Selective Hydrogenolysis of Furfuryl Alcohol to Pentanediol over Pt Supported on MgO
Abstract
:1. Introduction
2. Results and Discussion
2.1. Discussion on FFA Hydrogenation Results
2.1.1. Catalyst Screening
2.1.2. Optimization of Catalytic Conditions
2.2. Characterization Results
2.2.1. XRD Result Analysis
2.2.2. TEM
2.2.3. H2-TPR
2.2.4. XPS Analysis
2.2.5. CO2-TPD
2.3. Exploring the Stability and Deactivation Causes of Catalysts
2.3.1. Catalyst Cycle Stability
2.3.2. Exploring the Causes of Catalyst Deactivation
3. Experimental Section
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Catalytic Performance Evaluation
3.4. Cycling Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mika, L.T.; Csefalvay, E.; Nemeth, A. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chem. Rev. 2018, 118, 505–613. [Google Scholar] [CrossRef]
- Chheda, J.N.; Huber, G.W.; Dumesic, J.A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed. Engl. 2007, 46, 7164–7183. [Google Scholar] [CrossRef]
- Nigam, P.S.; Singh, A. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 2011, 37, 52–68. [Google Scholar] [CrossRef]
- Srivastava, R.K. Bio-energy production by contribution of effective and suitable microbial system. Mater. Sci. Energy Technol. 2019, 2, 308–318. [Google Scholar] [CrossRef]
- Serrano-Ruiz, J.C.; Luque, R.; Sepulveda-Escribano, A. Transformations of biomass-derived platform molecules: From high added-value chemicals to fuels via aqueous-phase processing. Chem. Soc. Rev. 2011, 40, 5266–5281. [Google Scholar] [CrossRef]
- Li, C.; Zhao, X.; Wang, A.; Huber, G.W.; Zhang, T. Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chem. Rev. 2015, 115, 11559–11624. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, J.; Han, B. Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids. Chem. Rev. 2017, 117, 6834–6880. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Li, J.; Yu, Y.; Mu, X.; Chen, A. DFT Studies of the Selective C–O Hydrogenolysis and Ring-Opening of Biomass-Derived Tetrahydrofurfuryl Alcohol over Rh(111) surfaces. J. Phys. Chem. C 2016, 120, 19124–19134. [Google Scholar] [CrossRef]
- Feng, S.; Nagao, A.; Aihara, T.; Miura, H.; Shishido, T. Selective hydrogenolysis of tetrahydrofurfuryl alcohol on Pt/WO3/ZrO2 catalysts: Effect of WO3 loading amount on activity. Catal. Today 2018, 303, 207–212. [Google Scholar] [CrossRef]
- Tong, T.; Liu, X.; Guo, Y.; Norouzi Banis, M.; Hu, Y.; Wang, Y. The critical role of CeO2 crystal-plane in controlling Pt chemical states on the hydrogenolysis of furfuryl alcohol to 1,2-pentanediol. J. Catal. 2018, 365, 420–428. [Google Scholar] [CrossRef]
- Mizugaki, T.; Yamakawa, T.; Nagatsu, Y.; Maeno, Z.; Mitsudome, T.; Jitsukawa, K.; Kaneda, K. Direct Transformation of Furfural to 1,2-Pentanediol Using a Hydrotalcite-Supported Platinum Nanoparticle Catalyst. ACS Sustain. Chem. Eng. 2014, 2, 2243–2247. [Google Scholar] [CrossRef]
- Wang, X.; Weng, Y.; Zhao, X.; Xue, X.; Meng, S.; Wang, Z.; Zhang, W.; Duan, P.; Sun, Q.; Zhang, Y. Selective Hydrogenolysis and Hydrogenation of Furfuryl Alcohol in the Aqueous Phase Using Ru–Mn-Based Catalysts. Ind. Eng. Chem. Res. 2020, 59, 17210–17217. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, H.; Liu, K.; Zhang, Q.; Chen, K.-J. Biowaste-Derived Bimetallic Ru–MoOx Catalyst for the Direct Hydrogenation of Furfural to Tetrahydrofurfuryl Alcohol. ACS Sustain. Chem. Eng. 2019, 7, 12858–12866. [Google Scholar] [CrossRef]
- Upare, P.P.; Kim, Y.; Oh, K.-R.; Han, S.J.; Kim, S.K.; Hong, D.-Y.; Lee, M.; Manjunathan, P.; Hwang, D.W.; Hwang, Y.K. A Bimetallic Ru3Sn7 Nanoalloy on ZnO Catalyst for Selective Conversion of Biomass-Derived Furfural into 1,2-Pentanediol. ACS Sustain. Chem. Eng. 2021, 9, 17242–17253. [Google Scholar] [CrossRef]
- Koso, S.; Furikado, I.; Shimao, A.; Miyazawa, T.; Kunimori, K.; Tomishige, K. Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol. Chem. Commun. (Camb.) 2009, 15, 2035–2037. [Google Scholar] [CrossRef]
- Soghrati, E.; Kok Poh, C.; Du, Y.; Gao, F.; Kawi, S.; Borgna, A. C−O Hydrogenolysis of Tetrahydrofurfuryl Alcohol to 1,5-Pentanediol Over Bi-functional Nickel-Tungsten Catalysts. ChemCatChem 2018, 10, 4652–4664. [Google Scholar] [CrossRef]
- Chen, L.; Ye, J.; Yang, Y.; Yin, P.; Feng, H.; Chen, C.; Zhang, X.; Wei, M.; Truhlar, D.G. Catalytic Conversion Furfuryl Alcohol to Tetrahydrofurfuryl Alcohol and 2-Methylfuran at Terrace, Step, and Corner Sites on Ni. ACS Catal. 2020, 10, 7240–7249. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, B.; Zhao, C. Cu nanoparticles supported on core–shell MgO-La2O3 catalyzed hydrogenolysis of furfuryl alcohol to pentanediol. J. Catal. 2022, 410, 42–53. [Google Scholar] [CrossRef]
- Tan, J.; Su, Y.; Hai, X.; Huang, L.; Cui, J.; Zhu, Y.; Wang, Y.; Zhao, Y. Conversion of furfuryl alcohol to 1,5-pentanediol over CuCoAl nanocatalyst: The synergetic catalysis between Cu, CoOx and the basicity of metal oxides. Mol. Catal. 2022, 526, 112391. [Google Scholar] [CrossRef]
- Dai, D.; Feng, C.; Wang, M.; Du, Q.; Liu, D.; Pan, Y.; Liu, Y. Ring-opening of furfuryl alcohol to pentanediol with extremely high selectivity over Cu/MFI catalysts with balanced Cu0–Cu+ and Brønsted acid sites. Catal. Sci. Technol. 2022, 12, 5879–5890. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Z.; Kang, H.; Xia, C.; Chen, J. Selective hydrogenolysis of biomass-derived furfuryl alcohol into 1,2- and 1,5-pentanediol over highly dispersed Cu-Al2O3 catalysts. Chin. J. Catal. 2016, 37, 700–710. [Google Scholar] [CrossRef]
- Deng, Q.; Gao, R.; Li, X.; Wang, J.; Zeng, Z.; Zou, J.-J.; Deng, S. Hydrogenative Ring-Rearrangement of Biobased Furanic Aldehydes to Cyclopentanone Compounds over Pd/Pyrochlore by Introducing Oxygen Vacancies. ACS Catal. 2020, 10, 7355–7366. [Google Scholar] [CrossRef]
- Lan, J.; Liu, P.; Fu, P.; Liu, X.; Xie, M.; Jiang, S.; Wen, H.; Zhou, Y.; Wang, J. Palladium confined in pure-silica TON zeolite for furfuryl alcohol hydrogenation into tetrahydrofurfuryl alcohol. Microporous Mesoporous Mater. 2021, 322, 111161. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, W.; Zhang, J.; An, Z.; Ma, X.; Zhang, Z.; Jiang, Y.; Zheng, L.; Shu, X.; Song, H.; et al. Selective Activation of C–OH, C–O–C, or C=C in Furfuryl Alcohol by Engineered Pt Sites Supported on Layered Double Oxides. ACS Catal. 2020, 10, 8032–8041. [Google Scholar] [CrossRef]
- Kurniawan, R.G.; Karanwal, N.; Park, J.; Verma, D.; Kwak, S.K.; Kim, S.K.; Kim, J. Direct conversion of furfural to 1,5-pentanediol over a nickel–cobalt oxide–alumina trimetallic catalyst. Appl. Catal. B Environ. 2023, 320, 121971. [Google Scholar] [CrossRef]
- Ma, R.; Wu, X.-P.; Tong, T.; Shao, Z.-J.; Wang, Y.; Liu, X.; Xia, Q.; Gong, X.-Q. The Critical Role of Water in the Ring Opening of Furfural Alcohol to 1,2-Pentanediol. ACS Catal. 2016, 7, 333–337. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C.; Chen, X.; Guan, W.; Liang, C. Insights into the reaction pathway of hydrodeoxygenation of dibenzofuran over MgO supported noble-metals catalysts. Catal. Today 2019, 319, 155–163. [Google Scholar] [CrossRef]
- Zhang, W.; Xin, H.; Zhang, Y.; Jin, X.; Wu, P.; Xie, W.; Li, X. Bimetallic Pt-Fe catalysts supported on mesoporous TS-1 microspheres for the liquid-phase selective hydrogenation of cinnamaldehyde. J. Catal. 2021, 395, 375–386. [Google Scholar] [CrossRef]
- Hronec, M.; Fulajtárova, K.; Soták, T. Highly selective rearrangement of furfuryl alcohol to cyclopentanone. Appl. Catal. B Environ. 2014, 154–155, 294–300. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Du, H.; Sun, K.; Zhang, Z.; Zhang, L.; Li, Q.; Zhang, S.; Liu, Q.; Hu, X. Importance of Magnesium in Cu-Based Catalysts for Selective Conversion of Biomass-Derived Furan Compounds to Diols. ACS Sustain. Chem. Eng. 2020, 8, 5217–5228. [Google Scholar] [CrossRef]
- Martín, A.J.; Mitchell, S.; Mondelli, C.; Jaydev, S.; Pérez-Ramírez, J. Unifying views on catalyst deactivation. Nat. Catal. 2022, 5, 854–866. [Google Scholar] [CrossRef]
- Lin, F.; Xu, M.; Ramasamy, K.K.; Li, Z.; Klinger, J.L.; Schaidle, J.A.; Wang, H. Catalyst Deactivation and Its Mitigation during Catalytic Conversions of Biomass. ACS Catal. 2022, 12, 13555–13599. [Google Scholar] [CrossRef]
Entry | Catalysts | Conversion (%) | Selectivity (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
1,2-PeD | 1,5-PeD | 1-Pentanol | CPO | CPL | THFA | Others | |||
1 | Pt/CeO2 | 99.9 | 18.5 | 5.1 | 1.4 | 26.3 | 39.1 | 9.5 | 0.1 |
2 | Pt/Fe2O3 | 99.9 | 1.5 | / | / | 53.3 | 45.2 | / | / |
3 | Pt/TiO2 | 99.9 | 34.8 | 3.6 | 7.9 | 47.7 | 1.5 | 3.3 | 1.2 |
4 | Pt/ZrO2 | 99.9 | 1.1 | / | / | 84.4 | 7.5 | 1.3 | 5.7 |
5 | Pt/a-Al2O3 | 92.3 | 41.1 | 11.1 | 4.4 | 23.6 | 3.5 | 16.3 | / |
6 | Pt/γ-Al2O3 | 87.3 | 37.7 | 15.1 | 2.6 | 10.8 | / | 31.6 | 2.2 |
7 | Pt/MgO | 96.8 | 58.4 | 12.8 | 1.7 | 1.3 | 0.5 | 17.9 | 7.4 |
8 | Pd/MgO | 93.5 | 3.7 | 1.1 | / | 2 | / | 89.8 | 3.4 |
9 | Ru/MgO | 15.8 | 13.2 | / | / | 17.7 | / | 47.5 | 21.6 |
10 | Cu/MgO | 16.8 | 33.9 | 8.9 | / | 35.1 | / | 21.4 | 0.7 |
11 | Fe/MgO | 7.5 | 17.3 | / | / | 34.7 | / | 20 | 28 |
12 | Ni/MgO | 6.3 | / | / | / | 38.1 | / | 23.8 | 38.1 |
Catalysts | Pt07/2 | Pt2+7/2 | Pt4+7/2 | |||
---|---|---|---|---|---|---|
B.E. (eV) | Ratio (%) | B.E. (eV) | Ratio (%) | B.E. (eV) | Ratio (%) | |
Pt/MgO-150 | 71.6 | 26 | 72.9 | 39 | 75.1 | 35 |
Pt/MgO-200 | 71.5 | 34 | 72.8 | 37 | 75.3 | 28 |
Pt/MgO-300 | 71.2 | 38 | 73.0 | 42 | 75.4 | 19 |
Pt/MgO-400 | 71.3 | 50 | 72.4 | 32 | 74.2 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Liu, Q.; Liu, Z. Selective Hydrogenolysis of Furfuryl Alcohol to Pentanediol over Pt Supported on MgO. Catalysts 2024, 14, 223. https://doi.org/10.3390/catal14040223
Yang Y, Liu Q, Liu Z. Selective Hydrogenolysis of Furfuryl Alcohol to Pentanediol over Pt Supported on MgO. Catalysts. 2024; 14(4):223. https://doi.org/10.3390/catal14040223
Chicago/Turabian StyleYang, Yuhao, Qiaoyun Liu, and Zhongyi Liu. 2024. "Selective Hydrogenolysis of Furfuryl Alcohol to Pentanediol over Pt Supported on MgO" Catalysts 14, no. 4: 223. https://doi.org/10.3390/catal14040223
APA StyleYang, Y., Liu, Q., & Liu, Z. (2024). Selective Hydrogenolysis of Furfuryl Alcohol to Pentanediol over Pt Supported on MgO. Catalysts, 14(4), 223. https://doi.org/10.3390/catal14040223