Scalability and Investigation of the Geometrical Features and Shapes of a Tandem Photo-Electrolysis Cell Based on Non-Critical Raw Materials
Abstract
:1. Introduction
2. Results
2.1. Physicochemical Characterization of Photoelectrodes
2.2. Scalability of PEC Cell and Electrochemical Results
3. Materials and Methods
3.1. Synthesis of Photoelectrodes
3.2. Anion Membrane and Ionomer Glue Preparation
3.3. Assembly of the Tandem Photoelectrochemical Cell
3.4. Physicochemical Characterization
3.5. Electrochemical Tests
3.6. Efficiency of the PEC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barbir, F. Transition to Renewable Energy Systems with Hydrogen as an Energy Carrier. Energy 2009, 34, 308–312. [Google Scholar] [CrossRef]
- Tian, J.; Yu, L.; Xue, R.; Zhuang, S.; Shan, Y. Global Low-Carbon Energy Transition in the Post-COVID-19 Era. Appl. Energy 2022, 307, 118205. [Google Scholar] [CrossRef] [PubMed]
- Dhar, A.; Naeth, M.A.; Jennings, P.D.; Gamal El-Din, M. Perspectives on Environmental Impacts and a Land Reclamation Strategy for Solar and Wind Energy Systems. Sci. Total Environ. 2020, 718, 134602. [Google Scholar] [CrossRef] [PubMed]
- Rabaia, M.K.H.; Abdelkareem, M.A.; Sayed, E.T.; Elsaid, K.; Chae, K.J.; Wilberforce, T.; Olabi, A.G. Environmental Impacts of Solar Energy Systems: A Review. Sci. Total Environ. 2021, 754, 141989. [Google Scholar] [CrossRef]
- Sadorsky, P. Wind Energy for Sustainable Development: Driving Factors and Future Outlook. J. Clean. Prod. 2021, 289, 125779. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, H.; Zhang, B.; Gong, F.; Feng, J.; Huang, H.; Vanka, S.; Fan, R.; Cao, Q.; Shen, M.; et al. Renewable Formate from Sunlight, Biomass and Carbon Dioxide in a Photoelectrochemical Cell. Nat. Commun. 2023, 14, 1013. [Google Scholar] [CrossRef] [PubMed]
- Vorlet, S.L.; De Cesare, G. A Comprehensive Review on Geomembrane Systems Application in Hydropower. Renew. Sustain. Energy Rev. 2024, 189, 113951. [Google Scholar] [CrossRef]
- Alhuyi-Nazari, M.; Mukhtar, A.; Yasir, A.S.H.M.; Ahmadi, M.H.; Kumar, R.; Luong, T. Applications of Geothermal Sources for Absorption Chillers as Efficient and Clean Cooling Technologies for Buildings: A Comprehensive Review. J. Build. Eng. 2024, 82, 108340. [Google Scholar] [CrossRef]
- Sadekin, S.; Zaman, S.; Mahfuz, M.; Sarkar, R. Nuclear Power as Foundation of a Clean Energy Future: A Review. Energy Procedia 2019, 160, 513–518. [Google Scholar] [CrossRef]
- Vilanova, A.; Lopes, T.; Mendes, A. Large-Area Photoelectrochemical Water Splitting Using a Multi-Photoelectrode Approach. J. Power Sources 2018, 398, 224–232. [Google Scholar] [CrossRef]
- Landman, A.; Halabi, R.; Dias, P.; Dotan, H.; Mehlmann, A.; Shter, G.E.; Halabi, M.; Naseraldeen, O.; Mendes, A.; Grader, G.S.; et al. Decoupled Photoelectrochemical Water Splitting System for Centralized Hydrogen Production. Joule 2020, 4, 448–471. [Google Scholar] [CrossRef]
- Kelly, N.A.; Gibson, T.L. Solar Energy Concentrating Reactors for Hydrogen Production by Photoelectrochemical Water Splitting. Int. J. Hydrogen Energy 2008, 33, 6420–6431. [Google Scholar] [CrossRef]
- Aralekallu, S.; Sannegowda Lokesh, K.; Singh, V. Advanced Bifunctional Catalysts for Energy Production by Electrolysis of Earth-Abundant Water. Fuel 2024, 357, 129753. [Google Scholar] [CrossRef]
- Niblett, D.; Delpisheh, M.; Ramakrishnan, S.; Mamlouk, M. Review of next Generation Hydrogen Production from Offshore Wind Using Water Electrolysis. J. Power Sources 2024, 592, 233904. [Google Scholar] [CrossRef]
- Sharshir, S.W.; Joseph, A.; Elsayad, M.M.; Tareemi, A.A.; Kandeal, A.W.; Elkadeem, M.R. A Review of Recent Advances in Alkaline Electrolyzer for Green Hydrogen Production: Performance Improvement and Applications. Int. J. Hydrogen Energy 2024, 49, 458–488. [Google Scholar] [CrossRef]
- Daoudi, C.; Bounahmidi, T. Overview of Alkaline Water Electrolysis Modeling. Int. J. Hydrogen Energy 2024, 49, 646–667. [Google Scholar] [CrossRef]
- Shiva Kumar, S.; Himabindu, V. Hydrogen Production by PEM Water Electrolysis—A Review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Chatterjee, P.; Ambati, M.S.K.; Chakraborty, A.K.; Chakrabortty, S.; Biring, S.; Ramakrishna, S.; Wong, T.K.S.; Kumar, A.; Lawaniya, R.; Dalapati, G.K. Photovoltaic/Photo-Electrocatalysis Integration for Green Hydrogen: A Review. Energy Convers. Manag. 2022, 261, 115648–115685. [Google Scholar] [CrossRef]
- Hogerwaard, J.; Dincer, I.; Naterer, G.F. Experimental Investigation and Optimization of Integrated Photovoltaic and Photoelectrochemical Hydrogen Generation. Energy Convers. Manag. 2020, 207, 112541. [Google Scholar] [CrossRef]
- Carrette, L.; Friedrich, K.A.; Stimming, U. Fuel Cells: Principles, Types, Fuels, and Applications. ChemPhysChem 2000, 1, 162–193. [Google Scholar] [CrossRef]
- Peighambardoust, S.J.; Rowshanzamir, S.; Amjadi, M. Review of the Proton Exchange Membranes for Fuel Cell Applications. Int. J. Hydrogen Energy 2010, 35, 9349–9384. [Google Scholar] [CrossRef]
- Lamy, C. From Hydrogen Production by Water Electrolysis to Its Utilization in a PEM Fuel Cell or in a SO Fuel Cell: Some Considerations on the Energy Efficiencies. Int. J. Hydrogen Energy 2016, 41, 15415–15425. [Google Scholar] [CrossRef]
- Mclean, G.F.; Niet, T.; Prince-Richard, S.; Djilali, N. An Assessment of Alkaline Fuel Cell Technology. Int. J. Hydrogen Energy 2002, 27, 507–526. [Google Scholar] [CrossRef]
- Serov, A.; Artyushkova, K.; Niangar, E.; Wang, C.; Dale, N.; Jaouen, F.; Sougrati, M.T.; Jia, Q.; Mukerjee, S.; Atanassov, P. Nano-Structured Non-Platinum Catalysts for Automotive Fuel Cell Application. Nano Energy 2015, 16, 293–300. [Google Scholar] [CrossRef]
- Trimm, D.L. Coke Formation and Minimisation during Steam Reforming Reactions. Catalysis Today 1997, 37, 233–238. [Google Scholar] [CrossRef]
- Lopes, T.; Dias, P.; Andrade, L.; Mendes, A. An Innovative Photoelectrochemical Lab Device for Solar Water Splitting. Sol. Energy Mater. Sol. Cells 2014, 128, 399–410. [Google Scholar] [CrossRef]
- Ciesielski, P.N.; Hijazi, F.M.; Scott, A.M.; Faulkner, C.J.; Beard, L.; Emmett, K.; Rosenthal, S.J.; Cliffel, D.; Kane Jennings, G. Photosystem I—Based Biohybrid Photoelectrochemical Cells. Bioresour. Technol. 2010, 101, 3047–3053. [Google Scholar] [CrossRef] [PubMed]
- Vilanova, A.; Lopes, T.; Spenke, C.; Wullenkord, M.; Mendes, A. Optimized Photoelectrochemical Tandem Cell for Solar Water Splitting. Energy Storage Mater. 2018, 13, 175–188. [Google Scholar] [CrossRef]
- Ahmed, M.; Dincer, I. A Review on Photoelectrochemical Hydrogen Production Systems: Challenges and Future Directions. Int. J. Hydrogen Energy 2019, 44, 2474–2507. [Google Scholar] [CrossRef]
- Juodkazyte, J.; Šebeka, B.; Savickaja, I.; Jagminas, A.; Jasulaitiene, V.; Selskis, A.; Kovger, J.; Mack, P. Study on Copper Oxide Stability in Photoelectrochemical Cell Composed of Nanostructured TiO2 and CuxO Electrodes. Electrochim. Acta 2014, 137, 363–371. [Google Scholar] [CrossRef]
- Rojas, V.; Navarrete, E.; Román, J.; Ballesteros, L.; Cáceres, G.; Díaz, R.; Schrebler, R.; Córdova, R.; Grez, P.; Henríquez, R.; et al. Study about an Assembly of Iron(III) Hexacyanoferrate(II) and α-Fe2O3 as a Secondary Photocell: Part 1. Synthesis, Characterization and Photoelectrochemical Properties of FTO/α-Fe2O3/KFe[Fe(CN)6]3 Electrode System. J. Electroanal. Chem. 2020, 860, 113913. [Google Scholar] [CrossRef]
- Jiang, C.; Moniz, S.J.A.; Wang, A.; Zhang, T.; Tang, J. Photoelectrochemical Devices for Solar Water Splitting-Materials and Challenges. Chem. Soc. Rev. 2017, 46, 4645–4660. [Google Scholar] [CrossRef] [PubMed]
- Giacoppo, G.; Trocino, S.; Lo Vecchio, C.; Baglio, V.; Díez-García, M.I.; Aricò, A.S.; Barbera, O. Numerical 3D Model of a Novel Photoelectrolysis Tandem Cell with Solid Electrolyte for Green Hydrogen Production. Energies 2023, 16, 1953. [Google Scholar] [CrossRef]
- Aricò, A.S.; Girolamo, M.; Siracusano, S.; Sebastian, D.; Baglio, V.; Schuster, M. Polymer Electrolyte Membranes for Water Photo-Electrolysis. Membranes 2017, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Lo Vecchio, C.; Trocino, S.; Zignani, S.C.; Baglio, V.; Carbone, A.; Díez-García, M.I.; Contreras, M.; Gómez, R.; Aricò, A.S. Enhanced Photoelectrochemical Water Splitting at Hematite Photoanodes by Effect of a Nife-Oxide Co-Catalyst. Catalysts 2020, 10, 525. [Google Scholar] [CrossRef]
- Trocino, S.; Lo Vecchio, C.; Zignani, S.C.; Carbone, A.; Saccà, A.; Baglio, V.; Gómez, R.; Aricò, A.S. Dry Hydrogen Production in a Tandem Critical Raw Material-Free Water Photoelectrolysis Cell Using a Hydrophobic Gas-Diffusion Backing Layer. Catalysts 2020, 10, 1319. [Google Scholar] [CrossRef]
- Lo Vecchio, C.; Trocino, S.; Giacoppo, G.; Barbera, O.; Baglio, V.; Díez-García, M.I.; Contreras, M.; Gómez, R.; Aricò, A.S. Water Splitting with Enhanced Efficiency Using a Nickel-Based Co-Catalyst at a Cupric Oxide Photocathode. Catalysts 2021, 11, 1363. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Xuan, J. Rational Design of Photoelectrochemical Cells towards Bias-Free Water Splitting: Thermodynamic and Kinetic Insights. J. Power Sources 2020, 462, 228113. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, W.; Chen, W.; Zhou, G.; Hsu, P.C.; Zhang, R.; Liang, Z.; Fan, S.; Zhang, Y.; Cui, Y. Efficient Solar-Driven Water Splitting by Nanocone BiVO4-Perovskite Tandem Cells. Sci. Adv. 2016, 2, e1501764. [Google Scholar] [CrossRef]
- Kment; Sivula, K.; Naldoni, A.; Sarmah, S.P.; Kmentová, H.; Kulkarni, M.; Rambabu, Y.; Schmuki, P.; Zbořil, R. FeO-Based Nanostructures and Nanohybrids for Photoelectrochemical Water Splitting. Prog. Mater. Sci. 2020, 110, 100632. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo Vecchio, C.; Giacoppo, G.; Barbera, O.; Carbone, A.; Baglio, V.; Aricò, A.S.; Monforte, G.; Trocino, S. Scalability and Investigation of the Geometrical Features and Shapes of a Tandem Photo-Electrolysis Cell Based on Non-Critical Raw Materials. Catalysts 2024, 14, 98. https://doi.org/10.3390/catal14020098
Lo Vecchio C, Giacoppo G, Barbera O, Carbone A, Baglio V, Aricò AS, Monforte G, Trocino S. Scalability and Investigation of the Geometrical Features and Shapes of a Tandem Photo-Electrolysis Cell Based on Non-Critical Raw Materials. Catalysts. 2024; 14(2):98. https://doi.org/10.3390/catal14020098
Chicago/Turabian StyleLo Vecchio, Carmelo, Giosuè Giacoppo, Orazio Barbera, Alessandra Carbone, Vincenzo Baglio, Antonino Salvatore Aricò, Giuseppe Monforte, and Stefano Trocino. 2024. "Scalability and Investigation of the Geometrical Features and Shapes of a Tandem Photo-Electrolysis Cell Based on Non-Critical Raw Materials" Catalysts 14, no. 2: 98. https://doi.org/10.3390/catal14020098
APA StyleLo Vecchio, C., Giacoppo, G., Barbera, O., Carbone, A., Baglio, V., Aricò, A. S., Monforte, G., & Trocino, S. (2024). Scalability and Investigation of the Geometrical Features and Shapes of a Tandem Photo-Electrolysis Cell Based on Non-Critical Raw Materials. Catalysts, 14(2), 98. https://doi.org/10.3390/catal14020098