Degradation of Chlorothalonil by Catalytic Biomaterials
Abstract
:1. Introduction
2. Results and Discussion
2.1. Production and Purification of Chd
2.2. Immobilization of Chd
2.3. Optimization of Sol Ratio
2.4. Proteolytic Digestion of Soluble and Immobilized Chd
2.5. Reuse of Soluble and Immobilized Chd
2.6. Thermostability of Soluble and Immobilized Chd
2.7. Effects of pH on Soluble and Immobilized Chd
2.8. Organic Co-Solvent Stability of Soluble and Immobilized Chd
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Scoy, A.R.; Tjeerdema, R.S. Environmental Fate and Toxicology of Chlorothalonil. Rev. Environ. Contam. Toxicol. 2014, 232, 89–105. [Google Scholar] [PubMed]
- Da Silva, J.N.; Monteiro, N.R.; Antunes, P.A.; Favareto, A.P.A. Maternal and Developmental Toxicity after Exposure to Formulation of Chlorothalonil and Thiophanate-Methyl during Organogenesis in Rats. An. Acad. Bras. Cienc. 2020, 92, e20191026. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.-W.; Armbrust, K.L. Degradation of Chlorothalonil in Irradiated Water/ Sediment Systems. J. Agric. Food Chem. 2006, 54, 3651–3657. [Google Scholar] [CrossRef]
- Yang, X.; Diviesti, K.; Miller, C.; Bennett, B.; Holz, R.C. Insights into the Catalytic Mechanism of the Chlorothalonil Dehalogenase from Pseudomonas sp. CTN-3. Front. Chem. Biol. 2023, 2, 13411–13420. [Google Scholar] [CrossRef]
- Xu, X.-H.; Liu, X.-M.; Zhang, L.; Mu, Y.; Zhu, X.-Y.; Fang, J.-Y.; Li, S.-P.; Jiang, J.-D. Bioaugmentation of Chlorothalonil-Contaminated Soil with Hydrolytically or Reductively Dehalogenating Strain and Its Effect on Soil Microbial Community. J. Hazard. Mater. 2018, 351, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Onduka, T.; Kakuno, A.; Kono, K.; Ito, K.; Mochida, K.; Fujii, K. Toxicity of Chlorothalonil to Marine Organisms. Fish. Sci. 2012, 78, 1301–1308. [Google Scholar] [CrossRef]
- Hao, Y.; Zhang, H.; Zhang, P.; Yu, S.; Ma, D.; Li, L.; Feng, Y.; Min, L.; Shen, W.; Zhao, Y. Chlorothalonil Inhibits Mouse Ovarian Development through Endocrine Disruption. Toxicol. Lett. 2019, 303, 38–47. [Google Scholar] [CrossRef]
- Reregistration Eligibility Decision (RED): Chlorothalonil; EPA: Washington, DC, USA, 1999.
- Mozzachio, A.M.; Rusiecki, J.A.; Hoppin, J.A.; Mahajan, R.; Patel, R.; Beane-Freeman, L.; Alavanja, M.C. Chlorothalonil Exposure and Cancer Incidence among Pesticide Applicator Participants in the Agricultural Health Study. Environ. Res. 2008, 108, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.; Liu, G.; Li, M.; Su, X.; Lu, L.; Ye, S.; Wu, J.; Edwards, E.A.; Jiang, J. Complete Reductive Dechlorination of 4-Hydroxy-Chlorothalonil by Dehalogenimonas Populations. Environ. Sci. Technol. 2022, 56, 12237–12246. [Google Scholar] [CrossRef]
- Scholten, J.D.; Chang, K.-H.; Babbitt, P.C.; Charest, H.; Sylvestre, M.; Dunaway-Mariano, D. Novel Enzymic Hydrolytic Dehalogenation of a Chlorinated Aromatic. Science 1991, 253, 182–185. [Google Scholar] [CrossRef]
- Catlin, D.S.; Yang, X.; Bennett, B.; Holz, R.C.; Liu, D. Structural Basis for the Hydrolytic Dehalogenation of the Fungicide Chlorothalonil. J. Biol. Chem. 2020, 295, 8668–8677. [Google Scholar] [CrossRef] [PubMed]
- Gerlich, G.; Miller, C.; Yang, X.; Diviesti, K.; Bennett, B.; Klein-Seetharaman, J.; Holz, R.C. Catalytic Role of Histidine-114 in the Hydrolytic Dehalogenation of Chlorothalonil by Pseudomonas sp. CTN-3. JBIC J. Biol. Inorg. Chem. 2024, 29, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Wang, G.; Zhao, Y.; Chen, K.; Li, S.; Jiang, J. Facilitation of Bacterial Adaptation to Chlorothalonil-Contaminated Sites by Horizontal Transfer of the Chlorothalonil Hydrolytic Dehalogenase Gene. Appl. Environ. Microbiol. 2011, 77, 4268–4272. [Google Scholar] [CrossRef]
- Kumar, L.; Bharadvaja, N. Enzymatic Bioremediation: A Smart Tool to Fight Environmental Pollutants. In Smart Bioremediation Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 99–118. [Google Scholar]
- Somu, P.; Narayanasamy, S.; Gomez, L.A.; Rajendran, S.; Lee, Y.R.; Balakrishnan, D. Immobilization of Enzymes for Bioremediation: A Future Remedial and Mitigating Strategy. Environ. Res. 2022, 212, 113411. [Google Scholar] [CrossRef]
- Bhandari, S.; Poudel, D.K.; Marahatha, R.; Dawadi, S.; Khadayat, K.; Phuyal, S.; Shrestha, S.; Gaire, S.; Basnet, K.; Khadka, U.; et al. Microbial Enzymes Used in Bioremediation. J. Chem. 2021, 2021, 8849512. [Google Scholar] [CrossRef]
- Martinez, S.; Kuhn, M.L.; Russell, J.T.; Holz, R.C.; Elgren, T.E. Acrylamide Production Using Encapsulated Nitrile Hydratase from Pseudonocardia Thermophila in a Sol–Gel Matrix. J. Mol. Catal. B Enzym. 2014, 100, 19–24. [Google Scholar] [CrossRef]
- Diviesti, K.; Holz, R.C. Catalytic Biomaterials for Atrazine Degradation. Catalysts 2023, 13, 140. [Google Scholar] [CrossRef]
- Sheldon, R.A. Enzyme Immobilization: The Quest for Optimum Performance. Adv. Synth. Catal. 2007, 349, 1289–1307. [Google Scholar] [CrossRef]
- Yang, X.; Bennett, B.; Holz, R.C. Insights into the Catalytic Mechanism of a Bacterial Hydrolytic Dehalogenase That Degrades the Fungicide Chlorothalonil. J. Biol. Chem. 2019, 294, 13411–13420. [Google Scholar] [CrossRef]
- Wang, G.; Li, R.; Li, S.; Jiang, J. A Novel Hydrolytic Dehalogenase for the Chlorinated Aromatic Compound Chlorothalonil. J. Bacteriol. 2010, 192, 2737–2745. [Google Scholar] [CrossRef]
- Won, K.; Kim, S.; Kim, K.-J.; Park, H.W.; Moon, S.-J. Optimization of Lipase Entrapment in Ca-Alginate Gel Beads. Process Biochem. 2005, 40, 2149–2154. [Google Scholar] [CrossRef]
- Fareez, I.M.; Lim, S.M.; Mishra, R.K.; Ramasamy, K. Chitosan Coated Alginate–Xanthan Gum Bead Enhanced PH and Thermotolerance of Lactobacillus Plantarum LAB12. Int. J. Biol. Macromol. 2015, 72, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Manea, M.; Mező, G.; Hudecz, F.; Przybylski, M. Mass Spectrometric Identification of the Trypsin Cleavage Pathway in Lysyl-proline Containing Oligotuftsin Peptides. J. Pept. Sci. 2007, 13, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Kim, S.; Jeong, C.; Cho, S.; Kim, S.-B. Effects of Thermal Treatment on the Physical Properties of Edible Calcium Alginate Gel Beads: Response Surface Methodological Approach. Foods 2019, 8, 578. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An International Database for Pesticide Risk Assessments and Management. Human. Ecol. Risk Assess. An. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- DeGroot, A.R.; Neufeld, R.J. Encapsulation of Urease in Alginate Beads and Protection from α-Chymotrypsin with Chitosan Membranes. Enzym. Microb. Technol. 2001, 29, 321–327. [Google Scholar] [CrossRef]
- Chen, H.; Huang, S.; Wang, H.; Wang, T.; Zang, X.; Li, S.; Jiang, J. Identification of the Metal Center of Chlorothalonil Hydrolytic Dehalogenase and Enhancement of Catalytic Efficiency by Directed Evolution. Appl. Environ. Biotechnol. 2016, 1, 30–37. [Google Scholar] [CrossRef]
Material | Activity After 30 min Digestion | Activity After Six Weeks | Thermostability at 60 °C | Activity at pH 5 | Activity at pH 9 | Activity at 40% MeOH |
---|---|---|---|---|---|---|
Chd/sol | 93 ± 4% | 47 ± 12% | 74 ± 12% | 96 ± 1% | 76 ± 2% | 54 ± 4% |
Chd/alginate | 26 ± 6% | 0% | 9 ± 6% | 40 ± 3% | 95 ± 2% | 57 ± 9% |
Chd/chitosan | 35 ± 1% | 8 ± 7% | 20 ± 4% | 87 ± 1% | 95 ± 8% | 35 ± 10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mowery-Evans, M.; Diviesti, K.; Holz, R.C. Degradation of Chlorothalonil by Catalytic Biomaterials. Catalysts 2024, 14, 805. https://doi.org/10.3390/catal14110805
Mowery-Evans M, Diviesti K, Holz RC. Degradation of Chlorothalonil by Catalytic Biomaterials. Catalysts. 2024; 14(11):805. https://doi.org/10.3390/catal14110805
Chicago/Turabian StyleMowery-Evans, Maya, Karla Diviesti, and Richard C. Holz. 2024. "Degradation of Chlorothalonil by Catalytic Biomaterials" Catalysts 14, no. 11: 805. https://doi.org/10.3390/catal14110805
APA StyleMowery-Evans, M., Diviesti, K., & Holz, R. C. (2024). Degradation of Chlorothalonil by Catalytic Biomaterials. Catalysts, 14(11), 805. https://doi.org/10.3390/catal14110805