Influence of Oxidation Temperature on the Regeneration of a Commercial Pt-Sn/Al2O3 Propane Dehydrogenation Catalyst
Abstract
:1. Introduction
2. Results
2.1. Catalytic Performance
2.2. TG Results
2.3. N2 Physisorption
2.4. H2-TPR
2.5. CO-DRIFTS
2.6. CO-Chem and HAADF-STEM
2.7. XPS
2.8. Optimization of Oxychlorination Conditions
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, Y.; Gao, X.; Wang, Q.; Wan, X.; Zhou, C.; Yang, Y. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chem. Soc. Rev. 2021, 50, 5590–5630. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Zhai, S.; Weng, C.; Wang, H.; Yuan, Z.-Y. Pt-based catalysts for direct propane dehydrogenation: Mechanisms revelation, advanced design, and challenges. Mol. Catal. 2024, 558, 114029. [Google Scholar] [CrossRef]
- Sattler, J.J.H.B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chem. Rev. 2014, 114, 10613–10653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.P.; Sui, Z.J.; Zhou, X.G.; Yuan, W.K. Modeling and Simulation of Coke Combustion Regeneration for Coked Cr2O3/Al2O3 Propane Dehydrogenation Catalyst. Chin. J. Chem. Eng. 2010, 18, 618–625. [Google Scholar]
- Otroshchenko, T.; Jiang, G.; Kondratenko, V.A.; Rodemerck, U.; Kondratenko, E.V. Current status and perspectives in oxidative, non-oxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts. Chem. Soc. Rev. 2021, 50, 473–527. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Lu, P.; Cao, Z.; Campbell, C.T.; Xia, Y. The physical chemistry and materials science behind sinter-resistant catalysts. Chem. Soc. Rev. 2018, 47, 4314–4331. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Deng, G.-M.; Li, W.-C.; Miao, S.; Wang, Q.-N.; Zhang, W.-P.; Lu, A.-H. Al2O3 Nanosheets Rich in Pentacoordinate Al3+ Ions Stabilize Pt-Sn Clusters for Propane Dehydrogenation. Angew. Chem. Int. Ed. 2015, 54, 13994–13998. [Google Scholar] [CrossRef] [PubMed]
- Mironenko, R.M.; Belskaya, O.B.; Talsi, V.P.; Gulyaeva, T.I.; Kazakov, M.O.; Nizovskii, A.I.; Kalinkin, A.V.; Bukhtiyarov, V.I.; Lavrenov, A.V.; Likholobov, V.A. Effect of γ-Al2O3 hydrothermal treatment on the formation and properties of platinum sites in Pt/γ-Al2O3 catalysts. Appl. Catal. A Gen. 2014, 469, 472–482. [Google Scholar] [CrossRef]
- Liu, Y.; Zong, X.; Patra, A.; Caratzoulas, S.; Vlachos, D.G. Propane Dehydrogenation on PtxSny (x, y ≤ 4) Clusters on Al2O3(110). ACS Catal. 2023, 13, 2802–2812. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Zhou, Y.M.; Tang, M.H.; Liu, X.; Duan, Y.Z. Effect of La calcination temperature on catalytic performance of PtSnNaLa/ZSM-5 catalyst for propane dehydrogenation. Chem. Eng. J. 2012, 181, 530–537. [Google Scholar] [CrossRef]
- Ma, Z.H.; Wang, J.; Li, J.; Wang, N.N.; An, C.H.; Sun, L.Y. Propane dehydrogenation over Al2O3 supported Pt nanoparticles: Effect of cerium addition. Fuel Process. Technol. 2014, 128, 283–288. [Google Scholar] [CrossRef]
- Im, J.; Choi, M. Physicochemical Stabilization of Pt against Sintering for a Dehydrogenation Catalyst with High Activity, Selectivity, and Durability. ACS Catal. 2016, 6, 2819–2826. [Google Scholar] [CrossRef]
- Long, L.L.; Lang, W.Z.; Yan, X.; Xia, K.; Guo, Y.J. Yttrium-modified alumina as support for trimetallic PtSnIn catalysts with improved catalytic performance in propane dehydrogenation. Fuel Process. Technol. 2016, 146, 48–55. [Google Scholar] [CrossRef]
- Kwon, H.C.; Park, Y.; Park, J.Y.; Ryoo, R.; Shin, H.; Choi, M. Catalytic Interplay of Ga, Pt, and Ce on the Alumina Surface Enabling High Activity, Selectivity, and Stability in Propane Dehydrogenation. ACS Catal. 2021, 11, 10767–10777. [Google Scholar] [CrossRef]
- Zhang, W.; Lei, J.; Sui, Z.-J.; Zhu, K.-K.; Zhu, Y.-A.; Zhou, X.-G. Thermal stability of nanoparticle supported on Al2O3 with different morphologies. Mater. Res. Express 2019, 6, 095064. [Google Scholar] [CrossRef]
- Monzón, A.; Garetto, T.F.; Borgna, A. Sintering and redispersion of Pt/γ-Al2O3 catalysts: A kinetic model. Appl. Catal. A Gen. 2003, 248, 279–289. [Google Scholar] [CrossRef]
- Fiedorow, R.M.J.; Wanke, S.E. The sintering of supported metal catalysts: I. Redispersion of supported platinum in oxygen. J. Catal. 1976, 43, 34–42. [Google Scholar] [CrossRef]
- Alcala, R.; Dean, D.P.; Chavan, I.; Chang, C.-W.; Burnside, B.; Pham, H.N.; Peterson, E.; Miller, J.T.; Datye, A.K. Strategies for regeneration of Pt-alloy catalysts supported on silica for propane dehydrogenation. Appl. Catal. A Gen. 2023, 658, 119157. [Google Scholar] [CrossRef]
- Gao, X.-Q.; Yao, Z.-H.; Li, W.-C.; Deng, G.-M.; He, L.; Si, R.; Wang, J.-G.; Lu, A.-H. Calcium-Modified PtSn/Al2O3 Catalyst for Propane Dehydrogenation with High Activity and Stability. Chemcatchem 2023, 15, e202201691. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, T.; Xu, Z.; Yue, Y.; Lin, M.; Zhu, H. Pt-Sn clusters anchored at Al3+ sites as a sinter-resistant and regenerable catalyst for propane dehydrogenation. J. Energy Chem. 2022, 65, 293–301. [Google Scholar] [CrossRef]
- Bournonville, J.P.; Franck, J.P.; Martino, G. Influence of the Various Activation Steps on the Dispersion and the Catalytic Properties of Platinum Supported on Chlorinated Alumina. In Studies in Surface Science and Catalysis; Poncelet, G., Grange, P., Jacobs, P.A., Eds.; Elsevier: Amsterdam, The Netherlands, 1983; Volume 16, pp. 81–90. [Google Scholar]
- Deng, S.; Qiu, C.; Yao, Z.; Sun, X.; Wei, Z.; Zhuang, G.; Zhong, X.; Wang, J.-G. Multiscale simulation on thermal stability of supported metal nanocatalysts. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2019, 9, e1405. [Google Scholar] [CrossRef]
- Zhao, F.-C.; Yang, H.; Sui, Z.-J.; Zhu, Y.-A.; Chen, D.; Zhou, X.-G. Self-adaptive structure and catalytic performance of the Pt–Sn/Al2O3 propane dehydrogenation catalyst regenerated by dichloroethane oxychlorination. Catal. Sci. Technol. 2022, 12, 7171–7181. [Google Scholar] [CrossRef]
- Yang, Y.; Miao, C.; Wang, R.; Zhang, R.; Li, X.; Wang, J.; Wang, X.; Yao, J. Advances in morphology-controlled alumina and its supported Pd catalysts: Synthesis and applications. Chem. Soc. Rev. 2024, 53, 5014–5053. [Google Scholar] [CrossRef] [PubMed]
- Morgan, K.; Goguet, A.; Hardacre, C. Metal Redispersion Strategies for Recycling of Supported Metal Catalysts: A Perspective. ACS Catal. 2015, 5, 3430–3445. [Google Scholar] [CrossRef]
- Choi, Y.S.; Oh, K.; Jung, K.-D.; Kim, W.-I.; Koh, H.L. Regeneration of Pt-Sn/Al2O3 Catalyst for Hydrogen Production through Propane Dehydrogenation Using Hydrochloric Acid. Catalysts 2020, 10, 898. [Google Scholar] [CrossRef]
- Ren, G.; Xiong, S.; Li, X.; Lai, X.; Chen, J.; Chu, M.; Xu, Y.; Huang, S. Regeneration of sintered platinum at mild temperature for propane dehydrogenation. J. Catal. 2024, 429, 115276. [Google Scholar] [CrossRef]
- Dong, L.; Sun, Y.; Zhou, Y.; Sui, Z.; Dai, Y.; Zhu, Y.; Zhou, X. Structure Robustness of Highly Dispersed Pt/Al2O3 Catalyst for Propane Dehydrogenation during Oxychlorination Regeneration Process. Catalysts 2024, 14, 48. [Google Scholar] [CrossRef]
- Ouyang, R.; Liu, J.-X.; Li, W.-X. Atomistic Theory of Ostwald Ripening and Disintegration of Supported Metal Particles under Reaction Conditions. J. Am. Chem. Soc. 2013, 135, 1760–1771. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-Z.; Sun, L.-L.; Sui, Z.-J.; Zhu, Y.-A.; Ye, G.-H.; Chen, D.; Zhou, X.-G.; Yuan, W.-K. Coke Formation on Pt–Sn/Al2O3 Catalyst for Propane Dehydrogenation. Ind. Eng. Chem. Res. 2018, 57, 8647–8654. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Jiang, J.; Sui, Z.; Zhu, Y.; Chen, D.; Zhou, X. Size Dependence of Pt Catalysts for Propane Dehydrogenation: From Atomically Dispersed to Nanoparticles. ACS Catal. 2020, 10, 12932–12942. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, J.-R.; Hwang, J.-H.; Roh, H.-S.; Koh, H.L. Effect of reduction temperature on the activity of Pt-Sn/Al2O3 catalysts for propane dehydrogenation. Catal. Today 2023, 411, 113957. [Google Scholar] [CrossRef]
- He, S.B.; Sun, C.L.; Bai, Z.W.; Dai, X.H.; Wang, B. Dehydrogenation of long chain paraffins over supported Pt-Sn-K/Al2O3 catalysts: A study of the alumina support effect. Appl. Catal. A Gen. 2009, 356, 88–98. [Google Scholar] [CrossRef]
- Lieske, H.; Lietz, G.; Spindler, H.; Völter, J. Reactions of platinum in oxygen- and hydrogen-treated Ptγ-Al2O3 catalysts: I. Temperature-programmed reduction, adsorption, and redispersion of platinum. J. Catal. 1983, 81, 8–16. [Google Scholar] [CrossRef]
- Padró, C.L.; de Miguel, S.R.; Castro, A.A.; Scelza, O.A. Stability and regeneration of supported PtSn catalysts for propane dehydrogenation. In Studies in Surface Science and Catalysis; Bartholomew, C.H., Fuentes, G.A., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; Volume 111, pp. 191–198. [Google Scholar]
- Shi, Y.; Li, X.; Rong, X.; Gu, B.; Wei, H.; Zhao, Y.; Wang, W.; Sun, C. Effect of Aging Temperature of Support on Catalytic Performance of PtSnK/Al2O3 Propane Dehydrogenation Catalyst. Catal. Lett. 2020, 150, 2283–2293. [Google Scholar] [CrossRef]
- Borges, L.R.; da Silva, A.G.M.; Braga, A.H.; Rossi, L.M.; Suller Garcia, M.A.; Vidinha, P. Towards the Effect of Pt0/Ptδ+ and Ce3+ Species at the Surface of CeO2 Crystals: Understanding the Nature of the Interactions under CO Oxidation Conditions. Chemcatchem 2021, 13, 1340–1354. [Google Scholar] [CrossRef]
- Shan, Y.; Sui, Z.; Zhu, Y.; Chen, D.; Zhou, X. Effect of steam addition on the structure and activity of Pt–Sn catalysts in propane dehydrogenation. Chem. Eng. J. 2015, 278, 240–248. [Google Scholar] [CrossRef]
- Virnovskaia, A.; Morandi, S.; Rytter, E.; Ghiotti, G.; Olsbye, U. Characterization of Pt,Sn/Mg(Al)O catalysts for light alkane dehydrogenation by FT-IR Spectroscopy and catalytic measurements. J. Phys. Chem. C 2007, 111, 14732–14742. [Google Scholar] [CrossRef]
- Pham, H.N.; Sattler, J.J.H.B.; Weckhuysen, B.M.; Datye, A.K. Role of Sn in the Regeneration of Pt/γ-Al2O3 Light Alkane Dehydrogenation Catalysts. ACS Catal. 2016, 6, 2257–2264. [Google Scholar] [CrossRef]
- Afonso, J.C.; Aranda, D.A.G.; Schmal, M.; Frety, R. Regeneration of a Pt SnAl2O3 catalyst: Influence of heating rate, temperature and time of regeneration. Fuel Process. Technol. 1997, 50, 35–48. [Google Scholar] [CrossRef]
- Le Normand, F.; Borgna, A.; Garetto, T.F.; Apesteguia, C.R.; Moraweck, B. Redispersion of Sintered Pt/Al2O3 Naphtha Reforming Catalysts: An in Situ Study Monitored by X-ray Absorption Spectroscopy. J. Phys. Chem. 1996, 100, 9068–9076. [Google Scholar] [CrossRef]
- Gracia, F.J.; Miller, J.T.; Kropf, A.J.; Wolf, E.E. Kinetics, FTIR, and Controlled Atmosphere EXAFS Study of the Effect of Chlorine on Pt-Supported Catalysts during Oxidation Reactions. J. Catal. 2002, 209, 341–354. [Google Scholar] [CrossRef]
- Kamiuchi, N.; Taguchi, K.; Matsui, T.; Kikuchi, R.; Eguchi, K. Sintering and redispersion of platinum catalysts supported on tin oxide. Appl. Catal. B Environ. 2009, 89, 65–72. [Google Scholar] [CrossRef]
- Serrano-Ruiz, J.C.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F. Bimetallic PtSn/C catalysts promoted by ceria: Application in the nonoxidative dehydrogenation of isobutane. J. Catal. 2007, 246, 158–165. [Google Scholar] [CrossRef]
- Kim, G.H.; Jung, K.-D.; Kim, W.-I.; Um, B.-H.; Shin, C.-H.; Oh, K.; Koh, H.L. Effect of oxychlorination treatment on the regeneration of Pt-Sn/Al2O3 catalyst for propane dehydrogenation. Res. Chem. Intermed. 2016, 42, 351–365. [Google Scholar] [CrossRef]
- Shi, Y.; Li, X.R.; Rong, X.; Gu, B.; Wei, H.Z.; Sun, C.L. Influence of support on the catalytic properties of Pt-Sn-K/theta-Al2O3 for propane dehydrogenation. RSC Adv. 2017, 7, 19841–19848. [Google Scholar] [CrossRef]
- Virnovskaia, A.; Jorgensen, S.; Hafizovic, J.; Prytz, O.; Kleimenov, E.; Havecker, M.; Bluhm, H.; Knop-Gericke, A.; Schlogl, R.; Olsbye, U. In situ XPS investigation of Pt(Sn)/Mg(Al)O catalysts during ethane dehydrogenation experiments. Surf. Sci. 2007, 601, 30–43. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, X.; Guan, Y.J.; Xu, H.; Zhang, J.W.; Jiang, J.G.; Chen, L.; Xue, T.; Xue, Q.S.; Wei, F.; et al. Skeleton-Sn anchoring isolated Pt site to confine subnanometric clusters within *BEA topology. J. Catal. 2021, 397, 44–57. [Google Scholar] [CrossRef]
Sample | Coke Index | |
---|---|---|
N2 | O2 | |
Fresh | 0.123 | 0.147 |
Sinter-550 °C | 0.087 | 0.084 |
Sinter-600 °C | 0.095 | 0.106 |
Sinter-650 °C | 0.092 | 0.105 |
Sinter-700 °C | 0.436 | 0.526 |
Re-550 °C | 0.075 | 0.077 |
Re-600 °C | 0.059 | 0.059 |
Re-650 °C | 0.043 | 0.042 |
Re-700 °C | 0.126 | 0.138 |
Samples | ) | ||
---|---|---|---|
Fresh | 90.1 | 27.6 | 0.62 |
Sinter-550 °C | 90.2 | 26.2 | 0.59 |
Sinter-600 °C | 92.5 | 27.5 | 0.63 |
Sinter-650 °C | 93.0 | 27.5 | 0.64 |
Sinter-700 °C | 95.3 | 28.1 | 0.67 |
Re-550 °C | 88.3 | 27.9 | 0.62 |
Re-600 °C | 87.5 | 28.8 | 0.63 |
Re-650 °C | 89.3 | 29.1 | 0.65 |
Re-700 °C | 93.3 | 28.8 | 0.67 |
Samples | Pt Dispersion (%) | DCO-Chem (nm) | DTEM (nm) |
---|---|---|---|
Fresh | 70.15 | 1.5 | 1.49 ± 0.3 |
Sinter-550 °C | 62.88 | 1.6 | 1.66 ± 0.25 |
Sinter-600 °C | 48.33 | 2.3 | 1.78 ± 0.13 |
Sinter-650 °C | 35.58 | 3.2 | 2.02 ± 0.38 |
Sinter-700 °C | 17.14 | 5.5 | >3 nm |
Re-550 °C | 82.98 | 1.2 | 1.23 ± 0.21 |
Re-600 °C | 63.57 | 1.6 | 1.48 ± 0.36 |
Re-650 °C | 59.41 | 1.6 | 1.55 ± 0.24 |
Re-700 °C | 19.44 | 4.9 | 2~3 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Tao, M.; Sui, Z.; An, N.; Shen, Y.; Zhou, X. Influence of Oxidation Temperature on the Regeneration of a Commercial Pt-Sn/Al2O3 Propane Dehydrogenation Catalyst. Catalysts 2024, 14, 389. https://doi.org/10.3390/catal14060389
Zhang C, Tao M, Sui Z, An N, Shen Y, Zhou X. Influence of Oxidation Temperature on the Regeneration of a Commercial Pt-Sn/Al2O3 Propane Dehydrogenation Catalyst. Catalysts. 2024; 14(6):389. https://doi.org/10.3390/catal14060389
Chicago/Turabian StyleZhang, Chao, Mingliang Tao, Zhijun Sui, Nihong An, Yafeng Shen, and Xinggui Zhou. 2024. "Influence of Oxidation Temperature on the Regeneration of a Commercial Pt-Sn/Al2O3 Propane Dehydrogenation Catalyst" Catalysts 14, no. 6: 389. https://doi.org/10.3390/catal14060389
APA StyleZhang, C., Tao, M., Sui, Z., An, N., Shen, Y., & Zhou, X. (2024). Influence of Oxidation Temperature on the Regeneration of a Commercial Pt-Sn/Al2O3 Propane Dehydrogenation Catalyst. Catalysts, 14(6), 389. https://doi.org/10.3390/catal14060389