Effect of N-Doped Carbon on the Morphology and Oxygen Reduction Reaction (ORR) Activity of a Xerogel-Derived Mn(II)O Electrocatalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystallographic and Morphological Analysis of N-Doped Carbon-Supported MnO Nanoparticles
2.2. XPS Insights into MnO Nanoparticle Deposition on N-Doped Carbon Supports
2.3. Electrochemical ORR Activity Analysis of MnO/N-CC Catalysts
2.4. Electrochemical Stability Analysis of the Pt/C and MnO/N-CC Catalysts
2.5. Mechanism of ORR on MnO/N-CC Catalyst
3. Materials and Methods
3.1. Washing of the Spent Coffee Waste
3.2. Synthesis of N-Doped Carbon from the Spent Coffee Waste
3.3. Synthesis of Mn-Xerogel and MnO/N-CC Catalysts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, J.; Jing, J.; Li, Y. Hydrogen fuel cell commercial vehicles in China: Evaluation of carbon emission reduction and its economic value. Int. J. Hydrogen Energy 2023, 52, 734–749. [Google Scholar] [CrossRef]
- Xu, X.; Dong, Y.; Hu, Q.; Si, N.; Zhang, C. Electrochemical Hydrogen Storage Materials: State-of-the-Art and Future Perspectives. Energy Fuels 2024, 38, 7579–7613. [Google Scholar] [CrossRef]
- Zheng, D.; Liu, K.; Zhang, Z.; Fu, Q.; Bian, M.; Han, X.; Shen, X.; Chen, X.; Xie, H.; Wang, X.; et al. Essential features of weak current for excellent enhancement of NOx reduction over monoatomic V-based catalyst. Nat. Commun. 2024, 15, 6688. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Huang, Z.; Wang, T.; Xiao, H.; Ma, X.; Yan, R.; Zhao, G. Design and fabrication of nitrogen-doped graphene-promoted Na3MnTi(PO4)3@C cathode with three-electron reactions for sodium-ion storage. Solid State Sci. 2024, 156, 107678. [Google Scholar] [CrossRef]
- Qian, Q.; Zhu, Y.; Ahmad, N.; Feng, Y.; Zhang, H.; Cheng, M.; Liu, H.; Xiao, C.; Zhang, G.; Xie, Y. Recent Advancements in Electrochemical Hydrogen Production via Hybrid Water Splitting. Adv. Mater. 2023, 36, e2306108. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Fan, Y.; Zhang, Z.; Chen, D.; Yao, S. Lattice Boltzmann simulation of ion transport during the charging process of porous electrodes in randomly reconstructed seawater desalination batteries. Int. Commun. Heat Mass Transf. 2024, 159, 107942. [Google Scholar] [CrossRef]
- Sun, H.; Xu, X.; Fei, L.; Zhou, W.; Shao, Z. Electrochemical Oxidation of Small Molecules for Energy-Saving Hydrogen Production. Adv. Energy Mater. 2024, 14, 2401242. [Google Scholar] [CrossRef]
- Xu, X.; Pan, Y.; Zhong, Y.; Ran, R.; Shao, Z. Ruddlesden–Popper perovskites in electrocatalysis. Mater. Horiz. 2020, 7, 2519–2565. [Google Scholar] [CrossRef]
- Halder, P.; Babaie, M.; Salek, F.; Haque, N.; Savage, R.; Stevanovic, S.; Bodisco, T.A.; Zare, A. Advancements in hydrogen production, storage, distribution and refuelling for a sustainable transport sector: Hydrogen fuel cell vehicles. Int. J. Hydrogen Energy 2023, 52, 973–1004. [Google Scholar] [CrossRef]
- Halder, P.; Babaie, M.; Salek, F.; Shah, K.; Stevanovic, S.; Bodisco, T.A.; Zare, A. Performance, emissions and economic analyses of hydrogen fuel cell vehicles. Renew. Sustain. Energy Rev. 2024, 199, 114543. [Google Scholar] [CrossRef]
- Sun, Y.; Polani, S.; Luo, F.; Ott, S.; Strasser, P.; Dionigi, F. Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells. Nat. Commun. 2021, 12, 5984. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, M.; Liu, X.; Yu, X.; Li, Q.; Sun, Q.; Sun, T.; Cao, S.; Hou, C. The Recent Progress of Oxygen Reduction Electrocatalysts Used at Fuel Cell Level. Small Methods 2023, 8, e2301249. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, H.-J.; Feng, X.; Ma, Z.; Ma, Z.-F.; Xue, Y. Progress of Pt and iron-group transition metal alloy catalysts with high ORR activity for PEMFCs. J. Electroanal. Chem. 2024, 959, 118165. [Google Scholar] [CrossRef]
- Yi, S.; Song, X.; Shen, Y.; Xu, R.; Zhao, Y.; Chen, P. Research progress in alloy catalysts for oxygen reduction reaction. J. Alloys Compd. 2024, 1002, 175258. [Google Scholar] [CrossRef]
- Burke, A.F.; Zhao, J.; Fulton, L.M. Projections of the costs of light-duty battery-electric and fuel cell vehicles (2020–2040) and related economic issues. Res. Transp. Econ. 2024, 105, 101440. [Google Scholar] [CrossRef]
- Li, F.; Chan, S.H.; Tu, Z. Recent Development of Anion Exchange Membrane Fuel Cells and Performance Optimization Strategies: A Review. Chem. Rec. 2023, 24, e202300067. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chen, M.; Li, W.; Lu, B. Recent Progress on Durable Metal-N-C Catalysts for Proton Exchange Membrane Fuel Cells. Chem.-Asian J. 2023, 19, e202300862. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zheng, Y.; Luo, D.; Qiu, W.; Wang, J.; Wang, X.; Chen, Z. Recent progress on mechanisms, principles, and strategies for high-activity and high-stability non-PGM fuel cell catalyst design. Carbon Energy 2024, 6, e426. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Q.; Ding, J.; Zhai, Y. Fe–N–C single atom catalysts for the electrochemical conversion of carbon, nitrogen and oxygen elements. Mater. Rep. Energy 2022, 2, 100141. [Google Scholar] [CrossRef]
- Krishnan, S.R.; Verstraete, D.; Aguey-Zinsou, F. Performance of Non-Precious Metal Electrocatalysts in Proton-Exchange Membrane Fuel Cells: A Review. ChemElectroChem 2024, 11, e202400299. [Google Scholar] [CrossRef]
- Qu, X.; Yan, Y.; Zhang, Z.; Tian, B.; Yin, S.; Cheng, X.; Huang, R.; Jiang, Y.; Sun, S. Regulation Strategies for Fe−N−C and Co−N−C Catalysts for the Oxygen Reduction Reaction. Chem.-Eur. J. 2024, 30, e202304003. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, B.; Wang, D.; Su, D.S. Order of Activity of Nitrogen, Iron Oxide, and FeNx Complexes towards Oxygen Reduction in Alkaline Medium. ChemSusChem 2015, 8, 4016–4021. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xu, Q.; Sun, H.; Ge, L.; Huang, D.; Zhang, Z.; Qiao, Y.; Tong, X.; Fan, W. Cobalt-Embedded Nitrogen-Doped Carbon Nanosheets for Oxygen Reduction Reaction under Alkaline and Acidic Media. ACS Appl. Nano Mater. 2024, 7, 15710–15719. [Google Scholar] [CrossRef]
- Morankar, A.; Atanassov, P.; Greeley, J. Hydrogen Peroxide-Induced Overoxidation of Fe−N−C Catalysts: Implications for ORR Activity. Chemphyschem 2024, 25, e202400199. [Google Scholar] [CrossRef]
- Yue, X.; Liu, Y.; Lu, B.; Du, X.; Lei, W.; Liu, Z.; Yi, S.; Lu, C. Inherent anti-Fenton property of single-atom rhenium for the ultra-durable oxygen reduction reaction. Energy Environ. Sci. 2024, 17, 5892–5900. [Google Scholar] [CrossRef]
- Peera, S.G.; Liu, C.; Asokan, A.; Suss, M.E. Cu@NC as high-performance and durable electrocatalyst for oxygen reduction reaction in alkaline membrane fuel cells. J. Alloys Compd. 2022, 938, 168636. [Google Scholar] [CrossRef]
- Kisand, K.; Sarapuu, A.; Akula, S.; Kikas, A.; Treshchalov, A.; Käärik, M.; Piirsoo, H.-M.; Kozlova, J.; Aruväli, J.; Leis, J.; et al. Iron and manganese co-doped mesoporous carbon-based catalysts via template-assisted synthesis for proton exchange membrane fuel cells. J. Power Sources 2024, 618, 235166. [Google Scholar] [CrossRef]
- Khater, D.Z.; Amin, R.S.; Mahmoud, M.; El-Khatib, K.M. Evaluation of mixed transition metal (Co, Mn, and Cu) oxide electrocatalysts anchored on different carbon supports for robust oxygen reduction reaction in neutral media. RSC Adv. 2022, 12, 2207–2218. [Google Scholar] [CrossRef] [PubMed]
- Speck, F.D.; Santori, P.G.; Jaouen, F.; Cherevko, S. Mechanisms of Manganese Oxide Electrocatalysts Degradation during Oxygen Reduction and Oxygen Evolution Reactions. J. Phys. Chem. C 2019, 123, 25267–25277. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Lu, B.; Wu, H.; Zhang, J. Unravelling the role of hydrogen peroxide in pH-dependent ORR performance of Mn-N-C catalysts. Appl. Catal. B Environ. 2023, 342, 123458. [Google Scholar] [CrossRef]
- Kumar, N.; Shaik, G.P.; Pandurangan, S.; Khalkho, B.; Neelakantan, L.; Chetty, R. Corrosion characteristics and fuel cell performance of a cost-effective high Mn–Low Ni austenitic stainless steel as an alternative to SS 316L bipolar plate. Int. J. Energy Res. 2020, 44, 6804–6818. [Google Scholar] [CrossRef]
- Dessie, Y.; Tadesse, S.; Eswaramoorthy, R.; Abebe, B. Recent developments in manganese oxide based nanomaterials with oxygen reduction reaction functionalities for energy conversion and storage applications: A review. J. Sci. Adv. Mater. Devices 2019, 4, 353–369. [Google Scholar] [CrossRef]
- Parveen, N.; Ansari, S.A.; Ansari, M.Z.; Ansari, M.O. Manganese oxide as an effective electrode material for energy storage: A review. Environ. Chem. Lett. 2021, 20, 283–309. [Google Scholar] [CrossRef]
- Yuan, H.; Deng, L.; Tang, J.; Zhou, S.; Chen, Y.; Yuan, Y. Facile Synthesis of MnO2/Polypyrrole/MnO2Multiwalled Nanotubes as Advanced Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem 2015, 2, 1152–1158. [Google Scholar] [CrossRef]
- Hu, K.; Xiao, X.; Du, P.; Yang, H.; Shen, Z.; Jin, G.; Wang, F.; Pan, F.; Zhao, Q.; Lou, Z. Facile fabrication of Mn-N doped porous carbon nanocages with enhanced oxygen reduction reaction activity. J. Alloys Compd. 2023, 967, 171819. [Google Scholar] [CrossRef]
- Sun, Y.; Ding, S.; Xia, B.; Duan, J.; Antonietti, M.; Chen, S. Biomimetic FeMo(Se, Te) as Joint Electron Pool Promoting Nitrogen Electrofixation. Angew. Chem. Int. Ed. 2022, 61, e202115198. [Google Scholar] [CrossRef]
- Peera, S.G.; Koutavarapu, R.; Akula, S.; Asokan, A.; Moni, P.; Selvaraj, M.; Balamurugan, J.; Kim, S.O.; Liu, C.; Sahu, A.K. Carbon Nanofibers as Potential Catalyst Support for Fuel Cell Cathodes: A Review. Energy Fuels 2021, 35, 11761–11799. [Google Scholar] [CrossRef]
- Wan, X.; Zhao, Y.; Li, Z.; Li, L. Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. Exploration 2022, 2, 20210029. [Google Scholar] [CrossRef] [PubMed]
- Krishna, A.M.S.; Ramasubramanian, B.; Haseena, S.; Bamola, P.; Sharma, H.; Mahata, C.; Chroneos, A.; Krishnamurthy, S.; Ravva, M.K.; Chandu, B.; et al. Functionalized Graphene-Incorporated Cupric Oxide Charge-Transport Layer for Enhanced Photoelectrochemical Performance and Hydrogen Evolution. Catalysts 2023, 13, 785. [Google Scholar] [CrossRef]
- Dessalle, A.; Quílez-Bermejo, J.; Fierro, V.; Xu, F.; Celzard, A. Recent progress in the development of efficient biomass-based ORR electrocatalysts. Carbon 2022, 203, 237–260. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, Y.; Zheng, R.; Wang, Q.; Li, X.; Wei, H.; Wang, L.; Li, Z.; Wang, F.; Han, N. Biomass-derived carbon material as efficient electrocatalysts for the oxygen reduction reaction. Biomass-Bioenergy 2022, 168, 106676. [Google Scholar] [CrossRef]
- Yin, S.; Du, Y.; Liang, X.; Xie, Y.; Xie, D.; Mei, Y. Surface coating of biomass-modified black phosphorus enhances flame retardancy of rigid polyurethane foam and its synergistic mechanism. Appl. Surf. Sci. 2023, 637, 157961. [Google Scholar] [CrossRef]
- Mehmandoust, M.; Li, G.; Erk, N. Biomass-Derived Carbon Materials as an Emerging Platform for Advanced Electrochemical Sensors: Recent Advances and Future Perspectives. Ind. Eng. Chem. Res. 2022, 62, 4628–4635. [Google Scholar] [CrossRef]
- Pagett, M.; Teng, K.S.; Sullivan, G.; Zhang, W. Reusing Waste Coffee Grounds as Electrode Materials: Recent Advances and Future Opportunities. Glob. Chall. 2022, 7, 2200093. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.K.; Bystrzejewski, M.; De Adhikari, A.; Huczko, A.; Wang, N. Methods for the conversion of biomass waste into value-added carbon nanomaterials: Recent progress and applications. Prog. Energy Combust. Sci. 2022, 92, 101023. [Google Scholar] [CrossRef]
- Hao, W.; Lee, S.-H.; Peera, S.G. Xerogel-Derived Manganese Oxide/N-Doped Carbon as a Non-Precious Metal-Based Oxygen Reduction Reaction Catalyst in Microbial Fuel Cells for Energy Conversion Applications. Nanomaterials 2023, 13, 2949. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Zeng, L.; Huang, Y.; Ma, Z.; Meng, G.; Peng, L.; Chen, C.; Cui, X.; Shi, J. In Situ Electrochemical Mn(III)/Mn(IV) Generation of Mn(II)O Electrocatalysts for High-Performance Oxygen Reduction. Nano-Micro Lett. 2020, 12, 161. [Google Scholar] [CrossRef] [PubMed]
- Arunchander, A.; Vivekanantha, M.; Peera, S.G.; Sahu, A.K. MnO–nitrogen doped graphene as a durable non-precious hybrid catalyst for the oxygen reduction reaction in anion exchange membrane fuel cells. RSC Adv. 2016, 6, 95590–95600. [Google Scholar] [CrossRef]
- Isaifan, R.J.; Ntais, S.; Baranova, E.A. Particle size effect on catalytic activity of carbon-supported Pt nanoparticles for complete ethylene oxidation. Appl. Catal. A Gen. 2013, 464–465, 87–94. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Fitzgerald, M.A.; Ibbotson, D.; Foster, J.; Dzara, M.J.; Zaccarine, S.F.; Vyas, S.; Pylypenko, S. Effects of Graphitic and Pyridinic Nitrogen Defects on Transition Metal Nucleation and Nanoparticle Formation on N-Doped Carbon Supports: Implications for Catalysis. ACS Appl. Nano Mater. 2022, 5, 14922–14933. [Google Scholar] [CrossRef]
- Hornberger, E.; Merzdorf, T.; Schmies, H.; Hübner, J.; Klingenhof, M.; Gernert, U.; Kroschel, M.; Anke, B.; Lerch, M.; Schmidt, J.; et al. Impact of Carbon N-Doping and Pyridinic-N Content on the Fuel Cell Performance and Durability of Carbon-Supported Pt Nanoparticle Catalysts. ACS Appl. Mater. Interfaces 2022, 14, 18420–18430. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, Z.; Chen, K.; Li, Z.; Hu, B.; Wang, L.; Wu, M. Unravelling the Role of Strong Metal–Support Interactions in Boosting the Activity toward Hydrogen Evolution Reaction on Ir Nanoparticle/N-Doped Carbon Nanosheet Catalysts. ACS Appl. Mater. Interfaces 2021, 13, 22448–22456. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wen, J.; Xiang, Y.; Li, M.; Zhao, Y.; Wang, S.; Dou, J.; Li, Y.; Ma, H.; Xu, L. Hierarchical mesoporous N-doped carbon as an efficient ORR/OER bifunctional electrocatalyst for rechargeable zinc–air battery. Inorg. Chem. Front. 2024, 11, 5345–5358. [Google Scholar] [CrossRef]
- Ma, R.; Lin, G.; Zhou, Y.; Liu, Q.; Zhang, T.; Shan, G.; Yang, M.; Wang, J. A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. npj Comput. Mater. 2019, 5, 78. [Google Scholar] [CrossRef]
- Xie, G.; Liu, X.; Li, Q.; Lin, H.; Li, Y.; Nie, M.; Qin, L. The evolution of α-MnO2 from hollow cubes to hollow spheres and their electrochemical performance for supercapacitors. J. Mater. Sci. 2017, 52, 10915–10926. [Google Scholar] [CrossRef]
- Wang, M.; Chen, K.; Liu, J.; He, Q.; Li, G.; Li, F. Efficiently Enhancing Electrocatalytic Activity of α-MnO2 Nanorods/N-Doped Ketjenblack Carbon for Oxygen Reduction Reaction and Oxygen Evolution Reaction Using Facile Regulated Hydrothermal Treatment. Catalysts 2018, 8, 138. [Google Scholar] [CrossRef]
- Qaseem, A.; Chen, F.; Wu, X.; Zhang, N.; Xia, Z. Ag, Co/graphene interactions and its effect on electrocatalytic oxygen reduction in alkaline media. J. Power Sources 2017, 370, 1–13. [Google Scholar] [CrossRef]
- Leontyev, I.N.; Belenov, S.V.; Guterman, V.E.; Haghi-Ashtiani, P.; Shaganov, A.P.; Dkhil, B. Catalytic Activity of Carbon-Supported Pt Nanoelectrocatalysts. Why Reducing the Size of Pt Nanoparticles is Not Always Beneficial. J. Phys. Chem. C 2011, 115, 5429–5434. [Google Scholar] [CrossRef]
- Zadick, A.; Dubau, L.; Sergent, N.; Berthomé, G.; Chatenet, M. Huge Instability of Pt/C Catalysts in Alkaline Medium. ACS Catal. 2015, 5, 4819–4824. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Wang, Y.; Chen, X.; Liu, M.; Zheng, Z.; Peng, X. Carbon corrosion mechanism on nitrogen-doped carbon support—A density functional theory study. Int. J. Hydrogen Energy 2021, 46, 13273–13282. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.; Relefors, A.; Kong, X.; Siso, G.M.; Wickman, B.; Kiros, Y.; Soroka, I.L. Tuning morphology, composition and oxygen reduction reaction (ORR) catalytic performance of manganese oxide particles fabricated by γ-radiation induced synthesis. J. Colloid Interface Sci. 2021, 583, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.M.; Go, Y.B.; Mui, M.; Gardner, G.; Zhang, Z.; Mastrogiovanni, D.; Garfunkel, E.; Li, J.; Greenblatt, M.; Dismukes, G.C. Photochemical Water Oxidation by Crystalline Polymorphs of Manganese Oxides: Structural Requirements for Catalysis. J. Am. Chem. Soc. 2013, 135, 3494–3501. [Google Scholar] [CrossRef] [PubMed]
- Brenet, J. Electrochemical behaviour of metallic oxides. J. Power Sources 1979, 4, 183–190. [Google Scholar] [CrossRef]
- Zhang, Q.; Didier, C.; Pang, W.K.; Liu, Y.; Wang, Z.; Li, S.; Peterson, V.K.; Mao, J.; Guo, Z. Structural Insight into Layer Gliding and Lattice Distortion in Layered Manganese Oxide Electrodes for Potassium-Ion Batteries. Adv. Energy Mater. 2019, 9, 1900568. [Google Scholar] [CrossRef]
- Takashima, T.; Hashimoto, K.; Nakamura, R. Inhibition of Charge Disproportionation of MnO2 Electrocatalysts for Efficient Water Oxidation Under Neutral Conditions. J. Am. Chem. Soc. 2012, 134, 18153–18156. [Google Scholar] [CrossRef] [PubMed]
- Stoerzinger, K.A.; Risch, M.; Han, B.; Shao-Horn, Y. Recent Insights into Manganese Oxides in Catalyzing Oxygen Reduction Kinetics. ACS Catal. 2015, 5, 6021–6031. [Google Scholar] [CrossRef]
- Chinnadurai, D.; Nallal, M.; Kim, H.; Li, O.L.; Park, K.H.; Prabakar, K. Mn3+ Active Surface Site Enriched Manganese Phosphate Nano-polyhedrons for Enhanced Bifunctional Oxygen Electrocatalyst. ChemCatChem 2020, 12, 2348–2355. [Google Scholar] [CrossRef]
- Shi, J. On the Synergetic Catalytic Effect in Heterogeneous Nanocomposite Catalysts. Chem. Rev. 2012, 113, 2139–2181. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peera, S.G.; Koutavarapu, R.; Prasada Reddy, P.S.; Koyyada, G.; Alodhayb, A.N.; Pandiaraj, S.; Kim, S.W.; Tamtam, M.R. Effect of N-Doped Carbon on the Morphology and Oxygen Reduction Reaction (ORR) Activity of a Xerogel-Derived Mn(II)O Electrocatalyst. Catalysts 2024, 14, 792. https://doi.org/10.3390/catal14110792
Peera SG, Koutavarapu R, Prasada Reddy PS, Koyyada G, Alodhayb AN, Pandiaraj S, Kim SW, Tamtam MR. Effect of N-Doped Carbon on the Morphology and Oxygen Reduction Reaction (ORR) Activity of a Xerogel-Derived Mn(II)O Electrocatalyst. Catalysts. 2024; 14(11):792. https://doi.org/10.3390/catal14110792
Chicago/Turabian StylePeera, Shaik Gouse, Ravindranadh Koutavarapu, P. Siva Prasada Reddy, Ganesh Koyyada, Abdullah N. Alodhayb, Saravanan Pandiaraj, Seung Won Kim, and Mohan Rao Tamtam. 2024. "Effect of N-Doped Carbon on the Morphology and Oxygen Reduction Reaction (ORR) Activity of a Xerogel-Derived Mn(II)O Electrocatalyst" Catalysts 14, no. 11: 792. https://doi.org/10.3390/catal14110792
APA StylePeera, S. G., Koutavarapu, R., Prasada Reddy, P. S., Koyyada, G., Alodhayb, A. N., Pandiaraj, S., Kim, S. W., & Tamtam, M. R. (2024). Effect of N-Doped Carbon on the Morphology and Oxygen Reduction Reaction (ORR) Activity of a Xerogel-Derived Mn(II)O Electrocatalyst. Catalysts, 14(11), 792. https://doi.org/10.3390/catal14110792