A DFT Study of CO Hydrogenation on Graphene Oxide: Effects of Adding Mn on Fischer–Tropsch Synthesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. GO Surface
2.2. Thermodynamic Analysis
2.2.1. Adsorption Energies
2.2.2. Reaction Energies
2.3. Reaction Energy Barrier Analysis
2.3.1. Activation Energies
2.3.2. Reaction Profiles
3. Computational Details
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perveen, S.; Kamruzzaman, M.; Yigitcanlar, T. What to assess to model the transport impacts of urban growth? A Delphi approach to examine the space–time suitability of transport indicators. Int. J. Sustain. Transp. 2018, 13, 597–613. [Google Scholar] [CrossRef]
- Nourouzi, Z.; Chamani, A. Characterization of ambient carbon monoxide and PM 2.5 effects on fetus development, liver enzymes and TSH in Isfahan City, central Iran. Environ. Pollut. 2021, 291, 118238. [Google Scholar] [CrossRef]
- World Health Organization. Why Urban Health Matters. 2010. Available online: https://www.who.int/publications/i/item/WHO-WKC-WHD-2010.1 (accessed on 13 September 2023).
- Torkashvand, M.; Sarabadani Tafreshi, S.; de Leeuw, N.H. Density Functional Theory Study of the Hydrogenation of Carbon Monoxide over the Co(001) Surface: Implications for the Fischer–Tropsch Process. Catalysts 2023, 13, 837. [Google Scholar] [CrossRef]
- Miroliaee, A.; Hoshdari, S.; Mohammadi Chahaki, M.M.; Abdouss, M. High surface area ZnAl2O4/reduced graphene oxide nanocomposites with enhanced photocatalytic performance. Mater. Und Werkst. 2019, 50, 140–154. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 505570. [Google Scholar] [CrossRef] [PubMed]
- Pejhan, A.; Agah, J.; Adli, A.; Mehrabadi, S.; Raoufinia, R.; Mokamel, A.; Abroudi, M.; Ghalenovi, M.; Sadeghi, Z.; Bolghanabadi, Z.; et al. Exposure to air pollution during pregnancy and newborn liver function. Chemosphere 2019, 226, 447–453. [Google Scholar] [CrossRef]
- Chen, R.; Pan, G.; Zhang, Y.; Xu, Q.; Zeng, G.; Xu, X.; Chen, B.; Kan, H. Ambient carbon monoxide and daily mortality in three Chinese cities: The China Air Pollution and Health Effects Study (CAPES). Sci. Total. Environ. 2011, 409, 4923–4928. [Google Scholar] [CrossRef]
- Ibrahim, A.A. Carbon Dioxide and Carbon Monoxide Level Detector. In Proceedings of the 2018 21st International Conference of Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 21–23 December 2018; pp. 1–5. [Google Scholar]
- Voss, G.J.B.; Fløystad, J.B.; Voronov, A.; Rønning, M. The State of Nickel as Promotor in Cobalt Fischer–Tropsch Synthesis Catalysts. Top. Catal. 2015, 58, 896–904. [Google Scholar] [CrossRef]
- Ashwell, A.P.; Lin, W.; Hofman, M.S.; Yang, Y.; Ratner, M.A.; Koel, B.E.; Schatz, G.C. Hydrogenation of CO to Methanol on Ni(110) through Subsurface Hydrogen. J. Am. Chem. Soc. 2017, 139, 17582–17589. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, J.; Chen, D.; Holmen, A. Recent Progresses in Understanding of Co-Based Fischer–Tropsch Catalysis by Means of Transient Kinetic Studies and Theoretical Analysis. Catal. Lett. 2014, 145, 145–161. [Google Scholar] [CrossRef]
- Yang, J.; Qi, Y.; Zhu, J.; Zhu, Y.-A.; Chen, D.; Holmen, A. Reaction mechanism of CO activation and methane formation on Co Fischer–Tropsch catalyst: A combined DFT, transient, and steady-state kinetic modeling. J. Catal. 2013, 308, 37–49. [Google Scholar] [CrossRef]
- Tan, K.F.; Xu, J.; Chang, J.; Borgna, A.; Saeys, M. Carbon deposition on Co catalysts during Fischer–Tropsch synthesis: A computational and experimental study. J. Catal. 2010, 274, 121–129. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C.M. Density Functional Theory Study of Iron and Cobalt Carbides for Fischer−Tropsch Synthesis. J. Phys. Chem. C 2009, 114, 1085–1093. [Google Scholar] [CrossRef]
- Williams, H.; Gnanamani, M.K.; Jacobs, G.; Shafer, W.D.; Coulliette, D. Fischer–Tropsch Synthesis: Computational Sensitivity Modeling for Series of Cobalt Catalysts. Catalysts 2019, 9, 857. [Google Scholar] [CrossRef]
- Asiaee, A.; Benjamin, K.M. A density functional theory based elementary reaction mechanism for early steps of Fischer-Tropsch synthesis over cobalt catalyst. 1. Reaction kinetics. Mol. Catal. 2017, 436, 218–227. [Google Scholar] [CrossRef]
- Javed, M.; Cheng, S.; Zhang, G.; Dai, P.; Cao, Y.; Lu, C.; Yang, R.; Xing, C.; Shan, S. Complete encapsulation of zeolite supported Co based core with silicalite-1 shell to achieve high gasoline selectivity in Fischer-Tropsch synthesis. Fuel 2017, 215, 226–231. [Google Scholar] [CrossRef]
- Navas-Anguita, Z.; Cruz, P.L.; Martín-Gamboa, M.; Iribarren, D.; Dufour, J. Simulation and life cycle assessment of synthetic fuels produced via biogas dry reforming and Fischer-Tropsch synthesis. Fuel 2019, 235, 1492–1500. [Google Scholar] [CrossRef]
- Ershov, M.; Potanin, D.; Gueseva, A.; Abdellatief, T.M.; Kapustin, V. Novel strategy to develop the technology of high-octane alternative fuel based on low-octane gasoline Fischer-Tropsch process. Fuel 2019, 261, 116330. [Google Scholar] [CrossRef]
- Jamaati, M.; Torkashvand, M.; Tafreshi, S.S.; de Leeuw, N.H. A Review of Theoretical Studies on Carbon Monoxide Hydrogenation via Fischer–Tropsch Synthesis over Transition Metals. Molecules 2023, 28, 6525. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Q.; Wang, G.; Hou, B.; Jia, L.; Li, D. Mechanistic Insight into the C2 Hydrocarbons Formation from Syngas on fcc-Co(111) Surface: A DFT Study. J. Phys. Chem. C 2016, 120, 9132–9147. [Google Scholar] [CrossRef]
- Liu, J.-X.; Su, H.-Y.; Li, W.-X. Structure sensitivity of CO methanation on Co(0001), and surfaces: Density functional theory calculations. Catal. Today 2013, 215, 36–42. [Google Scholar] [CrossRef]
- Petersen, M.A.; van den Berg, J.-A.; Ciobîcă, I.M.; van Helden, P. Revisiting CO Activation on Co Catalysts: Impact of Step and Kink Sites from DFT. ACS Catal. 2017, 7, 1984–1992. [Google Scholar] [CrossRef]
- Zhang, M.; Chi, S.; Huang, H.; Yu, Y. Mechanism insight into MnO for CO activation and O removal processes on Co(0001) surface: A DFT and kMC study. Appl. Surf. Sci. 2021, 567, 150854. [Google Scholar] [CrossRef]
- Montejo-Alvaro, F.; Alfaro-López, H.M.; Salinas-Juárez, M.G.; Rojas-Chávez, H.; Peralta-González, M.S.; Mondaca-Espinoza, F.J.; Cruz-Martínez, H. Metal clusters/modified graphene composites with enhanced CO adsorption: A density functional theory approach. J. Nanoparticle Res. 2022, 25, 11. [Google Scholar] [CrossRef]
- Xu, L.; Yang, L.-M.; Ganz, E. Mn–graphene single-atom catalyst evaluated for CO oxidation by computational screening. Theor. Chem. Accounts 2018, 137, 98. [Google Scholar] [CrossRef]
- Luo, M.; Liu, C.; Peera, S.G.; Liang, T. Atomic level N-coordinated Fe dual-metal embedded in graphene: An efficient double atoms catalyst for CO oxidation. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 621, 126575. [Google Scholar] [CrossRef]
- Liu, M.; Liu, C.; Luo, M.; Peera, S.G.; Liang, T. Theoretical study on iron and nitrogen co-doped graphene catalyzes CO oxidation. Mol. Catal. 2021, 509, 111624. [Google Scholar] [CrossRef]
- Liu, M.; Liu, C.; Gouse Peera, S.; Liang, T. Catalytic oxidation mechanism of CO on FeN2-doped graphene. Chem. Phys. 2022, 559, 111536. [Google Scholar] [CrossRef]
- Fang, W.; Wang, C.; Liu, Z.; Wang, L.; Liu, L.; Li, H.; Xu, S.; Zheng, A.; Qin, X.; Liu, L.; et al. Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration. Science 2022, 377, 406–410. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Liu, J.; Shi, R.; Waterhouse, G.I.; Wen, X.; Zhang, T. Titania-Supported Ni2P/Ni Catalysts for Selective Solar-Driven CO Hydrogenation. Adv. Mater. 2021, 33, 2103248. [Google Scholar] [CrossRef]
- Ye, A.; Li, Z.; Ding, J.; Xiong, W.; Huang, W. Synergistic Catalysis of Al and Zn Sites of Spinel ZnAl2O4 Catalyst for CO Hydrogenation to Methanol and Dimethyl Ether. ACS Catal. 2021, 11, 10014–10019. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Kang, J.; Yu, Z.; Tian, J.; Gong, Z.; Jia, A.; You, R.; Qian, K.; He, S.; et al. The active sites of Cu–ZnO catalysts for water gas shift and CO hydrogenation reactions. Nat. Commun. 2021, 12, 4331. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Liang, Z.; Liu, C.; Qi, X.; Chen, M.; Ur Rehman Sagar, R.; Yang, H.; Liang, T. Single–atom manganese and nitrogen co-doped graphene as low-cost catalysts for the efficient CO oxidation at room temperature. Appl. Surf. Sci. 2020, 536, 147809. [Google Scholar] [CrossRef]
- Luo, M.; Liang, Z.; Gouse Peera, S.; Chen, M.; Liu, C.; Yang, H.; Liu, J.; Pramod Kumar, U.; Liang, T. Theoretical study on the adsorption and predictive catalysis of MnN4 embedded in carbon substrate for gas molecules. Appl. Surf. Sci. 2020, 525, 146480. [Google Scholar] [CrossRef]
- Ray, S.C. Application and Uses of Graphene Oxide and Reduced Graphene Oxide. In Applications of Graphene and Graphene-Oxide Based Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2015; pp. 39–55. [Google Scholar]
- Majumdar, B.; Sarma, D.; Bhattacharya, T.; Sarma, T.K. Graphene Oxide as Metal-Free Catalyst in Oxidative Dehydrogenative C–N Coupling Leading to α-Ketoamides: Importance of Dual Catalytic Activity. ACS Sustain. Chem. Eng. 2017, 5, 9286–9294. [Google Scholar] [CrossRef]
- Dideikin, A.T.; Vul’, A.Y. Graphene Oxide and Derivatives: The Place in Graphene Family. Front. Phys. 2019, 6, 149. [Google Scholar] [CrossRef]
- Ahmad, H.; Fan, M.; Hui, D. Graphene oxide incorporated functional materials: A review. Compos. Part B Eng. 2018, 145, 270–280. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2009, 39, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Gao, W. Graphene Oxide; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Lahaye, R.J.W.E.; Jeong, H.K.; Park, C.Y.; Lee, Y.H. Density functional theory study of graphite oxide for different oxidation levels. Phys. Rev. B 2009, 79, 125435. [Google Scholar] [CrossRef]
- Mihet, M.; Dan, M.; Lazar, M.D. CO2 Hydrogenation Catalyzed by Graphene-Based Materials. Molecules 2022, 27, 3367. [Google Scholar] [CrossRef]
- Derekaya, F.; Köprülü, A.B.; Kilinç, Y.S. Investigation of CO Methanation with Different Carbon-Supported Ni-, Fe-, and Co-Containing Catalysts. Arab. J. Sci. Eng. 2023, 48, 8989–9008. [Google Scholar] [CrossRef]
- Tsiotsias, A.I.; Charisiou, N.D.; Yentekakis, I.V.; Goula, M.A. Bimetallic Ni-Based Catalysts for CO2 Methanation: A Review. Nanomaterials 2020, 11, 28. [Google Scholar] [CrossRef]
- Mebrahtu, C.; Krebs, F.; Perathoner, S.; Abate, S.; Centi, G.; Palkovits, R. Hydrotalcite based Ni–Fe/(Mg, Al)Ox catalysts for CO2 methanation—Tailoring Fe content for improved CO dissociation, basicity, and particle size. Catal. Sci. Technol. 2018, 8, 1016–1027. [Google Scholar] [CrossRef]
- Gui, Y.; Peng, X.; Liu, K.; Ding, Z. Adsorption of C2H2, CH4 and CO on Mn-doped graphene: Atomic, electronic, and gas-sensing properties. Phys. E Low-Dimens. Syst. Nanostructures 2020, 119, 113959. [Google Scholar] [CrossRef]
- Wei, Y.; Luo, D.; Yan, L.; Ma, C.; Fu, Z.; Guo, L.; Cai, M.; Sun, S.; Zhang, C. Boosting CO Hydrogenation Performance of Facile Organics Modified Iron Oxide/Reduced Graphene Oxide Catalysts. Catal. Lett. 2021, 152, 1835–1843. [Google Scholar] [CrossRef]
- Guo, L.; Gao, X.; Gao, W.; Wu, H.; Wang, X.; Sun, S.; Wei, Y.; Kugue, Y.; Guo, X.; Sun, J.; et al. High-yield production of liquid fuels in CO2 hydrogenation on a zeolite-free Fe-based catalyst. Chem. Sci. 2022, 14, 171–178. [Google Scholar] [CrossRef]
- Liu, W.; Cheng, S.; Malhi, H.S.; Gao, X.; Zhang, Z.; Tu, W. Hydrogenation of CO2 to Olefins over Iron-Based Catalysts: A Review. Catalysts 2022, 12, 1432. [Google Scholar] [CrossRef]
- Liang, B.; Sun, T.; Ma, J.; Duan, H.; Li, L.; Yang, X.; Zhang, Y.; Su, X.; Huang, Y.; Zhang, T. Mn decorated Na/Fe catalysts for CO2 hydrogenation to light olefins. Catal. Sci. Technol. 2018, 9, 456–464. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, G.; Wang, M.; Zhu, J.; Ding, F.; Song, C.; Guo, X. The synthesis of higher alcohols from CO2 hydrogenation over Mn-Cu-K modified Fe5C2 and CuZnAlZr tandem catalysts. Front. Energy Res. 2023, 10, 995800. [Google Scholar] [CrossRef]
- Zafari, R.; Abdouss, M.; Zamani, Y. Effect of Mn and reduced graphene oxide for the Fischer–Tropsch reaction: An efficient catalyst for the production of light olefins from syngas. React. Kinet. Catal. Lett. 2020, 129, 707–724. [Google Scholar] [CrossRef]
- Boukhvalov, D. Carbon Mono and Dioxide Hydrogenation over Pure and Metal Oxide Decorated Graphene Oxide Substrates: Insight from DFT. Graphene 2013, 2, 109–114. [Google Scholar] [CrossRef]
- Kim, S.; Zhou, S.; Hu, Y.; Acik, M.; Chabal, Y.J.; Berger, C.; De Heer, W.; Bongiorno, A.; Riedo, E. Room-temperature metastability of multilayer graphene oxide films. Nat. Mater. 2012, 11, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Andres, C.M.; Xu, J.; Ramamoorthy, A.; Tsotsis, T.; Kotov, N.A. Pseudonegative Thermal Expansion and the State of Water in Graphene Oxide Layered Assemblies. ACS Nano 2012, 6, 8357–8365. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Luan, S.; Shen, H.; Lei, S. Effect of metal doping on carbon monoxide adsorption on phosphorene: A first-principles study. Superlattices Microstruct. 2018, 124, 168–175. [Google Scholar] [CrossRef]
- Ren, B.; Dong, X.; Yu, Y.; Wen, G.; Zhang, M. A density functional theory study on the carbon chain growth of ethanol formation on Cu-Co(111) and (211) surfaces. Appl. Surf. Sci. 2017, 412, 374–384. [Google Scholar] [CrossRef]
- Qi, K.-Z.; Wang, G.-C.; Zheng, W.-J. A first-principles study of CO hydrogenation into methane on molybdenum carbides catalysts. Surf. Sci. 2013, 614, 53–63. [Google Scholar] [CrossRef]
- Ammar, H.Y. CH2O adsorption on M (M = Li, Mg and Al) atom deposited ZnO nano-cage: DFT study. Key Eng. Mater. 2018, 786, 384–392. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Predictions of adsorption energies of methane-related species on Cu-based alloys through machine learning. Mach. Learn. Appl. 2020, 3, 100010. [Google Scholar] [CrossRef]
- Taylor, C.J.; Pomberger, A.; Felton, K.C.; Grainger, R.; Barecka, M.; Chamberlain, T.W.; Bourne, R.A.; Johnson, C.N.; Lapkin, A.A. A Brief Introduction to Chemical Reaction Optimization. Chem. Rev. 2023, 123, 3089–3126. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.H.M.; Ko, Y.; Wei, M.; Zhao, K.; Zhong, L.; Züttel, A. Understanding the role of surface oxygen-containing functional groups on carbon-supported cobalt catalysts for the oxygen evolution reaction. J. Mater. Chem. A 2023, 11, 21066–21077. [Google Scholar] [CrossRef]
- Etim, U.J.; Zhang, C.; Zhong, Z. Impacts of the Catalyst Structures on CO2 Activation on Catalyst Surfaces. Nanomaterials 2021, 11, 3265. [Google Scholar] [CrossRef]
- Qiu, K.; Chai, G.; Jiang, C.; Ling, M.; Tang, J.; Guo, Z.X. Highly Efficient Oxygen Reduction Catalysts by Rational Synthesis of Nanoconfined Maghemite in a Nitrogen-Doped Graphene Framework. ACS Catal. 2016, 6, 3558–3568. [Google Scholar] [CrossRef]
- Khanra, B.; Bertolini, J.; Rousset, J. Effect of surface segregation on the catalytic activity of alloys: CO hydrogenation on Pd–Ni(111) surface. J. Mol. Catal. A Chem. 1998, 129, 233–240. [Google Scholar] [CrossRef]
- Nakamura, H.; Curran, H.J.; Polo Córdoba, A.; Pitz, W.J.; Dagaut, P.; Togbé, C.; Sarathy, S.M.; Mehl, M.; Agudelo Santamaría, J.R.; Bustamante, F. An experimental and modeling study of diethyl carbonate oxidation. Combust. Flame 2015, 162, 1395–1405. [Google Scholar] [CrossRef]
- Maryunina, K.; Letyagin, G.; Bogomyakov, A.; Morozov, V.; Tumanov, S.; Veber, S.; Fedin, M.; Saverina, E.; Syroeshkin, M.; Egorov, M.; et al. Re(i)-nitroxide complexes. RSC Adv. 2021, 11, 19902–19907. [Google Scholar] [CrossRef] [PubMed]
- Reuter, C.B.; Zhang, R.; Yehia, O.R.; Rezgui, Y.; Ju, Y. Counterflow flame experiments and chemical kinetic modeling of dimethyl ether/methane mixtures. Combust. Flame 2018, 196, 1–10. [Google Scholar] [CrossRef]
- Chang, C.-R.; Long, B.; Yang, X.-F.; Li, J. Theoretical Studies on the synergetic effects of Au–Pd bimetallic catalysts in the selective oxidation of methanol. J. Phys. Chem. C 2015, 119, 16072–16081. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 1994, 6, 8245–8257. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Sarabadani Tafreshi, S.; Ranjbar, M.; Taghizade, N.; Panahi, S.F.K.S.; Jamaati, M.; de Leeuw, N.H. A First-Principles Study of CO2 Hydrogenation on a Niobium-Terminated NbC(111) Surface. Chemphyschem 2022, 23, e202100781. [Google Scholar] [CrossRef]
- Sarabadani Tafreshi, S.; Panahi, S.; Fatemeh, K.S.; Taghizade, N.; Jamaati, M.; Ranjbar, M.; de Leeuw, N.H. Thermodynamic and Kinetic Study of Carbon Dioxide Hydrogenation on the Metal-Terminated Tantalum-Carbide (111) Surface: A DFT Calculation. Catalysts 2022, 12, 1275. [Google Scholar] [CrossRef]
- Sarabadani Tafreshi, S.; Ranjbar, M.; Jamaati, M.; Panahi, S.F.K.S.; Taghizade, N.; Torkashvand, M.; de Leeuw, N.H. Carbon dioxide hydrogenation over the carbon-terminated niobium carbide (111) surface: A density functional theory study. Phys. Chem. Chem. Phys. 2022, 25, 2498–2509. [Google Scholar] [CrossRef] [PubMed]
- Sarabadani Tafreshi, S.; Taghizade, N.; Sharifian, M.; Panahi, S.F.K.S.; Torkashvand, M.; de Leeuw, N.H. A density functional theory study of CO2 hydrogenation on carbon-terminated TaC(111) surface. React. Kinet. Catal. Lett. 2023, 136, 1945–1963. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456. [Google Scholar] [CrossRef]
- Henkelman, G.; Uberuaga, B.P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef]
- Henkelman, G.; Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 1999, 111, 7010–7022. [Google Scholar] [CrossRef]
- Heyden, A.; Bell, A.T.; Keil, F.J. Efficient methods for finding transition states in chemical reactions: Comparison of improved dimer method and partitioned rational function optimization method. J. Chem. Phys. 2005, 123, 224101. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.A.; Kroes, G.J.; Henkelman, G.; Arnaldsson, A.; Jónsson, H. Comparison of methods for finding saddle points without knowledge of the final states. J. Chem. Phys. 2004, 121, 9776–9792. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Sheppard, D.; Rogal, J.; Henkelman, G. Solid-state dimer method for calculating solid-solid phase transitions. J. Chem. Phys. 2014, 140, 174104. [Google Scholar] [CrossRef] [PubMed]
- Kästner, J.; Sherwood, P. Superlinearly converging dimer method for transition state search. J. Chem. Phys. 2008, 128, 014106. [Google Scholar] [CrossRef] [PubMed]
- Wisesa, P.; McGill, K.A.; Mueller, T. Efficient generation of generalized Monkhorst-Pack grids through the use of informatics. Phys. Rev. B 2016, 93, 155109. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
Methane Pathway | Methanol Pathway |
---|---|
CO + OH → HCO + O | CO + OH → HCO + O |
HCO + OH → CH2O + O | HCO + OH → CH2O + O |
CH2O + OH → CH2OH + O | CH2O + OH → CH2OH + O |
CH2OH + OH → CH2 + O + H2O | CH2OH + OH → CH3OH + O |
CH2 + OH → CH3 + O | - |
CH3 + OH → CH4 + O | - |
Bond Length (Gr and Mol) (Å) | Bond Length (Mn and Mol) (Å) | (eV) | (eV) (Other Studies) | |
---|---|---|---|---|
(Gr−O) 3.78 (Gr−C) 2.88 | CO | (Mn−O) 1.92 (Mn−C) 1.97 | −1.35 | −1.95 [48] Mn-doped graphene −1.16 [58] Phosphorene |
(Gr−O) 3.62 (Gr−C) 3.24 | HCO | (Mn−O) 1.99 (Mn−C) 1.79 | −3.27 | −2.96 [59] Cu–Co (111) and (211) −3.63 [60] fccMo2C (100) |
(Gr−O) 3.26 | CH2O | (Mn−O) 1.78 | −2.04 | −2.52 [60] fccMo2C (100) −2.23 [61] ZnO nano-cage |
(Gr−O) 3.38 (Gr−C) 3.17 | CH2OH | (Mn−O) 2.07 (Mn−C) 1.94 | −3.61 | −3.09 [60] fcc-Mo2C (100) |
(Gr−C) 3.30 | CH2 | (Mn−C) 1.70 | −5.58 | −5.54 [62] Cu-based alloys |
(Gr−C) 3.42 | CH3 | (Mn−C) 1.79 | −3.48 | −3.26 [59] Cu-Co (111) and (211) −3.55 [60] fcc-Mo2C (100) |
Reactions | Thermal Properties | (eV) |
---|---|---|
CO + OH → HCO + O | ENDO | 0.05 |
HCO + OH → CH2O + O | ENDO | 0.41 |
CH2O + OH → CH2OH + O | ENDO | 0.29 |
CH2OH + OH → CH2 + O + H2O | EXO | −0.18 |
CH2 + OH → CH3 + O | ENDO | 0.33 |
CH3 + OH → CH4 + O | ENDO | 0.71 |
CH2OH + OH → CH3OH + O | ENDO | 1.21 |
Reactions | (Other Studies) | |
---|---|---|
CO + OH → HCO + O | 2.48 | 2.35 [67] |
HCO + OH → CH2O + O | 0.48 | 0.41 [68], 0.67 [69] |
CH2O + OH → CH2OH + O | 3.86 | 3.73 [70] |
CH2OH + OH → CH2 + O + H2O | 0.80 | 0.84 [71] |
CH2 + OH → CH3 + O | 0.36 | 0.42 [61] |
CH3 + OH → CH4 + O | 1.35 | 1.20 [61] |
CH2OH + OH → CH3OH + O | 1.66 | 1.43 [61] |
Path | Energy (eV) |
---|---|
CO(g) + (3H) + (OH) | 0.00 |
CO + OH + (3H) | −1.35 |
TS1 + (3H) | 1.13 |
HCO + O + (3H) | −1.30 |
HCO + OH + (2H) | −1.71 |
TS2 + (2H) | −1.23 |
CH2O + O + (2H) | −1.30 |
CH2O + OH + (H) | −2.39 |
TS3 + (H) | 1.47 |
CH2OH + O + (H) | −2.10 |
CH2OH + OH (CH4 pathway) | −2.77 |
CH2OH + OH (CH3OH pathway) | −2.91 |
TS4 | −1.97 |
CH2 + O + H2O | −2.95 |
CH2 + OH + (OH) | −1.94 |
TS5 + (OH) | −1.58 |
CH3 + O + (OH) | −1.61 |
CH3 + OH + (O) | −1.56 |
TS6 + (O) | −0.21 |
CH4 + O + (O) | −0.85 |
CH4(g) + (2O) | 0.01 |
TS7 | −1.25 |
CH3OH + O | −1.71 |
CH3OH(g) + (O) | −0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhtiari, H.; Sarabadani Tafreshi, S.; Torkashvand, M.; Abdouss, M.; de Leeuw, N.H. A DFT Study of CO Hydrogenation on Graphene Oxide: Effects of Adding Mn on Fischer–Tropsch Synthesis. Catalysts 2024, 14, 294. https://doi.org/10.3390/catal14050294
Bakhtiari H, Sarabadani Tafreshi S, Torkashvand M, Abdouss M, de Leeuw NH. A DFT Study of CO Hydrogenation on Graphene Oxide: Effects of Adding Mn on Fischer–Tropsch Synthesis. Catalysts. 2024; 14(5):294. https://doi.org/10.3390/catal14050294
Chicago/Turabian StyleBakhtiari, Hanieh, Saeedeh Sarabadani Tafreshi, Mostafa Torkashvand, Majid Abdouss, and Nora H. de Leeuw. 2024. "A DFT Study of CO Hydrogenation on Graphene Oxide: Effects of Adding Mn on Fischer–Tropsch Synthesis" Catalysts 14, no. 5: 294. https://doi.org/10.3390/catal14050294
APA StyleBakhtiari, H., Sarabadani Tafreshi, S., Torkashvand, M., Abdouss, M., & de Leeuw, N. H. (2024). A DFT Study of CO Hydrogenation on Graphene Oxide: Effects of Adding Mn on Fischer–Tropsch Synthesis. Catalysts, 14(5), 294. https://doi.org/10.3390/catal14050294