One-Step Synthesis of High-Efficiency Oxygen Evolution Reaction Catalyst FeSx(Y/MB) with High Temperature Resistance and Strong Alkali
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Synthesis of FeS(DI/MB)
3.3. Synthesis of FeS(ET/MB)
3.4. Synthesis of Fe(DI/MB)
3.5. Synthesis of Fe(ET/MB)
3.6. Electrochemical Measurements
3.7. Characterization Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Jiang, K.; Yang, J.; Zheng, Y.; Hübner, R.; Ou, Z.; Dong, X.; He, L.; Wang, H.; Li, J.; et al. Tungsten Oxide/Reduced Graphene Oxide Aerogel with Low-Content Platinum as High-Performance Electrocatalyst for Hydrogen Evolution Reaction. Small 2021, 17, 2102159. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Xie, S.; Yang, J.; Lv, J.; Tan, W.; Yin, J.; Wang, J.; Zhao, M.; Wang, C.; Zhang, M.; et al. Co3Fe7/Mo2C co-embedded in N-codoped porous carbon with accelerated kinetics for OER and HER. Colloids Surf. A Physicochem. Eng. Aspects 2022, 645, 128953. [Google Scholar] [CrossRef]
- Zhang, J.; Lian, J.; Jiang, Q.; Wang, G. Boosting the OER/ORR/HER activity of Ru-doped Ni/Co oxides heterostructure. Chem. Eng. J. 2022, 439, 135634. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Ge, R.; Cairney, J.M.; Zheng, R.; Khan, A.; Li, S.; Liu, B.; Dai, L.; Li, W. Tailoring the electronic structure of Ni5P4/Ni2P catalyst by Co2P for efficient overall water electrolysis. ApEn 2023, 349, 121582. [Google Scholar] [CrossRef]
- Zhou, P.; Hai, G.; Zhao, G.; Li, R.; Huang, X.; Lu, Y.; Wang, G. CeO2 as an “electron pump” to boost the performance of Co4N in electrocatalytic hydrogen evolution, oxygen evolution and biomass oxidation valorization. Appl. Catal. B Environ. 2023, 325, 122364. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, W.; Zhang, F.-M.; Yang, Z.-D.; Zhang, G.; Zeng, X.C. COF-C4N Nanosheets with uniformly anchored single metal sites for electrocatalytic OER: From theoretical screening to target synthesis. Appl. Catal. B Environ. 2023, 325, 122366. [Google Scholar] [CrossRef]
- Ahasan Habib, M.; Mandavkar, R.; Lin, S.; Burse, S.; Khalid, T.; Hasan Joni, M.; Jeong, J.-H.; Lee, J. Ni-B-P micro spheres for superior water splitting OER electrocatalyst satisfying industrial operational requirement. Chem. Eng. J. 2023, 462, 142177. [Google Scholar] [CrossRef]
- Chen, L.; Wang, H.Y.; Tian, W.W.; Wang, L.; Sun, M.L.; Ren, J.T.; Yuan, Z.Y. Enabling Internal Electric Field in Heterogeneous Nanosheets to Significantly Accelerate Alkaline Hydrogen Electrocatalysis. Small 2023, 20, 2307252. [Google Scholar] [CrossRef] [PubMed]
- Hemmati, K.; Kumar, A.; Jadhav, A.R.; Moradlou, O.; Moshfegh, A.Z.; Lee, H. Nanorod Array-Based Hierarchical NiO Microspheres as a Bifunctional Electrocatalyst for a Selective and Corrosion-Resistance Seawater Photo/Electrolysis System. ACS Catal. 2023, 13, 5516–5528. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, B.; Zhang, Y.; Xiao, W.; Li, B.; Wu, Z.; Wang, L. In situ synthesis of two-dimensional graphene-like nickel-molybdenum nitride as efficient electrocatalyst towards water-splitting under large-current density. J. Colloid Interface Sci. 2023, 637, 104–111. [Google Scholar] [CrossRef]
- Shen, X.; Wei, X.; Wang, T.; Li, S.; Li, H. Polypyrrole embedded in nickel-cobalt sulfide nanosheets grown on nickel particles passivated silicon nanowire arrays for high-performance supercapacitors. Chem. Eng. J. 2023, 461, 141745. [Google Scholar] [CrossRef]
- Wang, X.; Yu, X.; Bai, J.; Yuan, G.; He, P.; Zhu, Y.; Wu, S.; Qin, F.; Ren, L. Interface engineering assisted Fe-Ni3S2/Ni2P heterostructure as a high-performance bifunctional electrocatalyst for OER and HER. Electrochim. Acta 2023, 458, 142524. [Google Scholar] [CrossRef]
- Zhang, H.; Qian, G.; Yu, T.; Chen, J.; Luo, L.; Yin, S. Interface Engineering of Ni3Fe and FeV2O4 Coupling with Carbon-Coated Mesoporous Nanosheets for Boosting Overall Water Splitting at 1500 mA cm−2. ACS Sustain. Chem. Eng. 2021, 9, 8249–8256. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Qian, G.; Yu, T.; Wang, Z.; Luo, L.; Shen, F.; Yin, S. In situ growth of volcano-like FeIr alloy on nickel foam as efficient bifunctional catalyst for overall water splitting at high current density. Chem. Eng. J. 2021, 421, 129892. [Google Scholar] [CrossRef]
- Qian, G.; Chen, J.; Yu, T.; Luo, L.; Yin, S. N-Doped Graphene-Decorated NiCo Alloy Coupled with Mesoporous NiCoMoO Nano-sheet Heterojunction for Enhanced Water Electrolysis Activity at High Current Density. Nano-Micro Lett. 2021, 13, 77. [Google Scholar] [CrossRef]
- Liu, X.; Guo, X.; Gong, M.; Zhao, T.; Zhang, J.; Zhu, Y.; Wang, D. Regulated iron corrosion towards fabricating large-area self-supporting electrodes for an efficient oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 23188–23198. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, Y.; Chen, Z.; Li, Z.; Ma, T.; Wu, Z.; Wang, L. Trifle Pt coupled with NiFe hydroxide synthesized via corrosion engineering to boost the cleavage of water molecule for alkaline water-splitting. Appl. Catal. B Environ. 2021, 297, 120395. [Google Scholar] [CrossRef]
- Jang, M.J.; Yang, S.H.; Park, M.G.; Jeong, J.; Cha, M.S.; Shin, S.-H.; Lee, K.H.; Bai, Z.; Chen, Z.; Lee, J.Y.; et al. Efficient and Durable Anion Exchange Membrane Water Electrolysis for a Commercially Available Electrolyzer Stack using Alkaline Electrolyte. ACS Energy Lett. 2022, 7, 2576–2583. [Google Scholar] [CrossRef]
- Park, Y.H.; Patil, S.B.; Jin, X.; Hwang, S.-J. High efficacy of substrate dimensionality control in optimizing the specific capacitance and phase stability of hybridized nanostructures. Nano Energy 2023, 113, 108566. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, G.; Chen, H.; Zeng, J.; Liu, Y.; Yang, Q.; Zhong, L.; Qiu, Y. Ultrathin hollow hemisphere-carbon-anchored Ni3FeN nanoparticles as nanoreactors facilitating the formation of NiCx with long-term durability for the oxygen evolution reaction. J. Mater. Chem. A 2022, 10, 7911–7919. [Google Scholar] [CrossRef]
- Jeong, D.I.; Choi‡, H.W.; Woo, S.; Yoo, J.H.; Kang, D.; Kim, S.; Lim, B.; Kim, J.H.; Kim, S.-W.; Kang, B.K.; et al. Electronic structure modification and N-doped carbon shell nanoarchitectonics of Ni3FeN@NC for overall water splitting performance evaluation. J. Mater. Chem. A 2022, 10, 16704–16713. [Google Scholar] [CrossRef]
- Xing, Y.; Liu, S.; Liu, Y.; Xiao, X.; Li, Y.; Wang, Z.; Hu, Y.; Xin, B.; Wang, H.; Wang, C. Construction of nickel phosphide/iron oxyhydroxide heterostructure nanoparticles for oxygen evolution. Nano Energy 2024, 123, 109402. [Google Scholar] [CrossRef]
- Xu, J.; Ruan, J.; Jian, Y.; Lao, J.; Li, Z.; Xie, F.; Jin, Y.; Yu, X.; Lee, M.-H.; Wang, Z.; et al. Cobalt-Doping Induced Formation of Five-Coordinated Nickel Selenide for Enhanced Ethanol Assisted Overall Water Splitting. Small 2024, 20, 2305905. [Google Scholar] [CrossRef]
- Xue, H.; Yang, T.; Zhang, Z.; Zhang, Y.; Geng, Z.; He, Y. Stimulate the hidden catalysis potential and exposure of nickel site in NiSe@CNTs result in ultra-high HER/OER activity and stability. Appl. Catal. B Environ. 2023, 330, 122641. [Google Scholar] [CrossRef]
- Chen, H.; Gao, R.-T.; Chen, H.; Yang, Y.; Wu, L.; Wang, L. Ruthenium and Silver Synergetic Regulation NiFe LDH Boosting Long-Duration Industrial Seawater Electrolysis. Adv. Funct. Mater. 2024, 2315674. [Google Scholar] [CrossRef]
- He, X.; Han, X.; Zhou, X.; Chen, J.; Wang, J.; Chen, Y.; Yu, L.; Zhang, N.; Li, J.; Wang, S.; et al. Electronic modulation with Pt-incorporated NiFe layered double hydroxide for ultrastable overall water splitting at 1000 mA cm−2. Appl. Catal. B Environ. 2023, 331, 122683. [Google Scholar] [CrossRef]
- Wang, W.; Dong, Q.; Qiu, H.; Li, H.; Mao, Y.; Liu, Y.; Gong, T.; Xiang, M.; Huang, Y.; Wang, C.; et al. Rapid reactivation of aged NZVI/GO by Shewanella CN32 for efficient removal of tetrabromobisphenol A and associated reaction mechanisms. J. Clean. Prod. 2022, 333, 130215. [Google Scholar] [CrossRef]
- Wang, H.; Zhan, W.; Yu, H.; Jiang, S.; Wang, B.; Deng, K.; Wang, Z.; Xu, Y.; Wang, L. Nitrogen-doped Ni3P–NiMoO4 heterostructure arrays for coupling hydrogen production with polyethylene terephthalate plastic electro-recycling. Mater. Today Phys. 2023, 37, 101192. [Google Scholar] [CrossRef]
- Mai, W.; Cui, Q.; Zhang, Z.; Wen, D.; Tian, L.; Hu, W. Coaxial Ni3S2@CoMoS4/NiFeOOH nanorods for energy-saving water splitting and urea electrolysis. Int. J. Hydrogen Energy 2021, 46, 24078–24093. [Google Scholar] [CrossRef]
- Dong, J.; Wang, Y.; Jiang, Q.; Nan, Z.-A.; Fan, F.R.; Tian, Z.-Q. Charged droplet-driven fast formation of nickel–iron (oxy)hydroxides with rich oxygen defects for boosting overall water splitting. J. Mater. Chem. A 2021, 9, 20058–20067. [Google Scholar] [CrossRef]
- Zang, Z.; Guo, Q.; Li, X.; Cheng, Y.; Li, L.; Yu, X.; Lu, Z.; Yang, X.; Zhang, X.; Liu, H. Construction of a S and Fe co-regulated metal Ni electrocatalyst for efficient alkaline overall water splitting. J. Mater. Chem. A 2023, 11, 4661–4671. [Google Scholar] [CrossRef]
- Li, W.; Sun, Z.; Ge, R.; Li, J.; Li, Y.; Cairney, J.M.; Zheng, R.; Li, Y.; Li, S.; Li, Q.; et al. Nanoarchitectonics of La-Doped Ni3S2/MoS2 Hetetostructural Electrocatalysts for Water Electrolysis. Small Struct. 2023, 4, 2300175. [Google Scholar] [CrossRef]
- Kong, D.; Wang, Y.; Huang, S.; Lim, Y.V.; Wang, M.; Xu, T.; Zang, J.; Li, X.; Yang, H.Y. Defect-Engineered 3D hierarchical NiMo3S4 nanoflowers as bifunctional electrocatalyst for overall water splitting. J. Colloid Interface Sci. 2022, 607, 1876–1887. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Feng, L.; Zhao, Z.; Wang, Y.; Zhang, Y.; Song, S.; Sun, S.; Zhou, J.; Gao, F. One-Step Synthesis of High-Efficiency Oxygen Evolution Reaction Catalyst FeSx(Y/MB) with High Temperature Resistance and Strong Alkali. Catalysts 2024, 14, 324. https://doi.org/10.3390/catal14050324
Wang J, Feng L, Zhao Z, Wang Y, Zhang Y, Song S, Sun S, Zhou J, Gao F. One-Step Synthesis of High-Efficiency Oxygen Evolution Reaction Catalyst FeSx(Y/MB) with High Temperature Resistance and Strong Alkali. Catalysts. 2024; 14(5):324. https://doi.org/10.3390/catal14050324
Chicago/Turabian StyleWang, Jing, Lingling Feng, Zikang Zhao, Yan Wang, Ying Zhang, Shan Song, Shengwei Sun, Junshuang Zhou, and Faming Gao. 2024. "One-Step Synthesis of High-Efficiency Oxygen Evolution Reaction Catalyst FeSx(Y/MB) with High Temperature Resistance and Strong Alkali" Catalysts 14, no. 5: 324. https://doi.org/10.3390/catal14050324
APA StyleWang, J., Feng, L., Zhao, Z., Wang, Y., Zhang, Y., Song, S., Sun, S., Zhou, J., & Gao, F. (2024). One-Step Synthesis of High-Efficiency Oxygen Evolution Reaction Catalyst FeSx(Y/MB) with High Temperature Resistance and Strong Alkali. Catalysts, 14(5), 324. https://doi.org/10.3390/catal14050324