Production of Aviation Fuel-Range Hydrocarbons Through Catalytic Co-Pyrolysis of Polystyrene and Southern Pine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Feedstock Characteristics
2.2. Pyrolysis Products
2.2.1. Effect of Temperature on Pyrolysis Yields
2.2.2. Effect of Catalyst on Pyrolysis Yields
2.2.3. Pyrolysis Yields of Blended Feedstock
2.3. Analysis of Oil Products
2.4. Chemical Composition of Oil Products
2.4.1. Effect of Catalysts on Oil Compound Distribution
2.4.2. Effect of Reaction Temperature on Oil Compound Distribution
2.4.3. Compound Distribution of Co-Pyrolysis Oil
2.5. Reaction Mechanisms of Pyrolysis, Catalytic Pyrolysis, and Co-Pyrolysis
2.6. Concentration of Products in Pyrolysis Oils
2.6.1. Effect of Pyrolysis Temperature and Catalyst on Concentration
2.6.2. Comparison of Co-Pyrolysis Oil to Theoretical Predictions
2.7. Overall Kerosene-Cut Yield
3. Materials and Methods
3.1. Materials
3.2. Feedstock Characterization
3.3. Experimental Setup
3.4. Experimental Design
3.5. Mass Balance
3.6. Product Analysis
GC/MS Calibration
3.7. Statistical Analysis
3.8. Theoretical vs. Ovserved Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergquist, P.; Warshaw, C. Does Global Warming Increase Public Concern about Climate Change? J. Politics 2019, 81, 686–691. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R. Global Warming of 1.5 C: IPCC Special Report on Impacts of Global Warming of 1.5 C Above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2022; ISBN 1-00-915794-9. [Google Scholar]
- Global CO2 Emissions by Sector, 2019–2022—Charts—Data & Statistics. Available online: https://www.iea.org/data-and-statistics/charts/global-co2-emissions-by-sector-2019-2022 (accessed on 29 October 2024).
- Greene, D.L.; Baker, H.H., Jr.; Plotkin, S.E. Reducing Greenhouse Gas Emissions from US Transportation. 2010. Available online: https://rosap.ntl.bts.gov/view/dot/23588/dot_23588_DS1.pdf (accessed on 7 May 2024).
- Grubb, M. Technology Innovation and Climate Change Policy: An Overview of Issues and Options. Keio Econ. Stud. 2004, 41, 103–132. [Google Scholar]
- Johnson, T.V. Review of CO₂ Emissions and Technologies in the Road Transportation Sector. SAE Int. J. Engines 2010, 3, 1079–1098. [Google Scholar] [CrossRef]
- Krämer, I.; Czermański, E. Onshore Power One Option to Reduce Air Emissions in Ports. Sustain. Manag. Forum 2020, 28, 13–20. [Google Scholar] [CrossRef]
- Tom, L.; Khowja, M.; Vakil, G.; Gerada, C. Commercial Aircraft Electrification—Current State and Future Scope. Energies 2021, 14, 8381. [Google Scholar] [CrossRef]
- Donnelly, J.; Horton, R.; Gopalan, K.; Bannister, C.D.; Chuck, C.J. Branched Ketone Biofuels as Blending Agents for Jet-A1 Aviation Kerosene. Energy Fuels 2016, 30, 294–301. [Google Scholar] [CrossRef]
- Holladay, J.; Abdullah, Z.; Heyne, J. Sustainable Aviation Fuel: Review of Technical Pathways. 2020. Available online: https://www.energy.gov/sites/prod/files/2020/09/f78/beto-sust-aviation-fuel-sep-2020.pdf (accessed on 4 April 2024).
- Sustainable Aviation Fuels Guide; International Civil Aviation Organization (ICAO): Montreal, QC, Canada, 2018.
- Pires, A.P.; Han, Y.; Kramlich, J.; Garcia-Perez, M. Chemical Composition and Fuel Properties of Alternative Jet Fuels. BioResearch 2018, 13, 2632–2657. [Google Scholar] [CrossRef]
- Brooks, K.; Snowden-Swan, L.; Jones, S.; Butcher, M.; Lee, G.-S.; Anderson, D.; Frye, J.; Holladay, J.; Owen, J.; Harmon, L. Low-Carbon Aviation Fuel through the Alcohol to Jet Pathway. In Biofuels for Aviation; Elsevier: Amsterdam, The Netherlands, 2016; pp. 109–150. [Google Scholar]
- Pearlson, M.; Wollersheim, C.; Hileman, J. A Techno-economic Review of Hydroprocessed Renewable Esters and Fatty Acids for Jet Fuel Production. Biofuels Bioprod. Biorefin. 2013, 7, 89–96. [Google Scholar] [CrossRef]
- Seber, G.; Malina, R.; Pearlson, M.N.; Olcay, H.; Hileman, J.I.; Barrett, S.R. Environmental and Economic Assessment of Producing Hydroprocessed Jet and Diesel Fuel from Waste Oils and Tallow. Biomass Bioenergy 2014, 67, 108–118. [Google Scholar] [CrossRef]
- Total, A. Breaking the Barriers with Break through Jet Fuel Solutions. In Proceedings of the Berlin Airshow, Berlin, Germany, 11–16 September 2012. [Google Scholar]
- Cabrera, E.; de Sousa, J.M.M. Use of Sustainable Fuels in Aviation—A Review. Energies 2022, 15, 2440. [Google Scholar] [CrossRef]
- Carlson, T.R.; Cheng, Y.-T.; Jae, J.; Huber, G.W. Production of Green Aromatics and Olefins by Catalytic Fast Pyrolysis of Wood Sawdust. Energy Environ. Sci. 2011, 4, 145–161. [Google Scholar] [CrossRef]
- Jaafar, Y.; Ramirez, G.C.A.; Abdelouahed, L.; El Samrani, A.; El Hage, R.; Taouk, B. Upgrading Pyrolytic Oil via Catalytic Co-Pyrolysis of Beechwood and Polystyrene. Molecules 2023, 28, 5758. [Google Scholar] [CrossRef] [PubMed]
- White, R.H. Effect of Lignin Content and Extractives on the Higher Heating Value of Wood, Volume 4. Wood Fiber Sci. 1987, 4, 446–452. [Google Scholar]
- Cheng, Y.-T.; Huber, G.W. Production of Targeted Aromatics by Using Diels–Alder Classes of Reactions with Furans and Olefins over ZSM-5. Green Chem. 2012, 14, 3114–3125. [Google Scholar] [CrossRef]
- Guo, S.; Wang, Z.; Chen, G.; Chen, Y.; Wu, M.; Zhang, M.; Li, Z.; Yang, S.; Lei, T. Catalytic Co-Pyrolysis of Poplar Tree and Polystyrene with HZSM-5 and Fe/HZSM-5 for Production of Light Aromatic Hydrocarbons. Energy 2024, 298, 131433. [Google Scholar] [CrossRef]
- Kong, L.; Wang, J.; Dong, K.; Sun, Z.; Tang, B.; Zhao, N.; Wang, Y.; Ou, J.; Guo, F. Catalytic Pyrolysis Characteristics of Polystyrene by Biomass Char-Supported Nanocatalysts. J. Anal. Appl. Pyrolysis 2024, 179, 106511. [Google Scholar] [CrossRef]
- Van Nguyen, Q.; Choi, Y.S.; Jeong, Y.W.; Han, S.Y.; Choi, S.K. Catalytic Co-Pyrolysis of Coffee-Grounds and Waste Polystyrene Foam by Calcium Oxide in Bubbling Fluidized Bed Reactor. Renew. Energy 2024, 224, 120124. [Google Scholar] [CrossRef]
- Chaturvedi, E.; Roy, P.; Upadhyay, R.; Chowdhury, P. Enhanced Yield and Production of Aromatics Rich Fractions in Bio-Oil through Co-Pyrolysis of Waste Biomass and Plastics. J. Anal. Appl. Pyrolysis 2024, 178, 106379. [Google Scholar] [CrossRef]
- Dorado, C.; Mullen, C.A.; Boateng, A.A. Origin of Carbon in Aromatic and Olefin Products Derived from HZSM-5 Catalyzed Co-Pyrolysis of Cellulose and Plastics via Isotopic Labeling. Appl. Catal. B Environ. 2015, 162, 338–345. [Google Scholar] [CrossRef]
- Sushil, S.; Batra, V.S. Catalytic Applications of Red Mud, an Aluminium Industry Waste: A Review. Appl. Catal. B Environ. 2008, 81, 64–77. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Wang, G.; Wu, Y.; Yang, H.; Jin, L.; Hu, S.; Hu, H. Effect of Fe Components in Red Mud on Catalytic Pyrolysis of Low Rank Coal. J. Energy Inst. 2022, 100, 1–9. [Google Scholar] [CrossRef]
- López, A.; De Marco, I.; Caballero, B.; Laresgoiti, M.; Adrados, A.; Aranzabal, A. Catalytic Pyrolysis of Plastic Wastes with Two Different Types of Catalysts: ZSM-5 Zeolite and Red Mud. Appl. Catal. B Environ. 2011, 104, 211–219. [Google Scholar] [CrossRef]
- Bhattarai, A.; Kemp, A.; Jahromi, H.; Kafle, S.; Adhikari, S. Thermochemical Characterization and Kinetics of Biomass, Municipal Plastic Waste, and Coal Blends and Their Potential for Energy Generation via Gasification. ACS Omega 2023, 8, 45985–46001. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, C.; Lerner, J.C.; Vazquez, P.; Sambeth, J. Analysis of the Emission of PAH in the Thermal and Catalytic Pyrolysis of Polystyrene. Catal. Today 2021, 372, 175–182. [Google Scholar] [CrossRef]
- Rajput, G.; Liu, B.; Pan, M.; Kumar, A.; Kumari, L.; Farooq, M.Z.; Li, D.; Lin, F.; Ma, W. Valorizing Polymeric Wastes and Biomass through Optimized Co-Pyrolysis for Upgraded Pyrolysis Oil: A Study on TG-FTIR and Fixed Bed Reactor. J. Anal. Appl. Pyrolysis 2024, 182, 106686. [Google Scholar] [CrossRef]
- Burra, K.R.G.; Liu, X.; Wang, Z.; Li, J.; Che, D.; Gupta, A.K. Quantifying the Sources of Synergistic Effects in Co-Pyrolysis of Pinewood and Polystyrene. Appl. Energy 2021, 302, 117562. [Google Scholar] [CrossRef]
- Zhang, H.; Nie, J.; Xiao, R.; Jin, B.; Dong, C.; Xiao, G. Catalytic Co-Pyrolysis of Biomass and Different Plastics (Polyethylene, Polypropylene, and Polystyrene) to Improve Hydrocarbon Yield in a Fluidized-Bed Reactor. Energy Fuels 2014, 28, 1940–1947. [Google Scholar] [CrossRef]
- Havilah, P.R.; Sharma, P.K.; Sharma, A.K. Characterization, Thermal and Kinetic Analysis of Pinusroxburghii. Environ. Dev. Sustain. 2021, 23, 8872–8894. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, J.; Wang, J. Pyrolysis of Polystyrene Waste in a Fluidized-Bed Reactor to Obtain Styrene Monomer and Gasoline Fraction. Fuel Process. Technol. 2000, 63, 45–55. [Google Scholar] [CrossRef]
- Barr, M.R.; Volpe, R.; Kandiyoti, R. Influence of Reactor Design on Product Distributions from Biomass Pyrolysis. ACS Sustain. Chem. Eng. 2019, 7, 13734–13745. [Google Scholar] [CrossRef]
- Sekar, M.; Ponnusamy, V.K.; Pugazhendhi, A.; Nižetić, S.; Praveenkumar, T. Production and Utilization of Pyrolysis Oil from Solidplastic Wastes: A Review on Pyrolysis Process and Influence of Reactors Design. J. Environ. Manag. 2022, 302, 114046. [Google Scholar] [CrossRef] [PubMed]
- Ningbo, G.; Baoling, L.; Aimin, L.; Juanjuan, L. Continuous Pyrolysis of Pine Sawdust at Different Pyrolysis Temperatures and Solid Residence Times. J. Anal. Appl. Pyrolysis 2015, 114, 155–162. [Google Scholar] [CrossRef]
- Şensöz, S.; Can, M. Pyrolysis of Pine (Pinus Brutia Ten.) Chips: 1. Effect of Pyrolysis Temperature and Heating Rate on the Product Yields. Energy Sources 2002, 24, 347–355. [Google Scholar] [CrossRef]
- Santosa, D.M.; Zhu, C.; Agblevor, F.A.; Maddi, B.; Roberts, B.Q.; Kutnyakov, I.V.; Lee, S.-J.; Wang, H. In Situ Catalytic Fast Pyrolysis Using Red Mud Catalyst: Impact of Catalytic Fast Pyrolysis Temperature and Biomass Feedstocks. ACS Sustain. Chem. Eng. 2020, 8, 5156–5164. [Google Scholar] [CrossRef]
- Yathavan, B.K.; Agblevor, F. Catalytic Pyrolysis of Pinyon–Juniper Using Red Mud and HZSM-5. Energy Fuels 2013, 27, 6858–6865. [Google Scholar] [CrossRef]
- Ben, H.; Wu, F.; Wu, Z.; Han, G.; Jiang, W.; Ragauskas, A.J. A Comprehensive Characterization of Pyrolysis Oil from Softwood Barks. Polymers 2019, 11, 1387. [Google Scholar] [CrossRef]
- Varma, A.K.; Mondal, P. Pyrolysis of Pine Needles: Effects of Process Parameters on Products Yield and Analysis of Products. J. Therm. Anal. Calorim. 2018, 131, 2057–2072. [Google Scholar] [CrossRef]
- Hou, K.; Palmer, H. The Kinetics of Thermal Decomposition of Benzene in a Flow System. J. Phys. Chem. 1965, 69, 863–868. [Google Scholar] [CrossRef]
- Audisio, G.; Bertini, F. Molecular Weight and Pyrolysis Products Distribution of Polymers: I. Polystyrene. J. Anal. Appl. Pyrolysis 1992, 24, 61–74. [Google Scholar] [CrossRef]
- Carlson, T.R.; Jae, J.; Lin, Y.-C.; Tompsett, G.A.; Huber, G.W. Catalytic Fast Pyrolysis of Glucose with HZSM-5: The Combined Homogeneous and Heterogeneous Reactions. J. Catal. 2010, 270, 110–124. [Google Scholar] [CrossRef]
- Khandavilli, M.V.; Djokic, M.; Vermeire, F.H.; Carstensen, H.-H.; Van Geem, K.M.; Marin, G.B. Experimental and Kinetic Modeling Study of Cyclohexane Pyrolysis. Energy Fuels 2018, 32, 7153–7168. [Google Scholar] [CrossRef]
- Achilias, D.S.; Kanellopoulou, I.; Megalokonomos, P.; Antonakou, E.; Lappas, A.A. Chemical Recycling of Polystyrene by Pyrolysis: Potential Use of the Liquid Product for the Reproduction of Polymer. Macromol. Mater. Eng. 2007, 292, 923–934. [Google Scholar] [CrossRef]
- Shah, J.; Jan, M.R. Thermo-Catalytic Pyrolysis of Polystyrene in the Presence of Zinc Bulk Catalysts. J. Taiwan Inst. Chem. Eng. 2014, 45, 2494–2500. [Google Scholar]
- Mahadevan, R.; Shakya, R.; Neupane, S.; Adhikari, S. Physical and Chemical Properties and Accelerated Aging Test of Bio-Oil Produced from in Situ Catalytic Pyrolysis in a Bench-Scale Fluidized-Bed Reactor. Energy Fuels 2015, 29, 841–848. [Google Scholar] [CrossRef]
- Rahman, T.; Jahromi, H.; Roy, P.; Adhikari, S.; Feyzbar-Khalkhali-Nejad, F.; Oh, T.-S.; Wang, Q.; Higgins, B.T. Influence of Red Mud Catalyst and Reaction Atmosphere on Hydrothermal Liquefaction of Algae. Energies 2023, 16, 491. [Google Scholar] [CrossRef]
- ASTM Standard E871-82; Standard Test Method for Moisture Analysis of Particulate Wood Fuels. ASTM International: West Conshokocken, PA, USA, 2019.
- ASTM Standard E1755-01; Standard Test Method for Ash in Biomass. ASTM International: West Conshokocken, PA, USA, 2015.
- ASTM Standard E872-82; Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels. ASTM International: West Conshokocken, PA, USA, 2019.
- R Core Team. R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Chen, W.; Chen, Y.; Yang, H.; Xia, M.; Li, K.; Chen, X.; Chen, H. Co-Pyrolysis of Lignocellulosic Biomass and Microalgae: Products Characteristics and Interaction Effect. Bioresour. Technol. 2017, 245, 860–868. [Google Scholar] [CrossRef]
- Zhuang, X.; Gan, Z.; Cen, K.; Ba, Y.; Chen, F.; Chen, D. Upgrading Biochar by Co-Pyrolysis of Heavy Bio-Oil and Apricot Shell Using Response Surface Methodology. Fuel 2022, 310, 122447. [Google Scholar] [CrossRef]
Proximate Analysis | Ultimate Analysis | ||||||||
---|---|---|---|---|---|---|---|---|---|
MC (% Wet Basis) | Volatiles (% Dry Basis) | Ash (% Dry Basis) | FC * (% Dry Basis) | C (%) | H (%) | N (%) | O * (%) | S (%) | |
PS | 0.33 | 82.87 | 0.03 | 17.10 | 91.69 | 8.29 | <0.01 | <0.01 | 0.02 |
Pine | 8.86 | 81.17 | 0.31 | 18.52 | 46.41 | 6.87 | 0.01 | 46.71 | <0.01 |
Ultimate Analysis | Water Content (% at Given Temperature) | ||||||||
---|---|---|---|---|---|---|---|---|---|
C (%) | H (%) | N (%) | O * (%) | S (%) | 450 °C | 500 °C | 550 °C | ||
PS | No Catalyst | 91.9 | 7.99 | 0.01 | 0.02 | 0.08 | 0.00 | 0.00 | 0.00 |
Red Mud | 90.9 | 7.93 | 0.01 | 1.15 | 0.01 | 0.00 | 0.00 | 0.00 | |
ZSM-5 | 91.7 | 7.96 | 0.01 | 0.26 | 0.07 | 0.00 | 0.00 | 0.00 | |
Pine | No Catalyst | 68.5 | 7.85 | 0.01 | 23.6 | 0.08 | 15.15 | 12.65 | 11.14 |
Red Mud | 65.9 | 7.60 | 0.01 | 26.5 | 0.04 | 15.81 | 13.74 | 12.17 | |
ZSM-5 | 71.2 | 7.72 | 0.01 | 20.9 | 0.16 | 11.74 | 10.8 | 9.32 | |
50/50 Blend | No Catalyst | 86.8 | 7.95 | 0.01 | 5.23 | 0.01 | 0.00 | 0.00 | 0.00 |
Red Mud | 88.2 | 8.52 | 0.01 | 3.26 | 0.01 | 0.00 | 0.00 | 0.00 | |
ZSM-5 | 87.6 | 8.23 | 0.01 | 4.06 | 0.1 | 0.00 | 0.00 | 0.00 | |
Theoretical | No Catalyst | 80.2 | 7.92 | 0.01 | 11.8 | 0.08 | 7.58 | 6.33 | 5.57 |
Red Mud | 78.4 | 7.77 | 0.01 | 13.8 | 0.02 | 7.91 | 6.87 | 6.09 | |
ZSM-5 | 81.5 | 7.84 | 0.01 | 10.6 | 0.12 | 5.87 | 5.4 | 4.66 |
Conc. of All C7–C17 Compounds * | C7–C17 Containing Oxygen * | Conc. of Styrene Only | Oil Yield of Pyrolysis Reaction | Yield of C7–C17 Hydrocarbons | |||
---|---|---|---|---|---|---|---|
(mg/g Oil) | (mg/g Oil) | (mg/g Oil) | (g Oil/g Feed) | (mg/g Feed) | |||
Polystyrene | None | 450 °C | 451.83 | 0.00 | 423.44 | 0.8850 | 399.87 |
500 °C | 472.90 | 0.00 | 444.44 | 0.8900 | 420.88 | ||
550 °C | 467.32 | 0.00 | 428.90 | 0.9050 | 422.92 | ||
Red Mud | 450 °C | 530.25 | 0.00 | 458.60 | 0.8625 | 457.34 | |
500 °C | 525.76 | 0.00 | 477.05 | 0.8825 | 463.98 | ||
550 °C | 559.42 | 0.00 | 456.13 | 0.9000 | 503.48 | ||
ZSM-5 | 450 °C | 672.60 | 0.00 | 277.14 | 0.8250 | 554.90 | |
500 °C | 725.89 | 0.00 | 251.85 | 0.8400 | 609.74 | ||
550 °C | 720.14 | 0.00 | 349.20 | 0.8625 | 621.12 | ||
Pine | None | 450 °C | 191.33 | 181.85 | N/A | 0.0506 | 9.68 |
500 °C | 241.12 | 230.52 | N/A | 0.0604 | 14.56 | ||
550 °C | 227.21 | 192.29 | N/A | 0.0503 | 11.43 | ||
Red Mud | 450 °C | 261.10 | 260.49 | N/A | 0.0506 | 12.87 | |
500 °C | 274.14 | 271.72 | N/A | 0.0532 | 14.23 | ||
550 °C | 276.24 | 274.99 | N/A | 0.0519 | 13.98 | ||
ZSM-5 | 450 °C | 357.42 | 322.03 | N/A | 0.0428 | 15.29 | |
500 °C | 332.14 | 305.74 | N/A | 0.0506 | 16.80 | ||
550 °C | 376.52 | 296.35 | N/A | 0.0508 | 19.14 | ||
50/50 Blend | None | 450 °C | 575.22 | 13.68 | 373.41 | 0.4325 | 248.77 |
500 °C | 556.26 | 13.86 | 341.68 | 0.4207 | 234.01 | ||
550 °C | 590.11 | 17.34 | 368.99 | 0.4504 | 265.78 | ||
Red Mud | 450 °C | 514.81 | 20.89 | 323.29 | 0.4121 | 212.15 | |
500 °C | 513.02 | 20.56 | 359.77 | 0.4258 | 218.44 | ||
550 °C | 534.43 | 12.31 | 388.98 | 0.4422 | 236.32 | ||
ZSM-5 | 450 °C | 531.78 | 32.58 | 300.26 | 0.3896 | 207.19 | |
500 °C | 577.83 | 26.47 | 335.24 | 0.4281 | 247.38 | ||
550 °C | 543.87 | 21.96 | 337.59 | 0.4294 | 233.51 | ||
Theoretical 50/50 Blend | None | 450 °C | 321.58 | 90.92 | 211.72 | 0.4678 | 204.77 |
500 °C | 357.01 | 115.26 | 222.22 | 0.4752 | 217.72 | ||
550 °C | 347.27 | 96.15 | 214.45 | 0.4777 | 217.18 | ||
Red Mud | 450 °C | 395.68 | 130.25 | 229.30 | 0.4559 | 235.11 | |
500 °C | 399.95 | 135.86 | 238.53 | 0.4672 | 239.10 | ||
550 °C | 417.83 | 137.50 | 228.07 | 0.4753 | 258.73 | ||
ZSM-5 | 450 °C | 515.01 | 161.02 | 138.57 | 0.4339 | 285.09 | |
500 °C | 529.01 | 152.87 | 125.93 | 0.4453 | 313.27 | ||
550 °C | 548.33 | 148.18 | 174.60 | 0.4567 | 320.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kemp, A.; Rahman, T.; Jahromi, H.; Adhikari, S. Production of Aviation Fuel-Range Hydrocarbons Through Catalytic Co-Pyrolysis of Polystyrene and Southern Pine. Catalysts 2024, 14, 806. https://doi.org/10.3390/catal14110806
Kemp A, Rahman T, Jahromi H, Adhikari S. Production of Aviation Fuel-Range Hydrocarbons Through Catalytic Co-Pyrolysis of Polystyrene and Southern Pine. Catalysts. 2024; 14(11):806. https://doi.org/10.3390/catal14110806
Chicago/Turabian StyleKemp, Ayden, Tawsif Rahman, Hossein Jahromi, and Sushil Adhikari. 2024. "Production of Aviation Fuel-Range Hydrocarbons Through Catalytic Co-Pyrolysis of Polystyrene and Southern Pine" Catalysts 14, no. 11: 806. https://doi.org/10.3390/catal14110806
APA StyleKemp, A., Rahman, T., Jahromi, H., & Adhikari, S. (2024). Production of Aviation Fuel-Range Hydrocarbons Through Catalytic Co-Pyrolysis of Polystyrene and Southern Pine. Catalysts, 14(11), 806. https://doi.org/10.3390/catal14110806