Platinum-Modified Mixed Metal Oxide Electrodes for Efficient Chloralkaline-Based Energy Storage
Abstract
:1. Introduction
2. Results
2.1. Physical and Electrochemical Characterization of Manufactured MMO Electrodes
2.2. Electrochemical Characterization of the Prepared Electrodes
2.3. Performance of the Chloralkaline Electrolyzer
2.4. Performance of the Chloralkaline Fuel Cell
2.5. Impact of Platinum Content in Electrocatalysts
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of MMO Anodes
3.3. Electrochemical Set-Up and Reversible Electrochemical Cell
3.4. Chemical Analysis
3.5. Physical Characterization
4. Conclusions
- The manufacturing process of three MMO electrodes (Ti/(RuO2)70-(Sb2O4)30, Ti/(RuO2)66.5-(Sb2O4)28.5-Pt5, and Ti/(RuO2)63-(Sb2O4)27-Pt10 was successful and yielded a uniform distribution of metals across their surfaces. Furthermore, these electrodes demonstrated exceptional stability, as evidenced by their sustained performance without any signs of deterioration throughout both electrolyzer and fuel cell operational modes.
- Mixed metal oxide (MMO) electrodes of Ti/RuO2Sb2O4Ptx (0 ≤ x ≤ 10.0) can be satisfactorily produced via the ionic liquid method and applied in chloralkaline liquid–liquid reversible electrochemical cells. The same hydrogen and oxidized chlorine species that are generated during the electrolysis process can be efficiently employed as fuel in the subsequent operation as a fuel cell, leading to the generation of electricity and hence acting as an energy storage system.
- The application of the developed anodes in electrolyzers for chlorine production revealed intriguing insights. At lower current densities (50 mA cm−2), current efficiency values remain low (~20%) and are almost independent of the composition of the electrode. In contrast, at higher current densities (150 mA cm−2), the influence of platinum in chlorine electrochemistry can be significantly observed. The inclusion of platinum has notably elevated the efficiencies towards chlorine formation, achieving an impressive increase of up to 60.5%.
- In the fuel cell operational mode, the performance of the system is seriously limited by the ohmic losses. The electrode composition without platinum (Ti/(RuO2)70-(Sb2O4)30) exhibits superior performance owing to its lower resistance. Nonetheless, the inclusion of platinum content in the electrocatalyst enhances kinetic performance, as indicated by polarization curves.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Dagoumas, A.S.; Koltsaklis, N.E. Review of models for integrating renewable energy in the generation expansion planning. Appl. Energy 2019, 242, 1573–1587. [Google Scholar] [CrossRef]
- Wu, J.; Strezov, V. Green technologies and sustainability: A new trend. Green Technol. Sustain. 2023, 1, 100008. [Google Scholar] [CrossRef]
- Sazali, N. Emerging technologies by hydrogen: A review. Int. J. Hydrogen Energy 2020, 45, 18753–18771. [Google Scholar] [CrossRef]
- Megía, P.J.; Vizcaíno, A.J.; Calles, J.A.; Carrero, A. Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review. Energy Fuels 2021, 35, 16403–16415. [Google Scholar] [CrossRef]
- Amrouche, S.O.; Rekioua, D.; Rekioua, T.; Bacha, S. Overview of energy storage in renewable energy systems. Int. J. Hydrogen Energy 2016, 41, 20914–20927. [Google Scholar] [CrossRef]
- Arsad, A.Z.; Hannan, M.A.; Al-Shetwi, A.Q.; Mansur, M.; Muttaqi, K.M.; Dong, Z.Y.; Blaabjerg, F. Hydrogen energy storage integrated hybrid renewable energy systems: A review analysis for future research directions. Int. J. Hydrogen Energy 2022, 47, 17285–17312. [Google Scholar] [CrossRef]
- Lei, J.; Liu, X.; Chen, X.; Guan, P.; Feng, W.; Zhang, J.; Luo, H.; Liu, F.; Zhang, Y. Multi-length-scale heterogeneous structured ion exchange membranes for cost-effective electrolysis and hydrogen production. Chem. Eng. J. 2022, 431, 133994. [Google Scholar] [CrossRef]
- Millet, P. Chlor-alkali technology: Fundamentals, processes and materials for diaphragms and membranes. In Handbook of Membrane Reactors; Elsevier: Amsterdam, The Netherlands, 2013; pp. 384–415. [Google Scholar]
- Erden, M.; Karakilcik, M. Experimental investigation of hydrogen production performance of various salts with a chlor-alkali method. Int. J. Hydrogen Energy 2024, 52, 546–560. [Google Scholar] [CrossRef]
- Pratter, S.M.; Light, K.M.; Solomon, E.I.; Straganz, G.D. The Role of Chloride in the Mechanism of O2 Activation at the Mononuclear Nonheme Fe(II) Center of the Halogenase HctB. J. Am. Chem. Soc. 2014, 136, 9385–9395. [Google Scholar] [CrossRef]
- Mirseyed, S.F.; Jafarzadeh, K.; Rostamian, A.; Abbasi, H.M.; Ostadhassan, M. A new insight on the mechanisms of corrosion deactivation of a typical Ti/IrO2 + RuO2 +TiO2 coating in the presence of Ta2O5 in chlor-alkali medium. Corros. Sci. 2023, 214, 111005. [Google Scholar] [CrossRef]
- Burke, L.D.; O’Neill, J.F. Some aspects of the chlorine evolution reaction at ruthenium dioxide anodes. J. Electroanal. Chem. Interfacial Electrochem. 1979, 101, 341–349. [Google Scholar] [CrossRef]
- Ferro, S.; De Battisti, A. Electrocatalysis and Chlorine Evolution Reaction at Ruthenium Dioxide Deposited on Conductive Diamond. J. Phys. Chem. B 2002, 106, 2249–2254. [Google Scholar] [CrossRef]
- Carvela, M.; Santos, G.d.O.S.; Gonzaga, I.; Eguiluz, K.; Lobato, J.; Salazar-Banda, G.; Rodrigo, M.A. Platinum: A key element in electrode composition for reversible chloralkaline electrochemical cells. Int. J. Hydrogen Energy 2021, 46, 32602–32611. [Google Scholar] [CrossRef]
- Carvela, M.; Lobato, J.; Rodrigo, M.A. Improving stability of chloralkaline high-temperature PBI-PEMFCs. J. Electroanal. Chem. 2021, 904, 115940. [Google Scholar] [CrossRef]
- Santos, M.O.; de OS Santos, G.; Mattedi, S.; Griza, S.; Eguiluz, K.I.; Salazar-Banda, G.R. Influence of the calcination temperature and ionic liquid used during synthesis procedure on the physical and electrochemical properties of Ti/(RuO2)0.8–(Sb2O4)0.2 anodes. J. Electroanal. Chem. 2018, 829, 116–128. [Google Scholar] [CrossRef]
- Li, X.; Yan, J.; Zhu, K. Fabrication and characterization of Pt doped Ti/Sb-SnO2 electrode and its efficient electro-catalytic activity toward phenol. Eng. Sci. 2021, 15, 38–46. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Y.; Zeng, D.; Lin, J.; Liu, W. The effect of Ce doped in Ti/SnO2-Sb2O3/SnO2-Sb2O3-CeO2 electrode and its electro-catalytic performance in caprolactam wastewater. Water Sci. Technol. 2011, 64, 2023–2028. [Google Scholar] [CrossRef]
- Lyons, M.E.; Floquet, S. Mechanism of oxygen reactions at porous oxide electrodes. Part 2—Oxygen evolution at RuO2, IrO2 and IrxRu1−xO2 electrodes in aqueous acid and alkaline solution. Phys. Chem. Chem. Phys. 2011, 13, 5314–5335. [Google Scholar] [CrossRef]
- Deng, Z.; Xu, S.; Liu, C.; Zhang, X.; Li, M.; Zhao, Z. Stability of dimensionally stable anode for chlorine evolution reaction. Nano Res. 2023, 1–11. [Google Scholar] [CrossRef]
- Abe, T.; Inoue, S.; Watanabe, K. XRD and electrochemical measurements of RuO2 powder treated by using a mechanical grinding method. J. Alloys Compd. 2003, 358, 177–181. [Google Scholar] [CrossRef]
- Sun, Q.; Ren, Q.-Q.; Li, H.; Fu, Z.-W. High capacity Sb2O4 thin film electrodes for rechargeable sodium battery. Electrochem. Commun. 2011, 13, 1462–1464. [Google Scholar] [CrossRef]
- Antolini, E.; Cardellini, F. Formation of carbon supported PtRu alloys: An XRD analysis. J. Alloys Compd. 2001, 315, 118–122. [Google Scholar] [CrossRef]
- Cattaneo, C.; de Pinto, M.I.; Sanchez, M.H.; de Mishima, B.A.; López, L.D.; Cornaglia, L. Characterization of platinum-rutheniun electrodeposits using XRD, AES and XPS analysis. J. Electroanal. Chem. 1999, 461, 32–39. [Google Scholar] [CrossRef]
- Duan, T.; Chen, Y.; Wen, Q.; Duan, Y. Different mechanisms and electrocatalytic activities of Ce ion or CeO2 modified Ti/Sb–SnO2 electrodes fabricated by one-step pulse electro-codeposition. Rsc Adv. 2015, 5, 19601–19612. [Google Scholar] [CrossRef]
- Chalupczok, S.; Kurzweil, P.; Hartmann, H.; Schell, C. The redox chemistry of ruthenium dioxide: A cyclic voltammetry study—Review and revision. Int. J. Electrochem. 2018, 2018, 1273768. [Google Scholar] [CrossRef]
- Macounová, K.M.; Simic, N.; Ahlberg, E.; Krtil, P. Hypochlorite Oxidation on RuO2-Based Electrodes: A Combined Electrochemical and In Situ Mass Spectroscopic Study. Electrocatalysis 2019, 10, 45–55. [Google Scholar] [CrossRef]
- Seymour, I.; O’Sullivan, B.; Lovera, P.; Rohan, J.F.; O’Riordan, A. Electrochemical detection of free-chlorine in Water samples facilitated by in-situ pH control using interdigitated microelectrodes. Sens. Actuators B Chem. 2020, 325, 128774. [Google Scholar] [CrossRef]
- Fukuzaki, S. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci. 2006, 11, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Fan, Q.; Chuai, H.; Liu, H.; Zhang, S.; Ma, X. Revisiting chlor-alkali electrolyzers: From materials to devices. Trans. Tianjin Univ. 2021, 27, 202–216. [Google Scholar] [CrossRef]
- Huskinson, B.; Rugolo, J.; Mondal, S.K.; Aziz, M.J. A high power density, high efficiency hydrogen–chlorine regenerative fuel cell with a low precious metal content catalyst. Energy Environ. Sci. 2012, 5, 8690–8698. [Google Scholar] [CrossRef]
- Thomassen, M.; Sandnes, E.; Børresen, B.; Tunold, R. Evaluation of concepts for hydrogen–chlorine fuel cells. J. Appl. Electrochem. 2006, 36, 813–819. [Google Scholar] [CrossRef]
- Jalalpoor, D.; Göhl, D.; Paciok, P.; Heggen, M.; Knossalla, J.; Radev, I.; Peinecke, V.; Weidenthaler, C.; Mayrhofer, K.J.; Ledendecker, M. The Impact of Antimony on the Performance of Antimony Doped Tin Oxide Supported Platinum for the Oxygen Reduction Reaction. J. Electrochem. Soc. 2021, 168, 024502. [Google Scholar] [CrossRef]
- da Silva, L.M.; Santos, G.d.O.S.; de Salles Pupo, M.M.; Eguiluz, K.I.B.; Salazar-Banda, G.R. Influence of heating rate on the physical and electrochemical properties of mixed metal oxides anodes synthesized by thermal decomposition method applying an ionic liquid. J. Electroanal. Chem. 2018, 813, 127–133. [Google Scholar] [CrossRef]
- Da Silva, L.M.; De Faria, L.A.; Boodts, J.F.C. Determination of the morphology factor of oxide layers. Electrochim. Acta 2001, 47, 395–403. [Google Scholar] [CrossRef]
- Carvela, M.; Lobato, J.; Rodrigo, M.A. Storage of energy using a gas-liquid H2/Cl2 fuel cell: A first approach to electrochemically-assisted absorbers. Chemosphere 2020, 254, 126795. [Google Scholar] [CrossRef]
Electrode | CT/mF cm−2 | CE/mF cm−2 | CI/mF cm−2 | φ |
---|---|---|---|---|
Ti/(RuO2)70-(Sb2O4)30 | 76 | 48 | 28 | 0.37 |
Ti/(RuO2)66.5-(Sb2O4)28.5-Pt5 | 51.3 | 39 | 12 | 0.24 |
Ti/(RuO2)63-(Sb2O4)27-Pt10. | 60.8 | 37 | 24 | 0.39 |
Anode | Current Density (mA cm−2) | Voltage (mV) |
---|---|---|
Ti/(RuO2)70-(Sb2O4)30 | 2.22 | 4.34 |
Ti/(RuO2)66.5-(Sb2O4)28.5-Pt5 | 0.742 | 6.68 |
Ti/(RuO2)63-(Sb2O4)27-Pt10 | 1.262 | 7.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, J.Y.C.; Santos, G.O.S.; Dória, A.R.; Requena, I.; Lanza, M.R.V.; Eguiluz, K.I.B.; Salazar-Banda, G.R.; Lobato, J.; Rodrigo, M.A. Platinum-Modified Mixed Metal Oxide Electrodes for Efficient Chloralkaline-Based Energy Storage. Catalysts 2024, 14, 152. https://doi.org/10.3390/catal14020152
Ribeiro JYC, Santos GOS, Dória AR, Requena I, Lanza MRV, Eguiluz KIB, Salazar-Banda GR, Lobato J, Rodrigo MA. Platinum-Modified Mixed Metal Oxide Electrodes for Efficient Chloralkaline-Based Energy Storage. Catalysts. 2024; 14(2):152. https://doi.org/10.3390/catal14020152
Chicago/Turabian StyleRibeiro, Jamylle Y. C., Gessica O. S. Santos, Aline R. Dória, Iñaki Requena, Marcos R. V. Lanza, Katlin I. B. Eguiluz, Giancarlo R. Salazar-Banda, Justo Lobato, and Manuel A. Rodrigo. 2024. "Platinum-Modified Mixed Metal Oxide Electrodes for Efficient Chloralkaline-Based Energy Storage" Catalysts 14, no. 2: 152. https://doi.org/10.3390/catal14020152
APA StyleRibeiro, J. Y. C., Santos, G. O. S., Dória, A. R., Requena, I., Lanza, M. R. V., Eguiluz, K. I. B., Salazar-Banda, G. R., Lobato, J., & Rodrigo, M. A. (2024). Platinum-Modified Mixed Metal Oxide Electrodes for Efficient Chloralkaline-Based Energy Storage. Catalysts, 14(2), 152. https://doi.org/10.3390/catal14020152