Engineering Materials for Catalysis
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Häusler, J.; Pasel, J.; Woltmann, F.; Everwand, A.; Meledina, M.; Valencia, H.; Lipińska-Chwałek, M.; Mayer, J.; Peters, R. Elucidating the Influence of the d-Band Center on the Synthesis of Isobutanol. Catalysts 2021, 11, 406. https://doi.org/10.3390/catal11030406.
- Sarıbıyık, O.Y.; Weilach, C.; Serin, S.; Rupprechter, G. The Effect of Shape-Controlled Pt and Pd Nanoparticles on Selective Catalytic Hydrodechlorination of Trichloroethylene. Catalysts 2020, 10, 1314. https://doi.org/10.3390/catal10111314.
- Lasemi, N.; Rupprechter, G. Chemical and Laser Ablation Synthesis of Monometallic and Bimetallic Ni-Based Nanoparticles. Catalysts 2020, 10, 1453. https://doi.org/10.3390/catal10121453.
- Mutschler, R.; Moioli, E. Infrared Thermography as an Operando Tool for the Analysis of Catalytic Processes: How to Use it? Catalysts 2021, 11, 311. https://doi.org/10.3390/catal11030311.
- Pavlović, J.; Šuligoj, A.; Opresnik, M.; Tušar, N.N.; Logar, N.Z.; Rajić, N. Studies of Clinoptilolite-Rich Zeolitic Tuffs from Different Regions and Their Activity in Photodegradation of Methylene Blue. Catalysts 2022, 12, 224. https://doi.org/10.3390/catal12020224.
- Žumbar, T.; Ristić, A.; Dražić, G.; Lazarova, H.; Volavšek, J.; Pintar, A.; Zabukovec Logar, N.; Tušar, N.N. Influence of Alumina Precursor Properties on Cu-Fe Alumina Supported Catalysts for Total Toluene Oxidation as a Model Volatile Organic Air Pollutant. Catalysts 2021, 11, 252. https://doi.org/10.3390/catal11020252.
- Ullattil, S.G.; Zavašnik, J.; Maver, K.; Finšgar, M.; Novak Tušar, N.; Pintar, A. Defective Grey TiO2 with Minuscule Anatase–Rutile Heterophase Junctions for Hydroxyl Radicals Formation in a Visible Light-Triggered Photocatalysis. Catalysts 2021, 11, 1500. https://doi.org/10.3390/catal11121500.
- Xu, Y.; Liang, S.; Sun, L.; Hu, X.; Zhang, Y.; Lai, W.; Yi, X.; Fang, W. Management of γ-Alumina with High-Efficient {111} External Surfaces for HDS Reactions. Catalysts 2020, 10, 1254. https://doi.org/10.3390/catal10111254.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintar, A.; Tušar, N.N.; Rupprechter, G. Engineering Materials for Catalysis. Catalysts 2024, 14, 293. https://doi.org/10.3390/catal14050293
Pintar A, Tušar NN, Rupprechter G. Engineering Materials for Catalysis. Catalysts. 2024; 14(5):293. https://doi.org/10.3390/catal14050293
Chicago/Turabian StylePintar, Albin, Nataša Novak Tušar, and Günther Rupprechter. 2024. "Engineering Materials for Catalysis" Catalysts 14, no. 5: 293. https://doi.org/10.3390/catal14050293
APA StylePintar, A., Tušar, N. N., & Rupprechter, G. (2024). Engineering Materials for Catalysis. Catalysts, 14(5), 293. https://doi.org/10.3390/catal14050293