Small Molecules Effective for Conversion of Lignocellulosic Biomass to Furfural and Its Derivatives
Abstract
:1. Introduction
2. Utilization of Hemicellulose from Lignocellulosic Biomass for Furfural Production
2.1. One-Pot Processes for Furfural Production
2.2. Role of Small Molecules in Separation of Hemicellulose from Lignocellulosic Biomass
Active Agent | Structure or Formula | B.p. (°C) | Density | Aq. Solubility | Role | Ref. |
---|---|---|---|---|---|---|
Aq. solution of sodium hydroxide | Aq. NaOH | 106 (10%NaOH)–119 (40%NaOH) | 1.11 (10%NaOH)–1.43 (10%NaOH) | Miscible | Reagent | [36,37,39,41,42,43,44,45] |
Aqueous solution of sodium sulfide | Aq. Na2S | 100 | 1.58 (pentahydrate) | 18.6 g/100 mL | Reagent and solvent | [36,37] |
Magnesium chloride hexahydrate | MgCl2·6H2O | 102.2 (10% MgCl2) 106.5 (25% MgCl2) 120.4 (50% MgCl2) | 1.57 (hexahydrate) | 54.3g MgCl2/100 mL | Reagent | [40] |
dioxane | 101.3 | 1.03 | Miscible | Solvent | [24] | |
Glycolic acid (solid) | HOCH2COOH | 100 (with decomp.) M.p.:79–80 | 1.49 | 70% solution | Acid catal. reagent | [48] |
Tropic acid (solid) | 322.5 (M.p.: 116) | 1.26 | 5% solution | Acid catal. reagent | [49] | |
Oxalic acid (solid) | (COOH)2 or (COOH)2·2H2O | Decomp. (M.p.: 189.5) (M.p.: 101.5 dihydrate) | 1.9 (1.65 dihydrate) | 10 g/100 mL | Acid catal. and/or component of DES | [50] |
Maleic acid (solid) | Decomp. (M.p.: 130.5) | 1.59 | 47.8 g/100 mL | Acid catal. reagent | [51] | |
Formic acid | HCOOH | 100.7 | 1.22 | Miscible | Acid catal. reagent | [47,52,53] |
Acetic acid | CH3COOH | 118.1 | 1.05 | Miscible | Acid catal. reagent | [52] |
Active Agent | Structure or Formula | B.p. (°C) | Density | Aq. Solubility | Role | Ref. |
---|---|---|---|---|---|---|
Methanesulfonic acid (liquid) | CH3SO3H | 167 (M.p.: 17–19) | 1.48 | Miscible | Acidic catal. | [54,67] |
Benzenesulfonic acid (solid) | 190 (M.p.: 51) | 1.32 | Soluble (45 g/100 mL) | Acidic catal. | [55,56] | |
Toluenesulfonic acid monohydrate (solid) | Decomp. (M.p.: 105–107) | 1.24 | 67 g/100 mL | Acidic catal. | [55,56,57] | |
Dimethyl sulfoxide | 189 | 1.1 | Miscible | Biobased solvent | [58] | |
1-pentanol | CH3CH2CH2CH2CH2OH | 138 | 0.81 | 2.2 g/100 mL | Biobased solvent | [58] |
γ-valerolactone | 205 | 1.05 | 1 g/100 mL | Biobased aprotic solvent | [59,68] | |
DBU (diazabicyclo(5,4,0)-undec-7-ene) | 261 (M.p.: −70) | 1.02 | Insoluble | Base reagent Component of protic IL | [60] | |
Imidazole | 257 (M.p.: 89) | 1.23 | 63.3 g/100 mL | Base reagent | [61] | |
Choline chloride/urea = 1:2 (solid) | Decomp. (M.p.: 12) | 0.95 | Miscible | DES | [62] | |
Choline chloride/ CaCl2·6H2O = 1:2 (solid) | Decomp. (M.p.: 2.7) | 1.37 | Miscible | DES | [64] |
2.3. Role of Small Molecules in Hydrolysis and Dehydration of Extracted Hemicellulose
2.4. Examples of Two-Step Furfural Production Processes
2.5. Conversion of Pentoses to Furfural
3. Role of Small Molecules in Hydrolysis of Separated Cellulose and Dehydration of Produced Hexoses
Active Agent | Structure or Formula | B.p. (°C) | Density | Aq. Solubility (at R.T.) | Role | Ref. |
---|---|---|---|---|---|---|
Amidosulfonic acid | NH2SO3H | Decomp. M.p.: 205 (decomp.) | 2.15 | Moderate with slow hydrolysis | Acid catal. | [86] |
Zinc bromide hydrate | ZnBr2·nH2O | Decomp. M.p.: below 100 | n.d. | 388 g ZnBr2/100 mL | Lewis acid catal. | [89] |
Lithium chloride trihydrate | LiCl·3H2O | Decomp. M.p.: below 100 | n.d. | 83 g/100 mL | Co-catalyst | [82,89] |
Aluminium sulfate octadecahydrate | Al2(SO4)3·18H2O | Decomp. M.p.: 86.5 | 1.6 | 3.6 g/100 mL (anhydrous) | Lewis acid | [91,92] |
Sodium chloride | NaCl | 1465 | 2.2 | 36 g/100 mL | Catalyst | [91,93,95] |
γ-valerolactone | 205 | 1.05 | 1 g/100 mL | Biobased aprotic solvent | [91] | |
Cyclohexane | 81.4 (69 azeotrope cont. 8.4% H2O) | 0.78 | Immiscible | Solvent | [92] | |
Tetrahydrofuran | 65–66 (64 azeotrope with 6% H2O) | 0.89 | Miscible (sparingly miscible in aq. NaCl) | Solvent and extractant | [92] |
Active Agent | Structure or Formula | B.p. (°C) | Density | Aq. Solubility | Role | Ref. |
---|---|---|---|---|---|---|
Methyl isobutyl ketone (MIBK) | 117–118 | 0.8 | 1.9 g/100 mL | Extractant | [82,94] | |
Dimethyl acetamide | CH3CON(CH3)2 | 165 | 0.94 | Miscible | Solvent | [82] |
Chromium chloride | CrCl3 | 950 (subl.) | 2.8 | Sparingly soluble | Lewis acid | [82] |
Aq. solution of hydrochlorid acid | Aq. HCl | 102 (4%HCl)–110 (21%HCl) | 1.02 (4%HCl)–1.10 (20.4%HCl) | Miscible | Reagent and solvent | [82] |
1-ethyl-3-methylimidazolium chloride (EMIMCl) | Decomp. M.p.: 77–79 | 1.44 | Miscible | Reagent and solvent | [82] | |
Methanesulfonic acid (liquid) | CH3SO3H | 167 (M.p.: 17–19) | 1.48 | Miscible | Acidic catal. | [93] |
Acetonitrile | CH3CN | 81 | 0.79 | Miscible | Extractant | [93] |
Dioxane | 101.3 | 1.03 | Miscible | Solvent | [93] | |
Ethylenediamine-tetraacetic acid | Decomp. | 0.86 | Sparingly soluble | Acidic catal. | [94] | |
1-butanol | CH3CH2CH2CH2OH | 78 | 0.89 | Immiscible (0.5 g/L) | Extractant | [95] |
2-butanol | 98–100 | 0.81 | 29 g/100 mL | Extractant | [94,95] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhuang, Y.; Si, Z.; Pang, S.; Wu, H.; Zhang, X.; Qin, P. Recent progress in pervaporation membranes for furfural recovery: A mini review. J. Clean. Prod. 2023, 396, 136481. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, J.; Han, B. Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids. Chem. Rev. 2017, 117, 6834–6880. [Google Scholar] [CrossRef] [PubMed]
- Satlewal, A.; Agrawal, R.; Bhagia, S.; Das, P.; Ragauskas, A.J. Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties. Biofuels Bioprod. Biorefin. 2018, 12, 83–107. [Google Scholar] [CrossRef]
- Bezerra, T.L.; Ragauskas, A.J. A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuels Bioprod. Biorefin. 2016, 10, 634–647. [Google Scholar] [CrossRef]
- Ruan, Z.; Wang, X.; Liu, Y.; Liao, W. Integrated Processing Technologies for Food and Agricultural By-Products; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 59–72. ISBN 978-0-12-814138-0. [Google Scholar] [CrossRef]
- Govumoni, S.P.; Koti, S.; Kothagouni, S.Y.; Venkateshwar, S.; Linga, V.R. Evaluation of pretreatment methods for enzymatic saccharification of wheat straw for bioethanol production. Carbohydr. Polym. 2013, 91, 646–650. [Google Scholar] [CrossRef]
- Nie, S.X.; Chen, C.J.; Zhu, C. Advanced biomass materials: Progress in the applications for energy, environmental, and emerging fields. J. Front. Chem. Sci. Eng. 2023, 17, 795–797. [Google Scholar] [CrossRef]
- Deng, W.; Feng, Y.; Fu, J.; Guo, H.; Guo, Y.; Han, B.; Jiang, Z.; Kong, L.; Li, C.; Liu, H.; et al. Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy Environ. 2023, 8, 10–114. [Google Scholar] [CrossRef]
- Zhang, S.; Chi, M.C.; Mo, J.L.; Liu, T.; Liu, Y.H.; Fu, Q.; Wang, J.L.; Luo, B.; Qin, Y.; Wang, S.F.; et al. Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting. Nat. Commun. 2022, 13, 4168–4178. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Pilath, H.M.; Johnson, D.K. Direct Conversion of Biomass Carbohydrates to Platform Chemicals: 5-Hydroxymethylfurfural (HMF) and Furfural. Energy Fuels 2020, 34, 3284–3293. [Google Scholar] [CrossRef]
- Liang, J.; Jiang, J.; Cai, T.; Liu, C.; Ye, J.; Zeng, X.; Wang, K. Advances in selective conversion of carbohydrates into 5-hydroxymethylfurfural. Green Energy Environ. 2024, 9, 1384–1406. [Google Scholar] [CrossRef]
- Mascal, M. 5-(Chloromethyl)furfural (CMF): A Platform for Transforming Cellulose into Commercial Products. ACS Sustain. Chem. Eng. 2019, 7, 5588–5601. [Google Scholar] [CrossRef]
- Istasse, T.; Richel, A. Mechanistic aspects of saccharide dehydration to furan derivatives for reaction media design. RSC Adv. 2020, 10, 23720. [Google Scholar] [CrossRef]
- Karinen, R.; Vilonen, K.; Niemela, M. Biorefining: Heterogeneously Catalyzed Reactions of Carbohydrates for the Production of Furfural and Hydroxymethylfurfural. ChemSusChem 2011, 4, 1002. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Chauhan, A.S.; Bains, R.; Das, P. Catalytic transformations for agro-waste conversion to 5-hydroxymethylfurfural and furfural: Chemistry and scale-up development. Green Chem. 2023, 25, 849–870. [Google Scholar] [CrossRef]
- Almeida, S.G.C.; Mello, G.F.; Kovacs, T.K.; Silva, D.D.V.; Costa, M.A.M.; Dussán, K.J. Furfural Production Through Two Bioconversion Routes: Experimental Optimization and Process Simulation. Waste Biomass Valorization 2022, 13, 4013–4025. [Google Scholar] [CrossRef]
- Bao, Y.; Du, Z.; Liu, X.; Liu, H.; Tang, J.; Qin, C.; Liang, C.; Huang, C.; Yao, S. Furfural production from lignocellulosic biomass: One-step and two-step strategies and techno-economic evaluation. Green Chem. 2024, 26, 6318–6338. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, D.; Zhao, X. Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renew. Sustain. Energy Rev. 2021, 146, 111169. [Google Scholar] [CrossRef]
- O’Neil, D.J.; Colcord, A.R.; Bery, M.K.; Day, S.W.; Roberts, R.S.; El-Barbary, I.A.; Havlicek, S.C.; Anders, M.E.; Sondhi, D. Design Fabrication and Operation of a Biomass Fermentation Facility; Technical Progress Report No. 2; Georgia Institute of Tech, Engineering Experiment Station: Atlanta, GA, USA, 1979; Volume 2, Available online: https://digital.library.unt.edu/ark:/67531/metadc1084791/m1/10/ (accessed on 30th August 2024).
- Clausen, E.C.; Gaddy, J.L. Concentrated Sulfuric Acid Process for Converting Lignocellulosic Materials to Sugars. U.S. Patent US5188673A, 1993. [Google Scholar]
- Bellamy, W.D.; Holub, F.F. Decrystallization of Cellulose. U.S. Patent US4058411A, 15 November 1977. [Google Scholar]
- Has, S. Sugar Production by Decrystallization and Hydrolysis of Polysaccharide Enriched Biomass. U.S. Patent US8304535B2, 20 May 2010. [Google Scholar]
- Moxley, G.; Zhu, Z.; Zhang, Y.-H.P. Efficient sugar release by the cellulose solvent based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. J. Agric. Food Chem 2008, 56, 7885–7890. [Google Scholar] [CrossRef]
- Xu, F.; Sun, J.X.; Liu, C.F.; Sun, R.C. Comparative study of alkali- and acidic organic solvent-soluble hemicellulosic polysaccharides from sugarcane bagasse. Carbohydr. Res. 2006, 341, 253–261. [Google Scholar] [CrossRef]
- Cavali, M.; Soccol, C.R.; Tavares, D.; Torres, L.A.Z.; de Tanobe, C.O.A.; Filho, A.; Wojciechowski, L. Effect of sequential acid-alkaline treatment on physical and chemical characteristics of lignin and cellulose from pine (Pinus spp.) residual sawdust. Bioresour. Technol. 2020, 316, 123884. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, M.; Chen, Y.; Hu, C. Conversion of polysaccharides in Ulva prolifera to valuable chemicals in the presence of formic acid. J. Appl. Phycol. 2021, 33, 101–110. [Google Scholar] [CrossRef]
- Mirzaei, H.M.; Karimi, B. Sulphanilic acid as a recyclable bifunctional organocatalyst in the selective conversion of lignocellulosic biomass to 5-HMF. Green Chem. 2016, 18, 2282–2286. [Google Scholar] [CrossRef]
- Mao, L.Y.; Zhang, L.; Gao, N.B.; Li, A.M. Seawater-based furfural production via corncob hydrolysis catalyzed by FeCl3 in acetic acid steam. Green Chem. 2013, 15, 727–737. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Z.K. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresour. Technol. 2010, 101, 111–1114. [Google Scholar] [CrossRef]
- Binder, J.B.; Raines, R.T. Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. J. Am. Chem. Soc. 2009, 131, 1979–1985. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.B.T.L.; Wu, T.Y.; Yong, K.J.; Cheng, C.K.; Siow, L.F.; Jahim, J.M. Investigation into Lewis and Brønsted acid interactions between metal chloride and aqueous choline chloride-oxalic acid for enhanced furfural production from lignocellulosic biomass. Sci. Total Environ. 2022, 827, 154049. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.B.T.L.; Wu, T.Y.; Ting, C.H.; Tan, J.K.; Siow, L.F.; Cheng, C.K.; Siow, L.F.; Jahim, J.M.; Mohammad, A.W. One-pot furfural production using choline chloride-dicarboxylic acid based deep eutectic solvents under mild conditions. Bioresour. Technol. 2019, 278, 486–489. [Google Scholar] [CrossRef]
- Poveda-Giraldo, J.A.; Alzate, C.A.C. Valorization of lignocellulosic platform products based on biorefnery schemes through sequential pretreatments. Biomass Convers. Biorefin. 2024. published online. [Google Scholar] [CrossRef]
- Saleh, T.S.; Al-Bogami, A.S. Ionic Liquids for Pretreatment of Biomass, 1st ed.; Lambert Academic Publishing: London, UK, 2019; pp. 1–56. [Google Scholar]
- Lu, Y.; He, Q.; Fan, G.; Cheng, Q.; Song, G. Extraction and modification of hemicellulose from lignocellulosic biomass: A review. Green Process. Synth. 2021, 10, 779–804. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; Feng, C.; Liu, X.; Qin, F.; Liang, C.; Bian, H.; Qin, C.; Yao, S. Green, efficient extraction of bamboo hemicellulose using freeze-thaw assisted alkali treatment. Bioresour. Technol. 2021, 333, 125107. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Xue, W.; Gu, L. Study on properties and application of pyrophosphate flame retardant microcapsules prepared from hemicellulose maleate. Cellulose 2020, 27, 3931–3946. [Google Scholar] [CrossRef]
- Kont, R.; Pihlajaniemi, V.; Borisova, A.; Aro, N.; Marjamaa, K.; Loogen, J.; Büchs, J.; Eijsink, V.G.H.; Kruus, K.; Väljamäe, P. The liquid fraction from hydrothermal pretreatment of wheat straw provides lytic polysaccharide monooxygenases with both electrons and H2O2 co-substrate. Biotechnol. Biofuels 2019, 12, 235. [Google Scholar] [CrossRef]
- Yao, S.; Nie, S.; Yuan, Y.; Wang, S.; Qin, C. Efficient extraction of bagasse hemicelluloses and characterization of solid remainder. Bioresour. Technol. 2015, 185, 21–27. [Google Scholar] [CrossRef]
- Yang, Q.; Huo, D.; Si, C.; Fang, G.; Liu, Q.; Hou, Q.; Chen, X.; Zhang, F. Improving enzymatic saccharification of eucalyptus with a pretreatment process using MgCl2. Ind. Crops Prod. 2018, 123, 401–406. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, K.; He, L.; Peng, L. Reinforcement of the bio-gas conversion from pyrolysis of wheat straw by hot caustic pre-extraction. Biotechnol. Biofuels 2018, 11, 72. [Google Scholar] [CrossRef]
- Balakshin, M.; Chpanema, E.; Gracz, H.; Chang, H.-M.; Jameel, H. Quantification of lignin–carbohydrate linkages with high-resolution NMR spectroscopy. Planta 2011, 233, 1097–1110. [Google Scholar] [CrossRef] [PubMed]
- Cyran, M.; Courtin, C.M.; Delcour, J.A. Heterogeneity in the Fine Structure of Alkali-Extractable Arabinoxylans Isolated from Two Rye Flours with High and Low Breadmaking Quality and Their Coexistence with Other Cell Wall Components. J. Agric. Food Chem. 2004, 52, 2671–2680. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.X.; Sun, X.F.; Sun, R.C.; Fowler, P.; Baird, M.S. Inhomogeneities in the chemical structure of sugarcane bagasse lignin. J. Agric. Food Chem. 2003, 51, 6719–6725. [Google Scholar] [CrossRef]
- Hutterer, C.; Schild, G.; Potthast, A. A precise study on effects that trigger alkaline hemicellulose extraction efficiency. Bioresour. Technol. 2016, 214, 460–467. [Google Scholar] [CrossRef]
- Azelee, N.I.W.; Mahdi, H.I.; Cheng, Y.-S.; Nordin, N.; Illias, R.M.; Rahman, R.A.; Shaarani, S.M.; Bhatt, P.; Yadav, S.; Chang, S.W.; et al. Biomass degradation: Challenges and strategies in extraction and fractionation of hemicellulose. Fuel 2023, 339, 126982. [Google Scholar] [CrossRef]
- Li, M.; Yang, X.; Lu, T.; Zhou, L. Selective hydrolysis of hemicellulose component of wheat straw in high-pressure CO2 and water with low concentration of acetic acid. J. Chem. Technol. Biot. 2020, 95, 2237–2242. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Y.; Cao, L.; Zhu, J.; Deng, B.; Hou, Y.; Liang, C.; Huang, C.; Qin, C.; Yao, S. High efficiency and clean separation of eucalyptus components by glycolic acid pretreatment. Bioresour. Technol. 2021, 341, 125757. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Zhu, J.; Zeng, F.; Li, J.; Wang, S.; Qin, C.; Liang, C.; Huang, C.; Yao, S. Superior separation of hemicellulose-derived sugars from eucalyptus with tropic acid pretreatment. Bioresour. Technol. 2022, 364, 128082. [Google Scholar] [CrossRef] [PubMed]
- Qing, Q.; Huang, M.; He, Y.; Wang, L.; Zhang, Y. Dilute Oxalic Acid Pretreatment for High Total Sugar Recovery in Pretreatment and Subsequent Enzymatic Hydrolysis. Appl. Biochem. Biotechnol. 2015, 177, 1493–1507. [Google Scholar] [CrossRef]
- Kim, E.S.; Liu, S.; Abu-Omar, M.M.; Mosier, N.S. Selective Conversion of Biomass Hemicellulose to Furfural Using Maleic Acid with Microwave Heating. Energy Fuels 2012, 26, 1298–1304. [Google Scholar] [CrossRef]
- Snelders, J.; Dornez, E.; Benjelloun-Mlayah, B.; Huijgen, W.J.J.; de Wild, P.J.; Gosselink, R.J.A.; Gerritsma, J.; Courtin, C.M. Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process. Bioresour. Technol. 2014, 156, 275–282. [Google Scholar] [CrossRef]
- Xu, J.; Fu, Y.; Tian, G.; Li, Q.; Liu, N.; Qin, M.; Wang, Z. Mild and efficient extraction of hardwood hemicellulose using recyclable formic acid/water binary solvent. Bioresour. Technol. 2018, 254, 353–356. [Google Scholar] [CrossRef]
- Rackemann, D.W.; Bartley, J.P.; Harrison, M.D.; Doherty, W.O.S. The effect of pretreatment on methanesulfonic acid-catalyzed hydrolysis of bagasse to levulinic acid, formic acid, and furfural. RSC Adv. 2016, 6, 74525. [Google Scholar] [CrossRef]
- Jeong, S.; Ryu, J.; Yang, Q.; Zhu, J.Y.; Yoo, C.G. Recent advances in hydrotropic solvent systems for lignocellulosic biomass utilization. Green Chem. 2024, 26, 1806–1832. [Google Scholar] [CrossRef]
- Yang, J.-Y.; Guo, T.-S.; Xu, Y.-H.; Li, M.-F.; Bian, J. Structure and properties of eucalyptus lignin extracted with benzenesulfonic and p-toluenesulfonic acids under mild conditions. Ind. Crops Prod. 2023, 194, 116269. [Google Scholar] [CrossRef]
- Feng, C.; Zhu, J.; Hou, Y.; Qin, C.; Chen, W.; Nong, Y.; Liao, Z.; Liang, C.; Bian, H.; Yao, S. Effect of temperature on simultaneous separation and extraction of hemicellulose using p-toluenesulfonic acid treatment at atmospheric pressure. Bioresour. Technol. 2022, 348, 126793. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hu, H.; Gong, Z.; Yang, G.; Li, R.; Chen, L.; Huang, L.; Luo, X. Near-complete removal of non-cellulosic components from bamboo by 1-pentanol induced organosolv pretreatment under mild conditions for robust cellulose enzymatic hydrolysis. Cellulose 2019, 26, 3801–3814. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Z.; Zuo, Y.; Su, Z.; Hu, C. A Simple Two-Step Method for the Selective Conversion of Hemicellulose in Pubescens to Furfural. ACS Sustain. Chem. Eng. 2017, 5, 8137–8147. [Google Scholar] [CrossRef]
- Anugwom, I.; Mäki-Arvela, P.; Virtanen, P.; Willför, S.; Sjöholm, R.; Mikkola, J.-P. Selective extraction of hemicelluloses from spruce using switchable ionic liquids. Carbohydr. Polym. 2012, 87, 2005–2011. [Google Scholar] [CrossRef]
- Fockink, D.H.; Andreaus, J.; Ramos, L.P.; Łukasik, R.M. Pretreatment of cotton spinning residues for optimal enzymatic hydrolysis: A case study using green solvents. Renew. Energy 2020, 145, 490–499. [Google Scholar] [CrossRef]
- Morais, E.S.; Mendonca, P.V.; Coelho, J.F.J.; Freire, M.G.; Freire, C.S.R.; Coutinho, J.A.P.; Silvestre, A.J.D. Deep Eutectic Solvent Aqueous Solutions as Efficient Media for the Solubilization of Hardwood Xylans. ChemSusChem 2018, 11, 753–762. [Google Scholar] [CrossRef]
- Li, A.; Hou, X.; Lin, K.; Zhang, X.; Fu, M. Rice straw pretreatment using deep eutectic solvents with different constituents molar ratios: Biomass fractionation, polysaccharides enzymatic digestion and solvent reuse. J. Biosci. Bioeng. 2018, 126, 346–354. [Google Scholar] [CrossRef]
- New, E.; Wu, T.; Voon, K.; Procentese, A.; Shak, K.; Teoh, W.; Lim, J.; Jahim, J. A Utilization of Choline Chloride-Based Deep Eutectic Solvent Integrated with Alkaline Earth Metal Hexahydrate in the Pretreatment of Oil Palm Fronds. Ind. Eng. Chem. Res. 2021, 60, 2011–2026. [Google Scholar] [CrossRef]
- Li, N.; Meng, F.; Yang, H.; Shi, Z.; Zhao, P.; Yang, J. Enhancing enzymatic digestibility of bamboo residues using a three-constituent deep eutectic solvent pretreatment. Bioresour. Technol. 2022, 346, 126639. [Google Scholar] [CrossRef]
- Dugoni, G.C.; Mezzetta, A.; Guazzelli, L.; Chiappe, C.; Ferro, M.; Mele, A. Purification of Kraft cellulose under mild conditions using choline acetate based deep eutectic solvents. Green Chem. 2020, 22, 8680–8691. [Google Scholar] [CrossRef]
- Lui, M.Y.; Wong, C.Y.Y.; Choi, A.W.-T.; Mui, Y.F.; Qi, L.; Horvath, I.T. Valorization of Carbohydrates of Agricultural Residues and Food Wastes: A Key Strategy for Carbon Conservation. ACS Sustain. Chem. Eng. 2019, 7, 17799–17807. [Google Scholar] [CrossRef]
- Motagamwala, A.H.; Won, W.; Maravelias, C.T.; Dumesic, J.A. An engineered solvent system for sugar production from lignocellulosic biomass using biomass derived γ-valerolactone. Green Chem. 2016, 18, 5756–5763. [Google Scholar] [CrossRef]
- Arora, S.; Gupta, N.; Singh, V. pH-Controlled Efficient Conversion of Hemicellulose to Furfural Using Choline-Based Deep Eutectic Solvents as Catalysts. ChemSusChem 2021, 14, 3953–3958. [Google Scholar] [CrossRef] [PubMed]
- Penín, L.; López, M.; Santos, V.; Parajó, J.C. Evaluation of Acidic Ionic Liquids as Catalysts for Furfural Production from Eucalyptus nitens Wood. Molecules 2022, 27, 4258. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Hou, Q.; Li, W.; Bai, C.; Bai, X.; Ju, M. Efficient Synthesis of Furfural from Biomass Using SnCl4 as Catalyst in Ionic Liquid. Molecules 2019, 24, 594. [Google Scholar] [CrossRef] [PubMed]
- Brandt-Talbot, A.; Gschwend, F.J.V.; Fennell, P.S.; Lammens, T.M.; Tan, B.; Weale, J.; Hallett, J.P. An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem. 2017, 19, 3078–3102. [Google Scholar] [CrossRef]
- Sai, M.S.N.; De, D.; Satyavathi, B. Sustainable production and purification of furfural from waste agricultural residue: An insight into integrated biorefinery. J. Clean. Prod. 2021, 327, 129467. [Google Scholar] [CrossRef]
- Mohammed, M.Z.R.; Ng, Z.W.; Putranto, A.; Kong, Z.Y.; Sunarso, J.; Aziz, M.; Zein, S.H.; Giwangkara, J.; Butar, I. Process design, simulation, and techno-economic analysis of integrated production of furfural and glucose derived from palm oil empty fruit bunches. Clean Technol. Environ. Policy 2023, 25, 1551–1567. [Google Scholar] [CrossRef]
- Hu, M.; Yu, Y.; Liu, Y. Integrated strategies for furfural production and lignocellulose fractionation in aqueous deep eutectic solvents. Ind. Crops Prod. 2023, 204, 117334. [Google Scholar] [CrossRef]
- Halder, P.; Shah, K. Techno-economic analysis of ionic liquid pre-treatment integrated pyrolysis of biomass for co-production of furfural and levoglucosenone. Bioresour. Technol. 2023, 371, 128587. [Google Scholar] [CrossRef]
- Zang, G.; Shah, A.; Wan, C. Techno-economic analysis of an integrated biorefinery strategy based on one-pot biomass fractionation and furfural production. J. Clean. Prod. 2020, 260, 120837. [Google Scholar] [CrossRef]
- Dussan, K.; Girisuta, B.; Lopes, M.; Leahy, J.J.; Hayes, M.H.B. Conversion of Hemicellulose Sugars Catalyzed by Formic Acid: Kinetics of the Dehydration of d-Xylose, l-Arabinose, and d-Glucose. ChemSusChem 2015, 8, 1411–1428. [Google Scholar] [CrossRef] [PubMed]
- Lamminpaa, K.; Ahola, J.; Tanskanen, J. Kinetics of Xylose Dehydration into Furfural in Formic Acid. Ind. Eng. Chem. Res. 2012, 51, 6297–6303. [Google Scholar] [CrossRef]
- Chheba, J.N.; Roman-Leshkov, Y.; Dumesic, J.A. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem. 2007, 9, 342–350. [Google Scholar]
- Gurbuz, E.I.; Wettstein, S.G.; Dumesic, J.A. Conversion of Hemicellulose to Furfural and Levulinic Acid using Biphasic Reactors with Alkylphenol Solvents. ChemSusChem 2012, 5, 383–387. [Google Scholar] [CrossRef]
- Lima, S.; Antunes, M.M.; Pillinger, M.; Valente, A.A. Ionic Liquids as Tools for the Acid-Catalyzed Hydrolysis/Dehydration of Saccharides to Furanic Aldehydes. ChemCatChem 2011, 3, 1686–1706. [Google Scholar] [CrossRef]
- Chaturvedi, T.; Hulkko, L.S.S.; Fredsgaard, M.; Thomsen, M.H. Extraction, Isolation, and Purification of Value-Added Chemicals from Lignocellulosic Biomass. Processes 2022, 10, 1752. [Google Scholar] [CrossRef]
- Choi, S.; Song, C.W.; Shin, J.H.; Lee, S.Y. Biorefineries for the Production of Top Building Block Chemicals and Their Derivatives. Metab. Eng. 2015, 28, 223–239. [Google Scholar] [CrossRef] [PubMed]
- Delidovich, I.; Leonhard, K.; Palkovits, R. Cellulose and hemicellulose valorization: An integrated challenge of catalysis and reaction engineering. Energy Environ. Sci. 2014, 7, 2803–2830. [Google Scholar] [CrossRef]
- Lu, Y.; He, Q.; Peng, Q.; Chen, W.; Cheng, Q.; Song, G.; Fan, G. Directional synthesis of furfural compounds from holocellulose catalyzed by sulfamic acid. Cellulose 2021, 28, 8343–8354. [Google Scholar] [CrossRef]
- Du, B.; Sharma, L.N.; Becker, C.; Chen, S.-F.; Mowery, R.A.; van Walsum, G.P.; Chambliss, C.K. Effect of Varying Feedstock–Pretreatment Chemistry Combinations on the Formation and Accumulation of Potentially Inhibitory Degradation Products in Biomass Hydrolysates. Biotechnol. Bioeng. 2010, 107, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Chundawat, S.P.S.; Vismeh, R.; Sharma, L.N.; Humpula, J.F.; da Costa Sousa, L.; Chambliss, C.K.; Jones, A.D.; Balan, V.; Dale, B.E. Multifaceted Characterization of Cell Wall Decomposition Products Formed during Ammonia Fiber Expansion (AFEX) and Dilute Acid Based Pretreatments. Bioresour. Technol. 2010, 101, 8429–8438. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Liu, G.; Xie, Y.; Sun, Z.; Liu, C.; Song, F.; Cui, H. Cellulose dissolution and conversion into 5-hydroxymethylfurfural in mixed molten salt hydrate. Cellulose 2023, 30, 801–813. [Google Scholar] [CrossRef]
- Sweygers, N.; Depuydt, D.E.C.; van Vuure, A.W.; Degreve, J.; Potters, G.; Dewil, R.; Appels, L. Simultaneous production of 5-hydroxymethylfurfural and furfural from bamboo (Phyllostachys nigra “Boryana”) in a biphasic reaction system. Chem. Eng. J. 2020, 386, 123957. [Google Scholar] [CrossRef]
- Shen, F.; Sun, S.; Zhang, X.; Yang, J.; Qiu, M.; Qi, X. Mechanochemical-assisted production of 5-hydroxymethylfurfural from high concentration of cellulose. Cellulose 2020, 27, 3013–3023. [Google Scholar] [CrossRef]
- Shi, N.; Zhu, Y.; Qin, B.; Liu, Y.; Zhang, H.; Huang, H.; Liu, Y. Conversion of cellulose into 5-hydroxymethylfurfural in an H2O/tetrahydrofuran/cyclohexane biphasic system with Al2(SO4)3 as the catalyst. Cellulose 2022, 29, 2257–2272. [Google Scholar] [CrossRef]
- Chen, G.; Sun, Q.; Xu, J.; Zheng, L.; Rong, J.; Zong, B. Sulfonic Derivatives as Recyclable Acid Catalysts in the Dehydration of Fructose to 5-Hydroxymethylfurfural in Biphasic Solvent Systems. ACS Omega 2021, 6, 6798–6809. [Google Scholar] [CrossRef]
- Cao, Z.; Li, M.; Chen, Y.; Shen, T.; Tang, C.; Zhu, C.; Ying, H. Dehydration of fructose into 5-hydroxymethylfurfural in a biphasic system using EDTA as a temperature-responsive catalyst. Appl. Catal. 2019, 569, 93–100. [Google Scholar] [CrossRef]
- Roman-Leshkov, Y.; Barrett, C.J.; Liu, Z.Y.; Dumesic, J.A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 2007, 447, 982–986. [Google Scholar] [CrossRef]
- Zuo, M.; Wang, X.; Wang, Q.; Zeng, X.; Lin, L. Aqueous-Natural Deep Eutectic Solvent-Enhanced 5-Hydroxymethylfurfural Production from Glucose, Starch, and Food Wastes. ChemSusChem 2022, 15, e202101889. [Google Scholar] [CrossRef]
- Pagan-Torres, Y.J.; Wang, T.; Gallo, J.M.R.; Shanks, B.H.; Dumesic, J.A. Production of 5-Hydroxymethylfurfural from Glucose Using a Combination of Lewis and Brønsted Acid Catalysts in Water in a Biphasic Reactor with an Alkylphenol Solvent. ACS Catal. 2012, 2, 930–934. [Google Scholar] [CrossRef]
- Fu, X.; Hu, Y.; Zhang, Y.; Zhang, D.; Tang, D.; Zhu, L.; Hu, C. Solvent Effects on Degradative Condensation Side Reactions of Fructose in Its Initial Conversion to 5-Hydroxymethylfurfural. ChemSusChem 2019, 13, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Hu, Y.; Huai, L.; Gao, Z.; Zhang, J. Facile synthesis and isolation of 5-hydroxymethylfurfural from diphenyl sulfoxide. Green Chem. 2021, 23, 3241–3245. [Google Scholar] [CrossRef]
- Tong, X.; Li, Y. Efficient and Selective Dehydration of Fructose to 5- Hydroxymethylfurfural Catalyzed by Brønsted-Acidic Ionic Liquids. ChemSusChem 2010, 3, 350–355. [Google Scholar] [CrossRef]
- Benoit, M.; Brissonnet, Y.; Guelou, E.; De Oliveira Vigier, K.; Barrault, J.; Jerome, F. Acid-Catalyzed Dehydration of Fructose and Inulin with Glycerol or Glycerol Carbonate as Renewably Sourced Co-Solvent. ChemSusChem 2010, 3, 1304–1309. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Z.K.; Wang, A.; Zheng, M.; Zhang, T. Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions. Carbohydr. Res. 2010, 345, 1846–1850. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Zhang, Z.; Zhou, Y.; Han, B.; Fan, H.; Li, W.; Song, J.; Xie, Y. Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials. Green Chem. 2008, 10, 1280–1283. [Google Scholar] [CrossRef]
- Moreau, C.; Finiels, A.; Vanoye, L. Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst. J. Mol. Catal. A Chem. 2006, 253, 165–169. [Google Scholar] [CrossRef]
- Mascal, M.; Nikitin, E.B. Dramatic Advancements in the Saccharide to 5-(Chloromethyl)furfural Conversion Reaction. ChemSusChem 2009, 2, 859–861. [Google Scholar] [CrossRef]
- Moron, J.B.; van Klink, G.; Gruter, G.-J.M. Production and Downstream Integration of 5-(Chloromethyl)furfural from Lignocellulose. ACS Sustain. Chem. Eng. 2023, 11, 17492–17509. [Google Scholar] [CrossRef]
- Zuo, M.; Li, Z.; Jiang, Y.; Tang, X.; Zeng, X.; Sun, Y.; Lin, L. Green catalytic conversion of bio-based sugars to 5-chloromethyl furfural in deep eutectic solvent, catalyzed by metal chlorides. RSC Adv. 2016, 6, 27004. [Google Scholar] [CrossRef]
- Lecona-Vargas, C.S.; Pandey, S.; Orsat, V.; Dumont, M.-J. One-Pot Conversion of Starch into 5-Chloromethylfurfural and 5-Hydroxymethylfurfural in a Low-Transition Temperature Mixture. Ind. Eng. Chem. Res. 2024, 63, 11263–11273. [Google Scholar] [CrossRef]
- Smith, B.A.; Champagne, P.; Jessop, P.G. A Semi-Batch Flow System for the Production of 5-Chloromethylfurfural. Chem.-Methods 2021, 1, 438–443. [Google Scholar] [CrossRef]
- Wu, F.; Yang, R.; Yang, F. Metal chlorides as Effective Catalysts for the One-Pot Conversion of Lignocellulose into 5-Chloromethylfurfural (5-CMF). BioResources 2015, 10, 3293–3301. [Google Scholar] [CrossRef]
- Schael, F.; Steup, B.; Rojahn, P.; Nigam, K.D.P. Millistructured Coiled Flow Inverter for Biphasic Continuous Flow 5-Chloromethylfurfural Synthesis. Chem. Ing. Tech. 2024, 96, 871–877. [Google Scholar] [CrossRef]
- Soukup-Carne, D.; Bragagnolo, F.S.; Soleo Funari, C.; Esteban, J. Production and Synthetic Possibilities of 5-Chloromethylfurfural as Alternative Biobased Furan. Catalysts 2024, 14, 117. [Google Scholar] [CrossRef]
- Qi, L.; Mui, Y.F.; Lo, S.W.; Lui, M.Y.; Akien, G.R.; Horvath, I.T. Catalytic Conversion of Fructose, Glucose, and Sucrose to 5-(Hydroxymethyl)furfural and Levulinic and Formic Acids in γ-Valerolactone As a Green Solvent. ACS Catal. 2014, 4, 1470–1477. [Google Scholar] [CrossRef]
- Qi, L.; Horvath, I.T. Catalytic Conversion of Fructose to γ-Valerolactone in γ-Valerolactone. ACS Catal. 2012, 2, 2247–2249. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, F.; Li, J.; Guo, C. Catalytic C-N bond formation strategies for green amination of biomass-derived molecules. Green Chem. 2024. [Google Scholar] [CrossRef]
Heterocycle (Abbreviation) Mr | Structure | M.p. (°C) | B.p. (°C) | Density (g/mL) | Aq. Solubility | Remarks |
---|---|---|---|---|---|---|
Furfural (FA) 96.1 g/mol | −37 | 162 | 1.16 | 8.3 g/100 mL | Sol. in EtOH Insol. in alkanes | |
5-hydroxymethyl-furfural (HMF) 126.1 g/mol | 30–34 | 114–116/1 mm Hg | 1.29 | Soluble | Sol. in alcohols, acetone, esters | |
5-chloromethyl-furfural (CMF) 144.5 g/mol | 37–39 | 137–138/5 mm Hg | 1.24 | Soluble | Sol. in alcohols, MIBKtoluene, 1,2-DCE, CH2Cl2 Ph-Xs, Ph-OMe, CPME |
Active Agent | Structure or Formula | B.p. (°C) | Density | Aq. Solubility | Role | Ref. | |
---|---|---|---|---|---|---|---|
Aqueous solution of hydrochlorid acid | Aq. HCl | 102 (4%HCl)–110 (21%HCl) | 1.02 (4%HCl)–1.10 (20.4%HCl) | Miscible | Reagent and solvent | [18,19,24] | |
Aqueous solution of sulfuric acid | Aq. H2SO4 | 101 (4% H2SO4)–108 (30% H2SO4) | 1.02 (4% H2SO4)–1.22 (30% H2SO4) | Miscible | Reagent and solvent | [18,19,20,21,22,25] | |
Concentrated phosporic acid | 85% H3PO4 | 213 (decomp.) | 1.69 (85% H3PO4) | Miscible | Reagent and solvent | [23] | |
Aqueous solution of sodium chloride | Aq. NaCl | 101.6 (10%)–104.6 (25%) | 1.07 (10% aq.NaCl)–1.2 (26% aq.NaCl) | Miscible | Reagent | [26] | |
Tetrahydrofuran | 65–66 (64 azeotrope with 6% H2O) | 0.89 | Miscible (sparingly miscible in aq. NaCl) | Solvent and extractant | [26] | ||
Formic acid | HCOOH | 100.7 | 1.22 | Miscible | Reagent | [26] | |
Sulfanilic acid (solid) | 280 (decomp.) | 1.49 | 1 g/100 mL (6.67 g/100 mL at 100 °C) | Reagent | [27] | ||
Ferric chloride (solid) | FeCl3 | 315 (Hexahydrate decomp. 280) | 2.9 | Higly soluble (97 g/100 mL) | Lewis acid (reagent) | [17,28] | |
Acetic acid | CH3COOH | 118.1 | 1.05 | Miscible | Reagent | [17,28] | |
1-butyl-3-methylimidazolium chloride (IL) | Decomp. above 246 °C (Melting point: 41) | 1.08 | Soluble | Solvent | [29] |
Active Agent | Structure or Formula | B.p. (°C) | Density | Aq. Solubility | Role | Ref. |
---|---|---|---|---|---|---|
Chromium chloride | CrCl3 | 950 (subl.) | 2.8 | Sparingly soluble | Lewis acid (reagent) | [30] |
Dimethyl acetamide | CH3CON(CH3)2 | 165 | 0.94 | Miscible | Solvent | [30] |
1-ethyl-3-methylimidazolium chloride (IL) | Decomp. above 246 °C (M.p.: 80) | 1.12 | Soluble | Solvent | [30] | |
Aluminium chloride | AlCl3 or AlCl3·6H2O | 180 (M. p.: 100 hexahydrate) | 2.44 (2.4 hexahydrate) | Soluble (45 g/100 mL) | Lewis acid | [31] |
Tin(IV) chloride (liquid) | SnCl4 | 114 (M.p.: 56 pentahydrate) | 2.22 (2.04 pentahydrate) | Anhydrous reacts with H2O; pentahydrate miscible | Lewis acid | [31] |
Tellurium chloride (solid) | TeCl4 | 390 (M.p.: 224) | 3.26 | Anhydrous reacts with H2O | [31] | |
Choline chloride (solid) | Nondistillable (M.p.: 302 with decomp.) | 1.2 | Miscible | Component of DES | [32] | |
Oxalic acid (solid) | (COOH)2 or (COOH)2·2H2O | Decomp. (M.p.: 189.5) (M.p.: 101.5 dihydrate) | 1.9 (1.65 dihydrate) | 10 g/100 mL | Acid and/or component of DES | [32] |
Active Agent | Structure or Formula | B.p. (°C) | Density | Aq. Solubility | Role | Ref. |
---|---|---|---|---|---|---|
Choline chloride/ Oxalic acid = 1:1 (solid) | Decomp. (M.p.: n.d.) | n.d. | Miscible | DES | [66] | |
Choline acetate/ imidazol = 1:1 (solid) | Decomp. (M.p.: n.d.) | n.d. | Miscible | DES | [66] | |
Choline acetate/ Levulinic acid = 1:1 (solid) | Decomp. (M.p.: n.d.) | n.d. | Miscible | DES | [66] | |
Ethanol | CH3CH2OH | 78.3 | 0.789 | Miscible | Biobased precipita-tion agent | [66] |
Active Agent | Structure or Formula | B.p. (°C) | Density | Aq. Solubility (at R.T.) | Role | Ref. |
---|---|---|---|---|---|---|
Methanesulfonic acid (liquid) | CH3SO3H | 167 (M.p.: 17–19) | 1.48 | Miscible | Acidic catal. | [67] |
γ-valerolactone | 205 | 1.05 | 1 g/100 mL | Biobased aprotic solvent | [68,69] | |
Toluene | 110.6 | 0.87 | Immiscible | Aromatic extractant | [68] | |
1-butyl-3-methylimidazolium hydrogensulfate | Decomp. (M.p.: n.d.) | n.d. | Miscible | Acidic IL Reagent and solvent | [70] | |
Methyl-isobutyl ketone (MIBK) | 117–118 | 0.8 | 1.9 g/100 mL | Extractant | [70] | |
1-ethyl-3-methylimidazolium bromide SnCl4 | Decomp. (M.p.: n.d.) | n.d. | Miscible | Acidic IL Reagent and solvent | [71] | |
Triethylammonium hydrogensulfate | Decomp. (M.p.: n.d.) | n.d. | Miscible | Acidic IL Reagent and solvent | [72] | |
Choline chloride/ Oxalic acid = 1:1 (solid) | Decomp. (M.p.: n.d.) | n.d. | Miscible | DES | [69] | |
Choline chloride/ PTSA = 1:1 (solid) | Decomp. (M.p.: n.d.) | n.d. | Miscible | DES | [69,73] | |
1-chlorobutane | CH3CH2CH2CH2Cl | 78 | 0.89 | Immiscible (0.5 g/L) | Extractant | [74] |
2-methyl-tetrahydrofuran | 80.2 | 0.854 | 14 wt.% | Extractant solvent | [75] | |
Choline glycinate (solid) | Decomp. (M.p.: n.d.) | n.d. | Miscible | IL | [76] |
Active Agent | Structure or Formula | B.p. (°C) | Density | Aq. Solubility (at R.T.) | Role | Ref. |
---|---|---|---|---|---|---|
Formic acid | HCOOH | 100.7 | 1.22 | Miscible | Acid catal. reagent | [78,79] |
Dimethyl sulfoxide | 189 | 1.1 | Miscible | Biobased solvent | [80] | |
Methyl-isobutyl ketone (MIBK) | 117–118 | 0.8 | 1.9 g/100 mL | Biobased extractant | [80,81,82] | |
2-butanol | 98–100 | 0.81 | 29 g/100 mL | Extractant | [80] | |
2-sec-butylphenol | 226–228 | 0.98 | 1.4 g/L | Extractant | [81] |
Active Agent | Structure or Formula | B.p. (°C) | Density | Aq. Solubility | Role | Ref. |
---|---|---|---|---|---|---|
Dimethyl acetamide | CH3CON(CH3)2 | 165 | 0.94 | Miscible | Solvent | [82] |
Chromium chloride | CrCl3 | 950 (subl.) | 2.8 | Sparingly soluble | Lewis acid | [82] |
Sodium bromide | NaBr | 1390 M.p.: 747 | 3.2 | 94.3 g/100 mL | Co-catalyst | [82] |
Methyl-isobutyl ketone (MIBK) | 117–118 | 0.8 | 1.9 g/100 mL | Extractant | [96] | |
Choline chloride (solid) | Nondistillable (M.p.: 302 with decomp.) | 1.2 | Miscible | Component of DES | [96] | |
Tin(IV) chloride (liquid) | SnCl4 or SnCl4·5H2O | 114 (M.p.: 56 pentahydrate) | 2.22 (2.04 pentahydrate) | Anhydrous reacts with H2O; pentahydrate miscible | Lewis acid | [96] |
Aq. solution of hydrochlorid acid | Aq. HCl | 102 (4%HCl)–110 (21%HCl) | 1.02 (4%HCl)–1.10 (20.4%HCl) | Miscible | Reagent and solvent | [82] |
Sodium chloride | NaCl | 1465 | 2.2 | 36 g/100 mL | Catalyst | [97] |
Aluminium chloride | AlCl3 or AlCl3·6H2O | 180 (M.p.: 100 hexahydrate) | 2.44 (2.4 hexahydrate) | Soluble (45 g AlCl3/100 mL) | Lewis acid | [97] |
2-sec-butylphenol | 226–228 | 0.98 | 1.4 g/L | Extractant | [97] |
Active Agent | Structure or Formula | B.p. (°C) | Density | Aq. Solubility | Role | Ref. |
---|---|---|---|---|---|---|
Dimethyl sulfoxide | 189 | 1.1 | Miscible | Biobased solvent | [98] | |
Diphenyl sulfoxide (solid) | n.d. M.p.: 69–71 | >1 | 1.2 g/L | Reaction solvent | [99] | |
1-butyl-3-methylimidazolium chloride (IL) | Decomp. above 246 °C (Melting point: 41) | 1.08 | Soluble | Solvent | [100] | |
1-butyl-3-methyl-imidazolium hydrogensulfate | Decomp. (M.p.: n.d.) | n.d. | Miscible | Acidic IL Reagent and solvent | [101] | |
1-methyl-imidazolium chlorid HMIMCl | Decomp. (M.p.: n.d.) | n.d. | Miscible | Acidic IL Reagent and solvent | [102,103,104] |
Active Agent | Structure or Formula | B.p. (°C) | Density | Aq. Solubility | Role | Ref. |
---|---|---|---|---|---|---|
Concentrated hydrochlorid acid | 36% HCl | 82 | 1.18 | Miscible | Reagent and solvent | [105,106,107,108,109] |
Chromium chloride | CrCl3 | 950 (subl.) | 2.8 | Sparingly soluble | Lewis acid | [108] |
Zinc chloride | ZnCl2 | 732 (M.p.: 290) | 2.9 | 432 g/100 mL | Lewis acid | [108,110] |
Choline chloride (solid) | nondistillable (M.p.: 302 with decomp.) | 1.2 | Miscible | Component of DES | [107,108] | |
Oxalic acid (solid) | (COOH)2 or (COOH)2·2H2O | Decomp. (M.p.: 189.5) (M.p.: 101.5 dihydrate) | 1.9 (1.65 dihydrate) | 10 g/100 mL | Acid and/or component of DES | [108] |
Aluminium chloride | AlCl3 or AlCl3·6H2O | 180 (M.p.: 100 hexahydrate) | 2.44 (2.4 hexahydrate) | Soluble (45 g/100 mL) | Lewis acid | [107] |
1,2-dichloroethane | ClCH2CH2Cl | 84 | 1.25 | 0.87 g/100 mL | Extractant | [105,106,107,108,109] |
Chlorobenzene | 131.7 | 1.1 | 0.5 g/100 mL | Extractant | [107] | |
Toluene | 110.6 | 0.87 | Immiscible | Extractant | [107] | |
Cyclopentyl methyl ether | 106 | 0.86 | Immiscible | Sustainable extractant | [108] | |
Fluorobenzene | 84–85 | 1.0 | Immiscible | Extractant | [107] | |
Anisole | 154 | 1.0 | Immiscible | Extractant | [111] | |
Methyl-isobutyl ketone (MIBK) | 117–118 | 0.8 | 1.9 g/100 mL | Extractant | [107,112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vojtová, I.; Leinweber, P.; Weidlich, T. Small Molecules Effective for Conversion of Lignocellulosic Biomass to Furfural and Its Derivatives. Catalysts 2024, 14, 791. https://doi.org/10.3390/catal14110791
Vojtová I, Leinweber P, Weidlich T. Small Molecules Effective for Conversion of Lignocellulosic Biomass to Furfural and Its Derivatives. Catalysts. 2024; 14(11):791. https://doi.org/10.3390/catal14110791
Chicago/Turabian StyleVojtová, Ivana, Petr Leinweber, and Tomáš Weidlich. 2024. "Small Molecules Effective for Conversion of Lignocellulosic Biomass to Furfural and Its Derivatives" Catalysts 14, no. 11: 791. https://doi.org/10.3390/catal14110791
APA StyleVojtová, I., Leinweber, P., & Weidlich, T. (2024). Small Molecules Effective for Conversion of Lignocellulosic Biomass to Furfural and Its Derivatives. Catalysts, 14(11), 791. https://doi.org/10.3390/catal14110791