barbato, L.; Cortese, S. Oxidative Decomposition of H2S over Alumina-Based Catalyst. Ind. Eng. Chem. Res. 2017, 56, 9072–9078. [Google Scholar] [CrossRef]
- Reshetenko, T.V.; Khairulin, S.R.; Ismagilov, Z.R.; Kuznetsov, V.V. Study of the reaction of high-temperature H2S decomposition on metal oxides (-Al2O3;-Fe2O3; V2O5). Int. J. Hydrog. Energy 2002, 27, 387–394. [Google Scholar] [CrossRef]
- Sánchez-Hervás, J.; Ortiz, I.; Martí, V.; Andray, A. Removal of Organic Sulfur Pollutants from Gasification Gases at Intermediate Temperature by Means of a Zinc–Nickel-Oxide Sorbent for Integration in Biofuel Production. Catalysts 2023, 13, 1089. [Google Scholar] [CrossRef]
- Jiang, G.; Zhang, X.; Zhang, F.; Liu, Z.; Wang, Z.; Hao, Z.; Lin, C. Efficient recovery of hydrogen and sulfur resources over non-sulfide based LaFexAl12−xO19 hexaaluminate catalysts by H2S catalytic decomposition. Appl. Catal. B 2020, 263, 118354. [Google Scholar] [CrossRef]
- Guldal, N.O.; Figen, H.E.; Baykara, S.Z. New catalysts for hydrogen production from H2S: Preliminary results. Int. J. Hydrog. Energy 2015, 40, 7452–7458. [Google Scholar] [CrossRef]
- Guldal, N.O.; Figen, H.E.; Baykara, S.Z. Perovskite catalysts for hydrogen production from hydrogen sulfide. Int. J. Hydrog. Energy 2018, 43, 1038–1046. [Google Scholar] [CrossRef]
- Burra, K.R.G.; Bassioni, G.; Gupta, A.K. Catalytic transformation of H2S for H2 production. Int. J. Hydrog. Energy 2018, 43, 22852–22860. [Google Scholar] [CrossRef]
- Chou, C.-L. H2S/SO2 removal in the modified-claus reaction over packed alumina beds. Environ. Prog. Sustain. Energy 1987, 6, 183–189. [Google Scholar] [CrossRef]
- ZareNezhad, B. An investigation on the most important influencing parameters regarding the selection of the proper catalysts for Claus SRU converters. J. Ind. Eng. Chem. 2009, 15, 143–147. [Google Scholar] [CrossRef]
- Sadighi, S.; Mohaddecy, S.R.S.; Rashidzadeh, M.; Nouriasl, P. Kinetic-based Models for Alumina and Titania Claus Catalysts Based on Experimental Data. Pet. Chem. 2020, 60, 321–328. [Google Scholar] [CrossRef]
- Su, H.; Song, S.; Li, S.; Gao, Y.; Ge, L.; Song, W.; Ma, T.; Liu, J. High-valent bimetal Ni3S2/Co3S4 induced by Cu doping for bifunctional electrocatalytic water splitting. Appl. Catal. B 2021, 293, 120225. [Google Scholar] [CrossRef]
- Aray, Y.; Vega, D.; Rodriguez, J.; Vidal, A.B.; Grillo, M.E.; Coll, S. First-Principles Study of Low Miller Index Ni3S2 Surfaces in Hydrotreating Conditions. J. Phys. Chem. B 2009, 113, 3058–3070. [Google Scholar] [CrossRef]
- Wang, L.; Jin, Z.; Chen, X.; Su, Y.; Huang, X. The Origin and Occurrence of Natural Hydrogen. Energies 2023, 16, 2400. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Q.; Xu, H.; Ding, Q.; Zhu, D.; Meng, Q. Genesis and energy significance of natural hydrogen. Unconv. Resour. 2023, 3, 176–182. [Google Scholar] [CrossRef]
- Grønvold, F.; Haraldsen, H.; Faurholt, C. On the Phase Relations of Synthetic and Natural Pyrrhotites (Fe(1−x)S). Acta Chem. Scand. 1952, 6, 1452–1469. [Google Scholar] [CrossRef]
- Vaughan, D.J. Mineral Chemistry of Metal Sulfides; Earth Sciences: Cambridge, UK, 1978. [Google Scholar]
- Bezverkhyy, I.; Danot, M.; Afanasiev, P. New low-temperature preparations of some simple and mixed Co and Ni dispersed sulfides and their chemical behavior in reducing atmosphere. Inorg. Chem. 2003, 42, 1764–1768. [Google Scholar] [CrossRef]
- Osasuyi, O.; Quang, D.V.; Basina, G.; Al Wahedi, Y.; Abu Zahra, M.R.M.; Palmisano, G.; Al-Ali, K. Reversible Metal Sulfide Transition in a Two-Step Thermochemical H2S Splitting. Ind. Eng. Chem. Res. 2022, 61, 6135–6145. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 2004, 25, 1463–1473. [Google Scholar] [CrossRef]
- Henkelman, G.; Uberuaga, B.P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
Ref. | Catalyst | Temp., °C | GHSV, h−1 | H2S Content, vol% | H2 Yield, % |
---|---|---|---|---|---|
Metal sulfides | |||||
[12] | FeS | 500 | 150 * | 100 | 3 |
[13] | MoS2 core SiO2 shell | 500 | n/a | 0.25 | 10 |
This work | Fe0.98Mo0.02S Fe0.98W0.02S | 500 | 1000 | 10 | 10 |
Supported nickel sulfide | |||||
[16] | Supported Ni | 550 | 13,500 | 10 | 2.5 |
[17] | Supported Ni3S2 | 700 | 5000 | 0.9 | 80 |
This work | Supported Ni3S2 | 500 | 540 | 10 | 40 |
Aluminates | |||||
[26] | LaFexAl(12−x)O19 | 800 | 24,000 | 0.1 | 50 |
This work | LaFexAl(12−x)O19 | 500 | 1000 | 10 | 1 |
Surface | Barrier, (eV) | |
---|---|---|
TS1 | TS2 | |
(111)_S | 0.39 | 0.81 |
(001) side A | 1.16 | 1.86 |
(001) side B | 1.20 | 1.44 |
(11-1)_S | 0.34 | 1.14 |
(110)_3 | 0.33 | 1.17 |
(−111) | 1.01 | 0.97 |
(1-10) | 1.24 | 0.57 |
(−210) | 0.89 | 1.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palankoev, T.; Manakhov, A.; Kovalskii, A.; Sukhanova, E.; Popov, Z.; Chareev, D.; Dement’ev, K.; Maximov, A.; Al-Qasim, A. Synthesis and Experimental Screening of Catalysts for H2S to H2 Decomposition Under Close-to-Industry Conditions. Catalysts 2024, 14, 839. https://doi.org/10.3390/catal14110839
Palankoev T, Manakhov A, Kovalskii A, Sukhanova E, Popov Z, Chareev D, Dement’ev K, Maximov A, Al-Qasim A. Synthesis and Experimental Screening of Catalysts for H2S to H2 Decomposition Under Close-to-Industry Conditions. Catalysts. 2024; 14(11):839. https://doi.org/10.3390/catal14110839
Chicago/Turabian StylePalankoev, Timur, Anton Manakhov, Andrey Kovalskii, Ekaterina Sukhanova, Zakhar Popov, Dmitry Chareev, Konstantin Dement’ev, Anton Maximov, and Abdulaziz Al-Qasim. 2024. "Synthesis and Experimental Screening of Catalysts for H2S to H2 Decomposition Under Close-to-Industry Conditions" Catalysts 14, no. 11: 839. https://doi.org/10.3390/catal14110839
APA StylePalankoev, T., Manakhov, A., Kovalskii, A., Sukhanova, E., Popov, Z., Chareev, D., Dement’ev, K., Maximov, A., & Al-Qasim, A. (2024). Synthesis and Experimental Screening of Catalysts for H2S to H2 Decomposition Under Close-to-Industry Conditions. Catalysts, 14(11), 839. https://doi.org/10.3390/catal14110839