Fluorine-Doped Graphene Oxide-Modified Graphite Felt Cathode for Hydrogen Peroxide Generation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of FGO and FGO/GF
2.2. Electrochemical Characterizations
2.3. Electrogeneration of H2O2
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Material Synthesis
3.2.1. Synthesis of FGO
3.2.2. Preparation of Cathodes
3.3. Characterization of Catalysts and the Composite Cathodes
3.4. Electrochemical Performance Tests
3.5. Electrogeneration of H2O2 and Analytic Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fukuzumi, S.; Yamada, Y.; Karlin, K.D. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell. Electrochim. Acta 2012, 82, 493–511. [Google Scholar] [CrossRef] [PubMed]
- Siahrostami, S.; Villegas, S.J.; Bagherzadeh Mostaghimi, A.H.; Back, S.; Farimani, A.B.; Wang, H.; Persson, K.A.; Montoya, J. A Review on Challenges and Successes in Atomic-Scale Design of Catalysts for Electrochemical Synthesis of Hydrogen Peroxide. ACS Catal. 2020, 10, 7495–7511. [Google Scholar] [CrossRef]
- Jiang, Y.; Ni, P.; Chen, C.; Lu, Y.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective Electrochemical H2O2 Production through Two-Electron Oxygen Electrochemistry. Adv. Energy Mater. 2018, 8, 1801909. [Google Scholar] [CrossRef]
- Zhou, W.; Meng, X.; Gao, J.; Alshawabkeh, A.N. Hydrogen Peroxide Generation from O2 Electroreduction for Environmental Remediation: A State-of-the-Art Review. Chemosphere 2019, 225, 588–607. [Google Scholar] [CrossRef]
- Armaroli, N.; Balzani, V. Towards an Electricity-Powered World. Energy Environ. Sci. 2011, 4, 3193–3222. [Google Scholar] [CrossRef]
- Deng, Z.; Choi, S.J.; Li, G.; Wang, X. Advancing H2O2 Electrosynthesis: Enhancing Electrochemical Systems, Unveiling Emerging Applications, and Seizing Opportunities. Chem. Soc. Rev. 2024, 53, 8137–8181. [Google Scholar] [CrossRef]
- Zheng, B.; Cai, X.-L.; Zhou, Y.; Xia, X.-H. Pure Pyridinic Nitrogen-Doped Single-Layer Graphene Catalyzes Two-Electron Transfer Process of Oxygen Reduction Reaction. ChemElectroChem 2016, 3, 2036–2042. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Zhao, Y.; Li, G.; Zhang, F. Carbon Black Oxidized by Air Calcination for Enhanced H2O2 Generation and Effective Organics Degradation. ACS Appl. Mater. Interfaces 2019, 11, 27846–27853. [Google Scholar] [CrossRef]
- Zhao, H.; Shen, X.; Chen, Y.; Zhang, S.-N.; Gao, P.; Zhen, X.; Li, X.-H.; Zhao, G. A COOH-Terminated Nitrogen-Doped Carbon Aerogel as a Bulk Electrode for Completely Selective Two-Electron Oxygen Reduction to H2O2. Chem. Commun. 2019, 55, 6173–6176. [Google Scholar] [CrossRef]
- Chai, G.-L.; Hou, Z.; Ikeda, T.; Terakura, K. Two-Electron Oxygen Reduction on Carbon Materials Catalysts: Mechanisms and Active Sites. J. Phys. Chem. C 2017, 121, 14524–14533. [Google Scholar] [CrossRef]
- Palm, I.; Kibena-Põldsepp, E.; Lilloja, J.; Käärik, M.; Kikas, A.; Kisand, V.; Merisalu, M.; Treshchalov, A.; Paiste, P.; Leis, J.; et al. Impact of Ball-Milling of Carbide-Derived Carbons on the Generation of Hydrogen Peroxide via Electroreduction of Oxygen in Alkaline Media. J. Electroanal. Chem. 2020, 878, 114690. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, G.; Siahrostami, S.; Chen, Z.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D.; Liu, Y.; et al. High-Efficiency Oxygen Reduction to Hydrogen Peroxide Catalysed by Oxidized Carbon Materials. Nat. Catal. 2018, 1, 156–162. [Google Scholar] [CrossRef]
- Han, G.-F.; Li, F.; Zou, W.; Karamad, M.; Jeon, J.-P.; Kim, S.-W.; Kim, S.-J.; Bu, Y.; Fu, Z.; Lu, Y.; et al. Building and Identifying Highly Active Oxygenated Groups in Carbon Materials for Oxygen Reduction to H2O2. Nat. Commun. 2020, 11, 2209. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, D.; Giuliani, A.; Melchionna, M.; Marchesan, S.; Criado, A.; Nasi, L.; Bevilacqua, M.; Tavagnacco, C.; Vizza, F.; Prato, M.; et al. N-Doped Graphitized Carbon Nanohorns as a Forefront Electrocatalyst in Highly Selective O2 Reduction to H2O2. Chem 2018, 4, 106–123. [Google Scholar] [CrossRef]
- Quílez-Bermejo, J.; Melle-Franco, M.; San-Fabián, E.; Morallón, E.; Cazorla-Amorós, D. Towards Understanding the Active Sites for the ORR in N-Doped Carbon Materials through Fine-Tuning of Nitrogen Functionalities: An Experimental and Computational Approach. J. Mater. Chem. A 2019, 7, 24239–24250. [Google Scholar] [CrossRef]
- Peng, W.; Liu, J.; Liu, X.; Wang, L.; Yin, L.; Tan, H.; Hou, F.; Liang, J. Facilitating Two-Electron Oxygen Reduction with Pyrrolic Nitrogen Sites for Electrochemical Hydrogen Peroxide Production. Nat. Commun. 2023, 14, 4430. [Google Scholar] [CrossRef]
- To, J.W.F.; Ng, J.W.D.; Siahrostami, S.; Koh, A.L.; Lee, Y.; Chen, Z.; Fong, K.D.; Chen, S.; He, J.; Bae, W.-G.; et al. High-Performance Oxygen Reduction and Evolution Carbon Catalysis: From Mechanistic Studies to Device Integration. Nano Res. 2017, 10, 1163–1177. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Z.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T.R.; Liu, Y.; Yan, X.; Nilsson, E.; et al. Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide. J. Am. Chem. Soc. 2018, 140, 7851–7859. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, Z.; Li, K.; Fan, K.; Tian, T.; Jiang, H.; Jin, H.; Li, A.; Tang, Y.; Sun, Y.; et al. Enhanced Electrocatalytic Performance for H2O2 Generation by Boron-Doped Porous Carbon Hollow Spheres. iScience 2024, 27, 109553. [Google Scholar] [CrossRef]
- Fan, M.; Wang, Z.; Sun, K.; Wang, A.; Zhao, Y.; Yuan, Q.; Wang, R.; Raj, J.; Wu, J.; Jiang, J.; et al. N-B-OH Site-Activated Graphene Quantum Dots for Boosting Electrochemical Hydrogen Peroxide Production. Adv. Mater. 2023, 35, 2209086. [Google Scholar] [CrossRef]
- Perazzolo, V.; Durante, C.; Pilot, R.; Paduano, A.; Zheng, J.; Rizzi, G.A.; Martucci, A.; Granozzi, G.; Gennaro, A. Nitrogen and Sulfur Doped Mesoporous Carbon as Metal-Free Electrocatalysts for the in Situ Production of Hydrogen Peroxide. Carbon 2015, 95, 949–963. [Google Scholar] [CrossRef]
- Xiang, F.; Zhao, X.; Yang, J.; Li, N.; Gong, W.; Liu, Y.; Burguete-Lopez, A.; Li, Y.; Niu, X.; Fratalocchi, A. Enhanced Selectivity in the Electroproduction of H2O2 via F/S Dual-Doping in Metal-Free Nanofibers. Adv. Mater. 2023, 35, 2208533. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhou, S.; Fang, W.; Liu, J.; Lu, M. Confined Mesospace Synthesis of Sulfur-Doped Graphene Quantum Dots for Direct H2O2 Detection. ChemistrySelect 2022, 7, e202202119. [Google Scholar] [CrossRef]
- Li, K.; Liu, J.; Li, J.; Wan, Z. Effects of N Mono- and N/P Dual-Doping on H2O2, OH Generation, and MB Electrochemical Degradation Efficiency of Activated Carbon Fiber Electrodes. Chemosphere 2018, 193, 800–810. [Google Scholar] [CrossRef]
- Li, D.; Zheng, T.; Liu, Y.; Hou, D.; Yao, K.K.; Zhang, W.; Song, H.; He, H.; Shi, W.; Wang, L.; et al. A Novel Electro-Fenton Process Characterized by Aeration from inside a Graphite Felt Electrode with Enhanced Electrogeneration of H2O2 and Cycle of Fe3+/Fe2+. J. Hazard. Mater. 2020, 396, 122591. [Google Scholar] [CrossRef]
- Sun, Y.-M.; Li, C.; Liu, Y.-H. CO2-Activated Graphite Felt as an Effective Substrate to Promote Hydrogen Peroxide Synthesis and Enhance the Electro-Fenton Activity of Graphite/Fe3O4 Composites in Situ Fabricated from Acid Mine Drainage. J. Water Process Eng. 2024, 57, 104690. [Google Scholar] [CrossRef]
- Peera, S.G.; Menon, R.S.; Das, S.K.; Alfantazi, A.; Karuppasamy, K.; Liu, C.; Sahu, A.K. Oxygen Reduction Electrochemistry at F Doped Carbons: A Review on the Effect of Highly Polarized C-F Bonding in Catalysis and Stability of Fuel Cell Catalysts. Coord. Chem. Rev. 2024, 500, 215491. [Google Scholar] [CrossRef]
- Zhao, J.; Cabrera, C.R.; Xia, Z.; Chen, Z. Single−sided Fluorine–Functionalized Graphene: A Metal–Free Electrocatalyst with High Efficiency for Oxygen Reduction Reaction. Carbon 2016, 104, 56–63. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, J.; Jia, J.; Hu, X.; Yang, H.; Jia, M.; Wen, Z. The Fluorine-Doped and Defects Engineered Carbon Nanosheets as Advanced Electrocatalysts for Oxygen Electroreduction. Appl. Catal. B Environ. 2021, 284, 119721. [Google Scholar] [CrossRef]
- Sun, X.; Song, P.; Chen, T.; Liu, J.; Xu, W. Fluorine-Doped BP 2000: Highly Efficient Metal-Free Electrocatalysts for Acidic Oxygen Reduction Reaction with Superlow H2O2 Yield. Chem. Commun. 2013, 49, 10296–10298. [Google Scholar] [CrossRef]
- Zhao, K.; Su, Y.; Quan, X.; Liu, Y.; Chen, S.; Yu, H. Enhanced H2O2 Production by Selective Electrochemical Reduction of O2 on Fluorine-Doped Hierarchically Porous Carbon. J. Catal. 2018, 357, 118–126. [Google Scholar] [CrossRef]
- Wang, W.; Lu, X.; Su, P.; Li, Y.; Cai, J.; Zhang, Q.; Zhou, M.; Arotiba, O. Enhancement of Hydrogen Peroxide Production by Electrochemical Reduction of Oxygen on Carbon Nanotubes Modified with Fluorine. Chemosphere 2020, 259, 127423. [Google Scholar] [CrossRef] [PubMed]
- Seehra, M.S.; Narang, V.; Geddam, U.K.; Stefaniak, A.B. Correlation between X-Ray Diffraction and Raman Spectra of 16 Commercial Graphene–Based Materials and Their Resulting Classification. Carbon 2017, 111, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, J.; Li, Z.; Gong, P.; Liu, X.; Zhang, L.; Ren, J.; Wang, H.; Yang, S. Synthesis of Fluorinated Graphene with Tunable Degree of Fluorination. Carbon 2012, 50, 5403–5410. [Google Scholar] [CrossRef]
- Brusko, V.; Khannanov, A.; Rakhmatullin, A.; Dimiev, A.M. Unraveling the Infrared Spectrum of Graphene Oxide. Carbon 2024, 229, 119507. [Google Scholar] [CrossRef]
- Sato, Y.; Itoh, K.; Hagiwara, R.; Fukunaga, T.; Ito, Y. On the So-Called “Semi-Ionic” C–F Bond Character in Fluorine–GIC. Carbon 2004, 42, 3243–3249. [Google Scholar] [CrossRef]
- Kumar, N.; Setshedi, K.; Masukume, M.; Ray, S.S. Facile Scalable Synthesis of Graphene Oxide and Reduced Graphene Oxide: Comparative Investigation of Different Reduction Methods. Carbon Lett. 2022, 32, 1031–1046. [Google Scholar] [CrossRef]
- Wasalathilake, K.C.; Galpaya, D.G.D.; Ayoko, G.A.; Yan, C. Understanding the Structure-Property Relationships in Hydrothermally Reduced Graphene Oxide Hydrogels. Carbon 2018, 137, 282–290. [Google Scholar] [CrossRef]
- Reiche, S.; Blume, R.; Zhao, X.C.; Su, D.; Kunkes, E.; Behrens, M.; Schlögl, R. Reactivity of Mesoporous Carbon against Water—An in-Situ XPS Study. Carbon 2014, 77, 175–183. [Google Scholar] [CrossRef]
- Raudsepp, R.; Türk, K.; Zarmehri, E.; Joost, U.; Rauwel, P.; Saar, R.; Mäeorg, U.; Dyck, A.; Bron, M.; Chen, Z.; et al. Boron and Fluorine Co-Doped Graphene/Few-Walled Carbon Nanotube Composite as Highly Active Electrocatalyst for Oxygen Reduction Reaction. ChemNanoMat 2024, 10, e202300546. [Google Scholar] [CrossRef]
- Panomsuwan, G.; Saito, N.; Ishizaki, T. Simple One-Step Synthesis of Fluorine-Doped Carbon Nanoparticles as Potential Alternative Metal-Free Electrocatalysts for Oxygen Reduction Reaction. J. Mater. Chem. A 2015, 3, 9972–9981. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Dai, Y.; Wang, Q.; Gao, J.; Huang, J.; Yang, J.; Liu, X. Preparing Highly Fluorinated Multiwall Carbon Nanotube by Direct Heating-Fluorination during the Elimination of Oxygen-Related Groups. J. Phys. Chem. C 2013, 117, 12078–12085. [Google Scholar] [CrossRef]
- Gu, Y.; Fu, H.; Huang, Z.; Lin, R.; Wu, Z.; Li, M.; Cui, Y.; Fu, R.; Wang, S. O/F Co-Doped CNTs Promoted Graphite Felt Gas Diffusion Cathode for Highly Efficient and Durable H2O2 Evolution without Aeration. J. Clean. Prod. 2022, 341, 130799. [Google Scholar] [CrossRef]
- Shulga, Y.M.; Tien, T.-C.; Huang, C.-C.; Lo, S.-C.; Muradyan, V.E.; Polyakova, N.V.; Ling, Y.-C.; Loutfy, R.O.; Moravsky, A.P. XPS Study of Fluorinated Carbon Multi-Walled Nanotubes. J. Electron. Spectrosc. Relat. Phenom. 2007, 160, 22–28. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, W.C.; Manga, K.K.; Ang, P.K.; Lu, J.; Liu, Y.P.; Lim, C.T.; Loh, K.P. Fluorinated Graphene for Promoting Neuro-Induction of Stem Cells. Adv. Mater. 2012, 24, 4285–4290. [Google Scholar] [CrossRef]
- Tressaud, A.; Durand, E.; Labrugère, C. Surface Modification of Several Carbon-Based Materials: Comparison between CF4 Rf Plasma and Direct F2-Gas Fluorination Routes. J. Fluor. Chem. 2004, 125, 1639–1648. [Google Scholar] [CrossRef]
- Zhao, F.-G.; Zhao, G.; Liu, X.-H.; Ge, C.-W.; Wang, J.-T.; Li, B.-L.; Wang, Q.-G.; Li, W.-S.; Chen, Q.-Y. Fluorinated Graphene: Facile Solution Preparation and Tailorable Properties by Fluorine-Content Tuning. J. Mater. Chem. A 2014, 2, 8782–8789. [Google Scholar] [CrossRef]
- Lee, J.-M.; Kim, S.J.; Kim, J.W.; Kang, P.H.; Nho, Y.C.; Lee, Y.-S. A High Resolution XPS Study of Sidewall Functionalized MWCNTs by Fluorination. J. Ind. Eng. Chem. 2009, 15, 66–71. [Google Scholar] [CrossRef]
- Wang, X.; Dai, Y.; Gao, J.; Huang, J.; Li, B.; Fan, C.; Yang, J.; Liu, X. High-Yield Production of Highly Fluorinated Graphene by Direct Heating Fluorination of Graphene-Oxide. ACS Appl. Mater. Interfaces 2013, 5, 8294–8299. [Google Scholar] [CrossRef]
- Sun, C.; Feng, Y.; Li, Y.; Qin, C.; Zhang, Q.; Feng, W. Solvothermally Exfoliated Fluorographene for High-Performance Lithium Primary Batteries. Nanoscale 2014, 6, 2634–2641. [Google Scholar] [CrossRef]
- Zarei, M.; Salari, D.; Niaei, A.; Khataee, A. Peroxi-Coagulation Degradation of C.I. Basic Yellow 2 Based on Carbon-PTFE and Carbon Nanotube-PTFE Electrodes as Cathode. Electrochim. Acta 2009, 54, 6651–6660. [Google Scholar] [CrossRef]
- Yu, F.; Tao, L.; Cao, T. High Yield of Hydrogen Peroxide on Modified Graphite Felt Electrode with Nitrogen-Doped Porous Carbon Carbonized by Zeolitic Imidazolate Framework-8 (ZIF-8) Nanocrystals. Environ. Pollut. 2019, 255, 113119. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Zhou, M.; Yu, X. Cost-Effective Electro-Fenton Using Modified Graphite Felt That Dramatically Enhanced on H2O2 Electro-Generation without External Aeration. Electrochim. Acta 2015, 163, 182–189. [Google Scholar] [CrossRef]
- Li, M.; Lan, H.; An, X.; Qin, X.; Zhang, Z.; Li, T. Highly Efficient Electrosynthesis of Hydrogen Peroxide through the Combination of Side Aeration and Vacuum Filtration Modified Graphite Felt. Appl. Catal. B Environ. 2023, 339, 123125. [Google Scholar] [CrossRef]
- Jing, L.; Tian, Q.; Wang, W.; Li, X.; Hu, Q.; Yang, H.; He, C. Unveiling Favorable Microenvironment on Porous Doped Carbon Nanosheets for Superior H2O2 Electrosynthesis in Neutral Media. Adv. Energy Mater. 2024, 14, 2304418. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Wang, Z.; Chen, Y.; Xu, W. Fluorine-Doped Graphene Oxide-Modified Graphite Felt Cathode for Hydrogen Peroxide Generation. Catalysts 2024, 14, 793. https://doi.org/10.3390/catal14110793
Hu J, Wang Z, Chen Y, Xu W. Fluorine-Doped Graphene Oxide-Modified Graphite Felt Cathode for Hydrogen Peroxide Generation. Catalysts. 2024; 14(11):793. https://doi.org/10.3390/catal14110793
Chicago/Turabian StyleHu, Junling, Zhaohui Wang, Yongmei Chen, and Wei Xu. 2024. "Fluorine-Doped Graphene Oxide-Modified Graphite Felt Cathode for Hydrogen Peroxide Generation" Catalysts 14, no. 11: 793. https://doi.org/10.3390/catal14110793
APA StyleHu, J., Wang, Z., Chen, Y., & Xu, W. (2024). Fluorine-Doped Graphene Oxide-Modified Graphite Felt Cathode for Hydrogen Peroxide Generation. Catalysts, 14(11), 793. https://doi.org/10.3390/catal14110793